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Abstract. Verification of machine code can easily deteriorate into an
endless clutter of low-level details. This paper presents a case study
which shows that machine-code verification does not necessarily require
ghastly low-level proofs. The case study we describe is the construction
of an x86-64 implementation of arbitrary-precision integer arithmetic.
Compared with closely related work, our proofs are shorter and, more im-
portantly, the reasoning is at a more convenient high level of abstraction,
e.g. pointer reasoning is largely avoided. We achieve this improvement as
a result of using previously developed tools, namely, a proof-producing
decompiler and compiler. The work presented in this paper has been de-
veloped in the HOL4 theorem prover and the case study resulted in 700
lines of verified 64-bit x86 machine code.

1 Introduction

Hardware executes all software in the form of machine code. As a result, program
verification ought to, ultimately, provide guarantees about the execution of the
machine code. However, direct manual verification of machine code is to be
avoided as such verification proofs easily become lengthy and unmaintainable.

Recent advances in compiler verification seem promising, making it possible
to relate verification results from the source code to the compiler-generated ma-
chine code. Unfortunately, current verified compilers do, however, not support
source code with real in-lined assembly (since the semantics of in-lined assembly
is difficult to state in terms of the semantics of the source language). In-lined
assembly is a natural component of certain programs, programs that need direct
access to hardware peripherals (e.g. operating systems), hand-optimised code or
special-purpose machine instructions.

This paper presents a case study which shows that machine-code verification
does not always necessarily require ghastly unmaintainable proofs. This paper
describes how a proof-producing decompiler and compiler can together make it
easy to produce verified machine code that essentially contains in-lined assembly.

The case study we describe is the construction of an x86-64 implementation of
arbitrary-precision arithmetic (bignum) functions. We have implemented the ba-
sic integer arithmetic operations (i.e. +,−,×, div,mod, <,=) for arbitrary sized
integers (represented as arrays in memory) and have proved that this x86-64
implementation correctly performs the desired arithmetic operations and leaves



memory untouched outside the result array. The implementation makes use of
special-purpose instructions for multi-word arithmetic.

This paper makes the following contributions.

– The proofs presented in this paper have produced a reusable verified x86-64
implementation of bignum integer operations. We envisage that this imple-
mentation will be of use in construction of larger bodies of verified code,
for example, verified language runtimes that provide support for bignum
arithmetic. For the purpose of reuse, we keep all interfaces clean and simple.

– The technique used for the verification proofs improves on related work on
similar case studies. The most closely related work by Affeldt [1] (Section 7)
required tedious manual reasoning about pointers. In comparison, our proofs
are significantly shorter and, more importantly, the reasoning is at a more
convenient high level of abstraction, in particular, pointer reasoning is almost
completely avoided.

– This improvement in the length and level of detail in the proofs is due to the
use of previously developed tools, namely, a proof-producing decompiler and
compiler. This paper describes how these general-purpose tools can be in-
stantiated to the problem domain of computations over variable-sized arrays,
making the manual proofs less cluttered with details of representation.

– To the best of our knowledge, we are the first to have formally verified func-
tional correctness of machine code that implements bignum integer division.

The case study resulted in 700 lines of verified 64-bit x86 machine code. The
proof development3 presented in this paper has been carried out in the HOL4
theorem prover [18].

2 Method

The method by which we construct the verified x86 implementation consists of
three steps:

1. We start by defining the algorithms involved as functions in logic. The func-
tions operate over lists of binary words. We prove that these functions cor-
rectly implement integer arithmetic, e.g. given two lists that represent the
‘digits’ of two integer numbers, the function for an arithmetic operation re-
turns a list that is the representation of the ‘digits’ of the resulting integer.
These high-level functions summarise the operations of the algorithm sepa-
rately from any architecture details, e.g. the machine-word length is kept as
a (type) variable throughout. (Section 3)

2. In order to generate and reason about machine code that implements the
functions from above, we instantiate a proof-producing compiler and decom-
piler with information about how lists of 64-bit digits can be represented in

3 The HOL4 scripts are available at http://www.cl.cam.ac.uk/~mom22/cpp13/
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memory as arrays. Concretely, we define a separation logic assertion about
arrays and prove theorems about x86 machine instructions for load and store
instructions that access and update arrays. The decompiler and compiler can
use these theorems to make it seem as if the underlying machine has a mem-
ory that consists of arrays. (Section 4)

3. Finally, we use the decompiler to prove specification for hand-written x86 as-
sembly, and then use the array-aware compiler to produce x86 machine code
that uses hand-written assembly and the x86 instructions that we proved
to have array-like behaviour. The compiler takes as input functions that are
restricted in format, but otherwise operate over the same types as the al-
gorithm specifications from step 1 (instantiated to 64-bit word length). The
compiler produces as output a proof of a theorem which states that the in-
put function is an accurate description of the behaviour of the generated
machine code. We manually prove that the input to the compiler perform
the same steps as the algorithm specifications from step 1. (Section 5)

The result of combining all of the correctness theorems together is a single theo-
rem (Section 6) describing the behaviour of a single chunk of x86 machine code,
for which we have a top-level correctness theorem: given an operation identifier
(referring to one of +,−,×, div,mod, <,=), pointers to two immutable input ar-
rays and a pointer to a separate mutable array, where the result is to be stored,
execution of the verified x86 code terminates with the result of the arithmetic
operation stored in the mutable array. There is a precondition which requires
the mutable array to be at least as long as the combined length of the two input
arrays. This precondition is a convenient over-approximation of the actual space
required for the result and the intermediate states of the computation.

3 Algorithm specification and verification

As mentioned above, the first step is to specify the bignum algorithms as func-
tions in logic and verify that they correctly compute integer arithmetic. This
section provides details on this first step.

3.1 Abstract representation of bignums

The algorithms operate over lists of machine words. In order to make sure these
algorithm specifications do not get tied to any particular architecture, we use a
variable as the length of the machine word. In HOL, machine words are most
conveniently modelled as finite cartesian products of booleans, a neat idea by
Harrison [6], which allows (the cardinality of) a type to define the size of the
word. We will write boolα for the type of words of width α and bool64 for
the type of words with 64 bits. For this representation, we have the usual word
operations and mappings for turning a natural into a word (n2w) and back (w2n):

n2w : N → boolα

w2n : boolα → N
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In this section, all words will have a variable width, i.e. boolα. In subsequent
sections, all words will be specialised to be 64 bits wide, i.e. of type bool64.

The algorithm operates over lists of such words, i.e. lists of type boolα list.
We have functions that map natural numbers to lists of multiple words (n2mw)
and back (n2mw). Here and throughout :: is list cons.

n2mw n = if n = 0 then [] else n2w (n MOD 2α) :: n2mw (n DIV 2α)

mw2n [] = 0

mw2n (w::ws) = w2n w + 2α × mw2n ws

We also define functions which translate between integers and a representation
of integers as a pair consisting of a sign and a list of machine words.

i2mw i = (i < 0, n2mw (abs i))

mw2i (sign, ws) = if sign then 0 - mw2n ws else mw2n ws

Thus, the algorithm functions operate over bignum integers as represented by
terms of type bool × (boolα list).

3.2 Algorithm specifications

The algorithm specification for each arithmetic function is a function of the
following type. The comparison operations, of course, return bool.

bool × (boolα list) → bool × (boolα list) → bool × (boolα list)

The following presents our specification of the long-multiplication algorithm
(mwi mul). Multiplication will be our running example, since it is neat and sim-
ple compared with the mess of dealing with alternating signs and variable length
arguments for bignum integer addition or subtraction.

Our specification of multiplication describes the operations of the standard
school-book long-multiplication.

6 2 3 5 1
2 4 6

3 7 4 1 0 6
2 4 9 4 0 4

1 2 4 7 0 2

1 5 3 3 8 3 4 6

There are, of course, a number of more sophisticated and better algorithms [8],
e.g. the Karatsuba and Tom-Cook algorithms are significantly faster for large
inputs; and Montgomery multiplication is better suited for multiplications that
are to be performed modulo a prime number.

When modelling the multiplication algorithm, we start by defining a few
primitive operations that we can expect to implement in custom assembly. For
example, we define a function for word addition with a carry-in and carry-out.
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single_add (x:boolα) (y:boolα) (c:bool) =

(n2w (w2n x + w2n y + if c then 1 else 0),

2α <= w2n x + w2n y + if c then 1 else 0)

And a similar function for multiplication, which given three words, x, y, z, com-
putes w2n x × w2n y + w2n z and returns two words describing this result.
We expect either to find such a machine instruction in each architecture or im-
plement this operation using a few instructions.

single_mul (x:boolα) (y:boolα) (z:boolα) =

(n2w (w2n x × w2n y + w2n z),

n2w ((w2n x × w2n y + w2n z) DIV 2α))

Equipped with the functions from above, we can define a function for the
body of the inner loop of multiplication. We follow the standard school-book
long-multiplication algorithm almost exactly. The only minor optimisation is
that the additions that are done on paper last are done by this algorithm in
conjunction with the rest of the computation. The function describing the body
of the inner loop takes word, p and q, from each input and a word k from the
accumulated result. The body performs a multiplication and two additions:

single_mul_add p q k s =

let (x,kc) = single_mul p q k in

let (y1,c1) = single_add x kc false in

let (y2,c2) = single_add s 0 c1 in

(y1,y2)

The function describing the inner loop traverses one of the inputs ys and the
accumulated result zs for one word from the other input x.

mw_mul_pass x [] zs k = [k]

mw_mul_pass x (y::ys) (z::zs) k =

let (y1,k1) = single_mul_add x y k z in

y1 :: mw_mul_pass x ys zs k1

The outer loop calls the inner loop for each word in the first input.

mw_mul [] ys zs = zs)

mw_mul (x::xs) ys zs =

let zs2 = mw_mul_pass x ys zs 0 in

HD zs2 :: mw_mul xs ys (TL zs2)

The entire multiplication algorithm comes together in mwi mul which computes
the resulting sign and initialises the accumulated result to all zeros before start-
ing the loop. The call to mw fix removes leading zeros from the result.

mwi_mul (s,xs) (t,ys) =

if (xs = []) ∨ (ys = []) then (false,[]) else

(s 6= t, mw_fix (mw_mul xs ys (MAP (λx. 0) ys)))

mw_fix [] = []

mw_fix (xs ++ [x]) = if x = 0 then mw_fix xs else xs ++ [x]
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3.3 Algorithm verification

The top-level correctness theorem for each arithmetic operation is easy to state
using the function i2mw for converting an integer into a signed list of words. For
multiplication, the correctness statement relates mwi mul to multiplication over
the integers (×).

∀i j. mwi_mul (i2mw i) (i2mw j) = i2mw (i × j)

Such statements guarantee that zero will never have the negative sign set and
that mwi mul never returns a list of words with redundant leading zeros.

Although the correctness theorem is stated in terms of i2mw, it seems easiest
to arrive at the correctness theorem via proofs about mw2n. Each component in
the algorithm has a neat description in terms of mw2n and w2n.

∀p q k1 k2 x1 x2.

single_mul_add p q k1 k2 = (x1,x2) =⇒
w2n x1 + 2α × w2n x2 = w2n p × w2n q + w2n k1 + w2n k2

∀ys zs x k.

LENGTH ys = LENGTH zs =⇒
mw2n (mw_mul_pass x ys zs k) = w2n x × mw2n ys + mw2n zs + w2n k

∀xs ys zs.

LENGTH ys = LENGTH zs =⇒
mw2n (mw_mul xs ys zs) = mw2n xs × mw2n ys + mw2n zs

3.4 Top-level entry point

In order to provide a clean interface to all functions in one. We define a function
that computes any of the arithmetic operations.

mwi_op Add (s,xs) (t,ys) = mwi_add (s,xs) (t,ys)

mwi_op Sub (s,xs) (t,ys) = mwi_sub (s,xs) (t,ys)

mwi_op Mul (s,xs) (t,ys) = mwi_mul (s,xs) (t,ys)

mwi_op Div (s,xs) (t,ys) = mwi_div (s,xs) (t,ys)

mwi_op Mod (s,xs) (t,ys) = mwi_mod (s,xs) (t,ys)

mwi_op Lt (s,xs) (t,ys) = i2mw (if mwi_lt (s,xs) (t,ys) then 1 else 0)

mwi_op Eq (s,xs) (t,ys) = i2mw (if mwi_eq (s,xs) (t,ys) then 1 else 0)

For this function, we have a correctness theorem:

∀op i j.

(op = Div ∨ op = Mod =⇒ j 6= 0) =⇒
mwi_op op (i2mw i) (i2mw j) = i2mw (int_op op i j)

where int op performs the selected operation over the integers.

int_op Add i j = i + j

int_op Sub i j = i - j

...
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4 Instantiation of proof tools for arrays

With the bignum arithmetic algorithms specified and verified in the previous
section, this section describes the Hoare logic and proof tools that are used in
the next section for construction of verified machine-code implementation.

4.1 Hoare logic for machine code

We will skip a detailed description of the operational semantics for x86 used in
this paper, since that semantics has been described previously [13]. Instead, a
few examples will be used to explain features of a machine-code Hoare logic [12]
that sits on top of the bare operational semantics.

All our reasoning about x86 machine code is performed through a machine-
code Hoare logic, which can be instantiated to different instruction set architec-
tures. Here we consider only an instantiation to 64-bit x86.

The following is a Hoare triple describing an x86 instruction add r8,r9,
encoded as 4D01C8, that adds the content of 64-bit register 8 with register 9 and
stored the result in register 8. The following Hoare triple can be read informally
as follows: if the program counter (PC) is initially p, register 8 and 9 are r8

and r9, respectively, and the flags have some value (S ), and if 4D01C8 is at
location p in memory, then execution will reach a point at which the program
counter is set to p + 3, register 8 contains the value r8 + r9 and the flags
again have some value (S ). Here * is a form of separating conjunction [16, 12].
Details of this separating conjunction are unimportant for this paper. However,
it is worth noting that its use means that all other resources much have been
kept unchanged, e.g. the following Hoare-triple theorem implicitly states that
the value of register 10 was unaffected by the add r8,r9 instruction.

{ PC p * R8 r8 * R9 r9 * S }
p : 4D01C8

{ PC (p + 3) * R8 (r8 + r9) * R9 r9 * S }

An unusual feature of these Hoare triples is that the pre- and postconditions
include the value of the program counter. Its inclusion makes it easy to specify
the branch instructions. Example: a jump-if-equal instruction, je -40 encoded
as 48EBD5, is described by the following Hoare-triple theorem. The jump is con-
ditional on x86 z flag, which is set by most arithmetic operations.

{ PC p * S (a,c,o,p,z) }
p : 48EBD5

{ PC (if z then p - 40 else p + 3) * S (a,c,o,p,z) }

Memory accesses are specified using a memory assertion memory m, which
states that a part of memory (the set of addresses in domain m) are described
by the partial function m. The following is a Hoare triple for a store instruction,
mov [r8],r9 encoded as 4D8908, which stores the content of register 9 at an
address given in register 8.
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r8 ∈ domain m ∧ word_aligned r8 =⇒
{ PC p * R8 r8 * R9 r9 * memory m }

p : 4D8908

{ PC (p + 3) * R8 r8 * R9 r9 * memory (m[r8 7→ r9]) }

This Hoare logic supports the usual inference rules: precondition strength-
ening, postcondition weakening, composition, frame rule etc. As a result, one
can perform proofs directly using these Hoare triples, as was done in previous
work [11]. However, it is significantly easier if tools are used which automate
much of the routine reasoning.

4.2 Proof-producing decompiler and compiler

Tool support, developed in previous work [12], is able to automate much of the
routine Hoare logic reasoning. An example will illustrate what our decompiler
can do. The HOL4 syntax below calls our decompiler for assembly code that
computes, in r9, Knuth’s D constant ahead of his bignum division algorithm [8].

val (x64_calcd_cert,x64_calcd_def) = x64_decompile "x64_calcd"

‘ LOOP: cmp r8,0

js EXIT

add r8,r8

add r9,r9

jmp LOOP

EXIT: ’

This call to x64 decompile first runs an assembler to turn the assembly into
concrete machine code, it then derives Hoare-triple theorems for each of the
instructions and finally composes the Hoare triples together. The decompiler
returns a function describing the behaviour of the machine code,

x64_calcd (r8,r9) =

if word_sign_bit r8 then (r8,r9)

else let r8 = r8 + r8 in let r9 = r9 + r9 in x64_calcd (r8,r9)

x64_calcd_pre (r8,r9) =

if word_sign_bit r8 then true

else let r8 = r8 + r8 in let r9 = r9 + r9 in x64_calcd_pre (r8,r9)

and automatically proves a (certificate) theorem which states that the function
x64 calcd is an accurate desorption of the effect of executing the x86-64 machine
code, if the side-condition x64 calcd pre (r8,r9) is provable.

x64_calcd_pre (r8,r9) =⇒
{ PC p * R8 r8 * R9 r9 * S }
p : 0x4983F80 48789 4D1C0 4D1C9 48EBF0

{ let (r8,r9) = x64_calcd (r8,r9) in

PC (p + 86) * R8 r8 * R9 r9 * S }
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The benefit of using the decompiler is that all subsequent reasoning can
be done on the extracted function x64 calcd, since any result proved for this
function is relates back to the machine code through the certificate theorem.

Writing assembly code manually is tiresome. To help with this, a proof-
producing compiler has been constructed using the decompiler. This compiler
essentially takes as input tail-recursive functions of the form x64 calcd, it then:
(1) generates (without proof) assembly code based on the input function, (2)
decompiles the assembly as above, and (3) proves that the function decompilation
produced is identical to the function that was to be compiled, i.e. the compiler
can return the certificate theorem produced by the underlying decompiler.

4.3 Array support in the compiler

As explained above, the decompiler and compiler produce their proofs by simply
composing machine-code Hoare triples together. By default these tools use only
automatically derived Hoare triples that provide a cumbersome flat functional
view of the memory of the underlying x86 machine semantics.

The technique by which we instantiate the tools to the problem domain of
bignum-array programs is to supply the tools with custom Hoare-triple theorems
that are stated in terms of an domain-specific bignum-memory assertion. With
such an assertion the decompiler and compiler can make the machine seem as if
it has a memory containing arrays (in which we will store bignums).

We define the domain-specific assertion bignums based on the default mem-
ory assertion memory as explained below. The definition of bignums uses a few
basic concepts of separation logic defined next. The separating conjunction ? is
defined as usual, taking the disjoint union (∪· ) of two memory segments. The emp
assertion is true only for the empty memory segment. The unusual part is our
definition of the maps-to assertion, a 7→ x, is true for a memory segment if the
bytes of 64-bit word x are stored from 64-bit address a onwards. Here [7--0]x
is notation for selecting bits 7 to 0 from x.

(p ? q) m = ∃m1 m2. p m1 ∧ q m2 ∧ (m = m1 ∪· m2)

emp m = (domain m = ∅)

(a 7→ x) m = (domain m = {a,a+1,a+2,a+3,...,a+7}) ∧
(m a = [7--0]x) ∧ (m (a+1) = [15--8]x) ∧ ...

These basic concepts of separation logic are enough to define an array asser-
tion for memory segments: array a xs is true for a memory segment m if the
words in list xs are stored in order from address a onwards.

array a [] = emp

array a (x::xs) = a 7→ x ? array (a + 8) xs

The bignum code that we produce uses three arrays: we call the content of
these arrays xs, ys and zs, and have pointers, xa, ya, za, point to the (word-
aligned) base of these arrays. We allow pointers xa and ya to alias. If they do
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alias, then the content of xs and ys must be identical. The intention is that xs
and ys hold bignum inputs and zs is the mutable result array.

bignum_memory m xa xs ya ys za zs =

word_aligned xa ∧ word_aligned ya ∧ word_aligned za ∧
if xa = ya then

(xs = ys) ∧ (array xa xs ? array za zs) m

else

(array xa xs ? array ya ys ? array za zs) m

The definition of the bignums assertion constrains the default memory asser-
tion with the bignum memory condition and states that pointers xa, ya, za are
kept in registers 13, 14 and 15, respectively.

bignums (xa,xs,ya,ys,za,zs) =

∃m. memory m * R13 xa * R14 ya * R15 za *

〈bignum_memory m xa xs ya ys za zs〉

Using this bignums assertion, we can now manually verify a number of Hoare-
triple theorems which make certain machine instructions seem as if they operate
over arrays directly. For example the load instruction mov r0,[8*r10+r13],
encoded as 4B8B44D500, loads the list element (EL) at index w2n r10 from list
xs, if w2n r10 is not too large an index for xs.

w2n r10 < LENGTH xs =⇒
{ PC p * R0 r0 * R10 r10 * bignums (xa,xs,ya,ys,za,zs) }

p : 4B8B44D500

{ let r0 = EL (w2n r10) xs in

PC (p + 5) * R0 r0 * R10 r10 * bignums (xa,xs,ya,ys,za,zs) }

Similarly, mov [8*r10+r15],r0, encoded as 4B8904D7, updates (LUPDATE) list
index w2n r10 of list zs, if w2n r10 is not too large an index for zs.

w2n r10 < LENGTH zs =⇒
{ PC p * R0 r0 * R10 r10 * bignums (xa,xs,ya,ys,za,zs) }

p : 4B8904D7

{ let zs = LUPDATE r0 (w2n r10) zs in

PC (p + 4) * R0 r0 * R10 r10 * bignums (xa,xs,ya,ys,za,zs) }

Supplied with such Hoare-triple theorems, the compiler can compile functions
which contain the following lines:

let r0 = EL (w2n r10) xs in

let zs = LUPDATE r0 (w2n r10) zs in

By supplying enough such Hoare-triple theorems, we can exclusively use only
statements about recognised list/array operations and thus never, in manual
proofs, require pointer reasoning beyond this point. Examples of compiled array
accessing functions are given in Section 5.2.
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5 Construction of verified machine code

With a proof-producing compiler that understands basic operations over a few
arrays, we are ready to describe how one can construct verified implementa-
tions for the algorithms from Section 3. This section continues with the running
example of multiplication.

5.1 Verification of hand-written assembly

Certain parts of the algorithms in Section 3 are best implemented in custom
hand-written assembly. The following call to x64 decompile decompiles an as-
sembly implementation of single mul add from Section 3.2. The assembler, that
we use, aliases r0 with rax, r1 with rcx, r2 with rdx and r3 with rbx.

val (_, x64_single_mul_add_def) = x64_decompile "x64_single_mul_add"

‘ mul r2

add r0,r1

adc r2,0

add r0,r3

adc r2,0 ’

This call results in a function x64 single mul add (r0,r1,r2,r3), which is
easily proved to be an implementation of single mul add:

∀p k q s.

x64_single_mul_add_pre (p,k,q,s) = true ∧
x64_single_mul_add (p,k,q,s) =

let (x1,x2) = single_mul_add p q k s in (x1,k,x2,s)

5.2 Using in-lined assembly in compilations

Each run of the decompiler produces a certificate theorem. The certificate theo-
rem produced for the decompilation above can be used in subsequent decompi-
lations and compilations. Concretely, this means that the compiler can produce
code for functions involving the line:

let (r0,r1,r2,r3) = x64_single_mul_add (r0,r1,r2,r3) in

Such lines result in code where the implementation of x64 single mul add is in-
lined in the generated machine code. The decompiler uses the certificate theorem
for x64 single mul add at the point where it encounters the in-lining.

This in-lining feature allows writing an implementation of the inner loop,
mw mul pass, of the multiplication algorithm. The function which we compile to
generate machine code for mw mul pass is called x64 mul pass. Its definition is
shown in Figure 1. The compiler-generated machine code, shown in Figure 2, uses
the custom assembly code and the list/array operations EL and LUPDATE from
Section 4.3. A disassembly of the generated machine code is listed in Figure 2.
The entire bignum library implementation is produced via such compilations
that in-line the result of previous compilations and decompilations.
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val (_,x64_mul_pass_def,x64_mul_pass_pre_def) = x64_compile ‘

x64_mul_pass (r1,r8,r9,r10,r11,ys,zs) =

if r9 = r11 then

let zs = LUPDATE r1 (w2n r10) zs in

let r10 = r10 + 1w in

(r1,r9,r10,ys,zs)

else

let r3 = EL (w2n r10) zs in

let r2 = EL (w2n r11) ys in

let r0 = r8 in

let (r0,r1,r2,r3) = x64_single_mul_add (r0,r1,r2,r3) in

let zs = LUPDATE r0 (w2n r10) zs in

let r1 = r2 in

let r10 = r10 + 1w in

let r11 = r11 + 1w in

x64_mul_pass (r1,r8,r9,r10,r11,ys,zs) ’

Fig. 1. HOL4 syntax for a call to the compiler for x64 mul pass

00: 4D39D9 L1: cmp r9, r11

03: 48742C je L2

06: 4B8B1CD7 mov r3,[8*r10+r15] // EL (w2n r10) zs

0A: 4B8B14DE mov r2,[8*r11+r14] // EL (w2n r11) ys

0E: 498BC0 mov r0, r8

11: 48F7E2 mul r2 // in-lined part

14: 4801C8 add r0,r1 // in-lined part

17: 4883D20 adc r2,0 // in-lined part

1B: 4801D8 add r0,r3 // in-lined part

1E: 4883D20 adc r2,0 // in-lined part

22: 4B8904D7 mov [8*r10+r15],r0 // LUPDATE r0 (w2n r10) zs

26: 488BCA mov r1, r2

29: 49FFC2 inc r10

2C: 49FFC3 inc r11

2F: 48EBCE jmp L1

32: 4B890CD7 L2: mov [8*r10+r15],r1 // LUPDATE r1 (w2n r10) zs

36: 49FFC2 inc r10

Fig. 2. Annotated disassembly of machine code generated for x64 mul pass
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5.3 Verification of the generated machine code

Since the compiler produces a certificate theorem relating the given input func-
tion to the generated machine code, it suffices to prove properties of the input
functions (and generated precondition functions) in order to prove the correct-
ness of the machine code. For x64 mul pass, this means that we need to prove
that x64 mul pass implements mw mul pass. The statement we prove, below,
might seem hard to comprehend, but look closer and it becomes clear that this
is a reasonably straight forward property. The length of the proof of this goal is
less than twice the length of the goal statement.

∀ys x zs k zs1 zs2 z2.

length zs = length ys ∧ length (zs1 ++ zs) < 264 =⇒
∃r1.
x64_mul_pass_pre

(k,x,n2w (length ys),n2w (length zs1),n2w 0,ys,

zs1 ++ zs ++ z2::zs2) = true ∧
x64_mul_pass

(k,x,n2w (length ys),n2w (length zs1),n2w 0,ys,

zs1 ++ zs ++ z2::zs2) =

(r1,n2w (length ys),n2w (length (zs1 ++ zs) + 1),ys,

zs1 ++ mw_mul_pass x ys zs k ++ zs2)

6 Results

The result of this verification effort is a verified library of bignum integer arith-
metic functions implemented in 64-bit x86 machine code. The intention was to
make this case study as reusable as possible so that future verified language im-
plementations, e.g. future version of our verified Lisp implementation [14], can
make use of arbitrary-precision integer arithmetic.

6.1 Top-level theorem

The verified library of integer arithmetic operations has a top-level entry point
which implements int op form Section 3.4. The machine code implementing
int op has a clean and simple interface: as inputs, it expects three pointers,
pointers to two input arrays and one array for the result, it expects the length
and sign of the input numbers to be provided in specific registers and it reads
the operation identifier from a register. If the output array is long enough (at
least the sum of the lengths of the inputs) and disjoint from the input arrays,
then the verified machine-code implementation will terminate with the result of
the arithmetic operation of choice produced in the result array and the sign and
length of the result return in a register. The input arrays are left unchanged.

6.2 In numbers

In order to give some measure of the effort involved, the table below lists how
many lines of proof scripts were produced for each part of this project. The three
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middle columns list the length of our HOL4 proof scripts and the last column
lists the number of instructions in the verified machine code that was produced.

part / operation alg. impl. total x86

prelude & tool setup 398 357 755 0
comparison 138 118 256 58
addition & subtraction 307 655 962 122
multiplication 149 266 415 105
division & modulus 2149 1482 3631 398

all parts together 3141 2878 6019 683

alg. — lines for specification and verification of algorithms (Section 3)
impl. — lines for construction and verification of machine code (Sections 4, 5)
total — sum of alg. and impl. columns
x86 — number of instructions in the verified 64-bit x86 machine code

One can (correctly) read from this table that the algorithm proofs were roughly
as time consuming as the construction and verification of the machine-code im-
plementations. Another fact one can read from this table is that the proof effort
per line of verified code is at a healthy low 9 lines of proof script for each line of
verified machine code (6019/683 ≈ 8.8).

7 Related work

The most closely related work on verified implementation of arithmetic functions
is that of Affeldt [1], Fischer [5], Berghofer [3] and Moore [9]. We will also
compare with the first author’s early poster on this topic [11], and reflect on
recent trends in programming logics for assembly verification.

Affeldt has constructed and verified SmartMIPS assembly code that imple-
ments the basic arithmetic functions: +,−,×, <,=, notably excluding div and
mod, but including Montgomery multiplication. Affeldt uses separation logic [16]
and explicit reasoning about pointers in his verification proofs, which appear to
be more low-level and labour intensive than the proofs reported on in this pa-
per. Affeldt proposes use of a simulation relation to lift reasoning of compound
operations to a more manageable level of detail. Affeldt states that his entire
development (without division) is roughly 30,000 lines of Coq proof scripts. In
comparison, the development for the current paper consists of 16,588 lines4 of
HOL4 scripts.

Fischer and Berghofer both use the Isabelle/HOL theorem prover and both
verify implementations written in a higher-level language. Fischer verified a C-
like implementation of arbitrary-precision integer arithmetic, including division
and modulus, using manual application of a separation-logic instantiation of
Schirmer’s Hoare logic framework [17]. Fischer reports that her proofs required

4 16,588 = 6,019 (case study) + 5,476 (logic and tools) + 5,093 (x86-64 semantics)
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significant manual effort to deal with selection of frames for the separation-
logic reasoning. Her bignums were represented as linked lists. Berghofer verified
a bignum library, which includes Montgomery multiplication but not division,
written in Spark/Ada using a combination of Spark/Ada tool suite and the
Isabelle/HOL prover.

The first author’s early poster, Myreen and Gordon [11], on the topic of
machine-code verification showed that it is possible to use a Hoare logic directly
to manually verify, in the HOL4 theorem prover, the correctness of ARM machine
code implementing an optimised version of Montgomery multiplication.

Moore seems to have been the first to have formally verified the correctness
of a bignum assembly routine, using the Nqthm prover. In his paper on the
verified implementation of the Piton language, Moore explains that it is possible
to verify an assembly routine for addition for bignums stored as arrays.

In terms of future direction, there seems to be a trend of making high-level
language reasoning seamlessly available in the context of assembly verification.
Significant recent work in this area include the programming logic by Jensen et
al. [7], which has a powerful ‘macro feature’. This macro feature makes it possible
to define functions in the logic that operate over the assembly syntax and thus
introduce, say, a while-loop macro and derive neat and familiar-looking proof
rules for such, even though the reasoning is still about assembly code. Another
noteworthy recent result in this area is Chlipala’s Bedrock framework [4]. The
Bedrock framework neatly fits into the Coq prover and provides proof tools which
automate most routine separation-logic reasoning for assembly programs. The
current paper has shown that our previously developed tools [12] are capable
of providing convenient verification environment for the HOL4 theorem prover
and, for this case study, explicit proofs about pointers can be avoided.

The work of this paper has focused on proof of full functional correctness.
However, great strides have also been made in proofs of safety properties. Nec-
ula’s work on proof-carrying code [15] spurred a lot of interest in low-level code [2,
19]. An exciting recent result in this area is a new method for software-fault iso-
lation for real machine code [10].

8 Summary

This paper has demonstrated how a proof-producing decompiler and compiler
can be used in the construction of verified machine-code implementations of
bignum arithmetic. By careful instantiation of the previously developed tools,
the entire verification effort is kept at a manageable complexity with proofs in-
volving pointer reasoning nearly completely avoided (only present in Section 4.3).
The resulting 64-bit x86 machine code was produced from both in-lined custom
assembly and functions written at a higher level of abstraction.
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