
Title: Hoare Logic

Lecturer: Magnus Myreen

Class: CST Part II

Duration: 12 lectures

The Part II course Hoare Logic has evolved from an earlier Part II course

Specification and Verification I taught by Mike Gordon (details on his home

page). Some exam questions from that course might be good exercises, but

others are based on material not covered in this course. A list of relevant

past questions and a separate document containing suggested exercises will

be available from the course web page.

There is some background reading material available as an online PDF doc-

ument from the course web page; in the slides this is sometimes referred to

as the notes (since in earlier courses this material was handed out as notes).

There are topics presented in the lectures that are not covered in the back-

ground reading and there is material in the background reading that is not

covered in the lectures. The examination questions will be based on what is

actually presented in the lectures.

Acknowledgements.

These slides were prepared by Mike Gordon, incorporating material and feed-

back from many others. Particular thanks to Paul Curzon and John Wick-

erson.

September 18, 2012

Hoare Logic

x Program specification using Hoare notation

x Axioms and rules of Hoare Logic

x Soundness and completeness

x Mechanised program verification

x Pointers, the frame problem and separation logic

Program Specification and Verification

x This course is about formal ways of specifying and validating software

x This contrasts with informal methods:

u natural language specifications

u testing

x Formal methods are not a panacea

u formally verified designs may still not work

u can give a false sense of security

x Assurance versus debugging

u formal verification (FV) can reveal hard-to-find bugs

u can also be used for assurance e.g. “proof of correctness”

u Microsoft use FV for debugging, NSA use FV for assurance

x Goals of course:

u enable you to understand and criticise formal methods

u provide a stepping stone to current research

Testing

x Testing can quickly find obvious bugs

u only trivial programs can be tested exhaustively

u the cases you do not test can still hide bugs

u coverage tools can help

x How do you know what the correct test results should be?

x Many industries’ standards specify maximum failure rates

u e.g. fewer than 10−6 failures per second

u assurance that such rates have been achieved cannot be obtained by testing

Formal Methods

x Formal Specification - using mathematical notation to give a precise
description of what a program should do

x Formal Verification - using precise rules to mathematically prove that
a program satisfies a formal specification

x Formal Development (Refinement) - developing programs in a way that
ensures mathematically they meet their formal specifications

x Formal Methods should be used in conjunction with testing, not as
a replacement

Should we always use formal methods?

x They can be expensive
u though can be applied with varying amounts of effort

x There is a trade-off between expense and the need for correctness

x It may be better to have something that works most of the time
than nothing at all

x For some applications, correctness is especially important
u nuclear reactor controllers
u car braking systems

u fly-by-wire aircraft

u software controlled medical equipment (e.g. insulin pumps, pacemakers)

u voting machines

u cryptographic code

x Formal proof of correctness provides a way of establishing the ab-
sence of bugs when exhaustive testing is impossible

Floyd-Hoare Logic

x This course is concerned with Floyd-Hoare Logic

u also known just as Hoare Logic

x Floyd-Hoare Logic is a method of reasoning mathematically about
imperative programs

x It is the basis of mechanized program verification systems

u the architecture of these will be described later

x Industrial program development methods like SPARK use ideas
from Floyd-Hoare Logic to obtain high assurance

x Developments to the logic still under active development

u e.g. separation logic (reasoning about pointers)

u 2/3 of 2010 BCS Distinguished Dissertation awards concerned separation logic

A Little Programming Language

Expressions:

E::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

Boolean expressions:

B::= T | F | E1=E2 | E1 ≤ E2 | . . .

Commands:

C::= V := E

| C1 ; C2

| IF B THEN C1 ELSE C2

| WHILE B DO C

Some Notation

x Programs are built out of commands like assignments, conditionals,
while-loops etc

x The terms ‘program’ and ‘command’ are synonymous

u the former generally used for commands representing complete algorithms

x The term ‘statement’ is used for conditions on program variables
that occur in correctness specifications

u potential for confusion: some people use this word for commands

Specification of Imperative Programs

Acceptable
Initial State

Acceptable
Final State

“X is
greater than

zero”

“Y is the
square root

of X”
-

Action
of the

Program

Hoare’s notation

x C.A.R. Hoare introduced the following notation called a
partial correctness specification for specifying what a program does:

{P} C {Q}
where:

u C is a command

u P and Q are conditions on the program variables used in C

x Conditions on program variables will be written using standard
mathematical notations together with logical operators like:

u ∧ (‘and’), ∨ (‘or’), ¬ (‘not’), ⇒ (‘implies’)

x Hoare’s original notation was P {C} Q not {P} C {Q}, but the latter
form is now more widely used

Meaning of Hoare’s Notation

x {P} C {Q} means

u whenever C is executed in a state satisfying P

u and if the execution of C terminates

u then the state in which C terminates satisfies Q

x Example: {X = 1} X:=X+1 {X = 2}
u P is the condition that the value of X is 1

u Q is the condition that the value of X is 2

u C is the assignment command X:=X+1

u i.e. ‘X becomes X+1’

x {X = 1} X:=X+1 {X = 2} is true

x {X = 1} X:=X+1 {X = 3} is false

Formal versus Informal Proof

x Mathematics text books give informal proofs

x English arguments are used

u proof of (X + 1)2 = X2 + 2× X + 1

“follows by the definition of squaring and distributivity laws”

x Formal verification uses formal proof
u the rules used are described and followed very precisely

u formal proof has been used to discover errors in published informal ones

x Here is an example formal proof

1. (X+ 1)2 = (X+ 1)× (X+ 1) Definition of ()2.
2. (X+ 1)× (X+ 1) = (X+ 1)× X+ (X+ 1)× 1 Left distributive law of × over +.

3. (X+ 1)2 = (X+ 1)× X+ (X+ 1)× 1 Substituting line 2 into line 1.
4. (X+ 1)× 1 = X+ 1 Identity law for 1.

5. (X+ 1)× X = X× X+ 1× X Right distributive law of × over +.
6. (X+ 1)2 = X× X+ 1× X+ X+ 1 Substituting lines 4 and 5 into line 3.
7. 1× X = X Identity law for 1.

8. (X+ 1)2 = X× X+ X + X+ 1 Substituting line 7 into line 6.
9. X× X = X2 Definition of ()2.

10. X+ X = 2× X 2=1+1, distributive law.
11. (X+ 1)2 = X2 + 2× X+ 1 Substituting lines 9 and 10 into line 8.

The Structure of Proofs

x A proof consists of a sequence of lines

x Each line is an instance of an axiom

u like the definition of ()2

x or follows from previous lines by a rule of inference

u like the substitution of equals for equals

x The statement occurring on the last line of a proof is the statement
proved by it

u thus (X + 1)2 = X2 + 2× X + 1 is proved by the proof on the previous slide

x These are ‘Hilbert style’ formal proofs

u can use a tree structure rather than a linear one

u choice is a matter of convenience

Formal proof is syntactic ‘symbol pushing’

x Formal Systems reduce verification and proof to symbol pushing

x The rules say...
u if you have a string of characters of this form
u you can obtain a new string of characters of this other form

x Even if you don’t know what the strings are intended to mean, pro-
vided the rules are designed properly and you apply them correctly,
you will get correct results

u though not necessarily the desired result

x Thus computers can do formal verification

x Formal verification by hand generally not feasible
u maybe hand verify high-level design, but not code

x Famous paper that’s worth reading:
u “Social processes and the proofs of theorems and programs”.

R. A. DeMillo, R. J. Lipton, and A. J. Perlis. CACM, May 1979

x Also see the book “Mechanizing Proof” by Donald MacKenzie

Hoare’s Verification Grand Challenge

x Bill Gates, keynote address at WinHec 2002

‘‘... software verification ... has been the Holy Grail of computer
science for many decades but now in some very key areas, for example,
driver verification we are building tools that can do actual proof
about the software and how it works in order to guarantee the reliability.’’

x Hoare has posed a challenge

The verification challenge is to achieve a significant body of
verified programs that have precise external specifications,
complete internal specifications, machine-checked proofs of
correctness with respect to a sound theory of programming.

The Deliverables

A comprehensive theory of programming that covers the
features needed to build practical and reliable programs.

A coherent toolset that automates the theory and scales up
to the analysis of large codes.

A collection of verified programs that replace existing
unverified ones, and continue to evolve in a verified state.

x “You can’t say anymore it can’t be done! Here, we have done it.”

Hoare Logic and Verification Conditions

x Hoare Logic is a deductive proof system for Hoare triples {P} C {Q}

x Can use Hoare Logic directly to verify programs

u original proposal by Hoare

u tedious and error prone

u impractical for large programs

x Can ‘compile’ proving {P} C {Q} to verification conditions

u more natural

u basis for computer assisted verification

x Proof of verification conditions equivalent to proof with Hoare Logic

u Hoare Logic can be used to explain verification conditions

Partial Correctness Specification

x An expression {P} C {Q} is called a partial correctness specification

u P is called its precondition

u Q its postcondition

x {P} C {Q} means

u whenever C is executed in a state satisfying P

u and if the execution of C terminates

u then the state in which C’s execution terminates satisfies Q

x These specifications are ‘partial’ because for {P} C {Q} to be true
it is not necessary for the execution of C to terminate when started
in a state satisfying P

x It is only required that if the execution terminates, then Q holds

x {X = 1} WHILE T DO X:=X {Y = 2} – this specification is true!

Total Correctness Specification

x A stronger kind of specification is a total correctness specification

u there is no standard notation for such specifications

u we shall use [P] C [Q]

x A total correctness specification [P] C [Q] is true if and only if

u whenever C is executed in a state satisfying P the execution of C terminates

u after C terminates Q holds

x [X = 1] Y:=X; WHILE T DO X:=X [Y = 1]

u this says that the execution of Y:=X;WHILE T DO X:=X terminates when started

in a state satisfying X = 1

u after which Y = 1 will hold

u this is clearly false

Total Correctness

x Informally:

Total correctness = Termination + Partial correctness

x Total correctness is the ultimate goal

u usually easier to show partial correctness and termination separately

x Termination is usually straightforward to show, but there are ex-
amples where it is not: no one knows whether the program below
terminates for all values of X

WHILE X>1 DO

IF ODD(X) THEN X := (3×X)+1 ELSE X := X DIV 2

u X DIV 2 evaluates to the result of rounding down X/2 to a whole number

u the Collatz conjecture is that this terminates with X=1

x Microsoft’s TERMINATOR tool proves systems code terminates

Auxiliary Variables

x {X=x ∧ Y=y} R:=X; X:=Y; Y:=R {X=y ∧ Y=x}
u this says that if the execution of

R:=X; X:=Y; Y:=R

terminates (which it does)

u then the values of X and Y are exchanged

x The variables x and y, which don’t occur in the command and are
used to name the initial values of program variables X and Y

x They are called auxiliary variables or ghost variables

x Informal convention:

u program variable are upper case

u auxiliary variable are lower case

More simple examples

x {X=x ∧ Y=y} X:=Y; Y:=X {X=y ∧ Y=x}
u this says that X:=Y; Y:=X exchanges the values of X and Y

u this is not true

x {T} C {Q}
u this says that whenever C halts, Q holds

x {P} C {T}
u this specification is true for every condition P and every command C

u because T is always true

x [P] C [T]

u this says that C terminates if initially P holds

u it says nothing about the final state

x [T] C [P]

u this says that C always terminates and ends in a state where P holds

A More Complicated Example

x {T}
R:=X;

Q:=0;

WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)







C

{R < Y ∧ X = R + (Y× Q)}

x This is {T} C {R < Y ∧ X = R + (Y× Q)}
u where C is the command indicated by the braces above

u the specification is true if whenever the execution of C halts, then Q is quotient

and R is the remainder resulting from dividing Y into X

u it is true (even if X is initially negative!)

u in this example Q is a program variable

u don’t confuse Q with the metavariable Q used in previous examples to range

over postconditions (Sorry: my bad notation!)

Some Easy Exercises

x When is [T] C [T] true?

x Write a partial correctness specification which is true if and only if
the command C has the effect of multiplying the values of X and Y

and storing the result in X

x Write a specification which is true if the execution of C always halts
when execution is started in a state satisfying P

Specification can be Tricky

x “The program must set Y to the maximum of X and Y”

u [T] C [Y = max(X,Y)]

x A suitable program:

u IF X >= Y THEN Y := X ELSE X := X

x Another?

u IF X >= Y THEN X := Y ELSE X := X

x Or even?

u Y := X

x Later you will be able to prove that these programs are “correct”

x The postcondition “Y=max(X,Y)” says “Y is the maximum of X and Y

in the final state”

Specification can be Tricky (ii)

x The intended specification was probably not properly captured by

⊢ {T} C {Y=max(X,Y)}

x The correct formalisation of what was intended is probably

⊢ {X=x ∧ Y=y} C {Y=max(x,y)}

x The lesson

u it is easy to write the wrong specification!

u a proof system will not help since the incorrect programs could have been

proved “correct”

u testing would have helped!

Review of Predicate Calculus

x Program states are specified with first-order logic (FOL)

x Knowledge of this is assumed (brief review given now)

x In first-order logic there are two separate syntactic classes

u Terms (or expressions): these denote values (e.g. numbers)

u Statements (or formulae): these are either true or false

Terms (Expressions)

x Statements are built out of terms which denote values such as num-
bers, strings and arrays

x Terms, like 1 and 4 + 5, denote a fixed value, and are called ground

x Other terms contain variables like x, X, y, X, z, Z etc

x We use conventional notation, e.g. here are some terms:

X, y, Z,

1, 2, 325,

-X, -(X+1), (x×y)+Z,√
(1+x2), X!, sin(x), rem(X,Y)

x Convention:
u program variables are uppercase

u auxiliary (i.e. logical) variables are lowercase

Atomic Statements

x Examples of atomic statements are

T, F, X = 1, R < Y, X = R+(Y×Q)

x T and F are atomic statements that are always true and false

x Other atomic statements are built from terms using predicates, e.g.

ODD(X), PRIME(3), X = 1, (X+1)2 ≥ x2

x ODD and PRIME are examples of predicates

x = and ≥ are examples of infixed predicates

x X, 1, 3, X+1, (X+1)2, x2 are terms in above atomic statements

Compound statements

x Compound statements are built up from atomic statements using:

¬ (not)
∧ (and)
∨ (or)
⇒ (implies)
⇔ (if and only if)

u The single arrow → is commonly used for implication instead of ⇒

x Suppose P and Q are statements, then

u ¬P is true if P is false, and false if P is true

u P ∧Q is true whenever both P and Q are true

u P ∨Q is true if either P or Q (or both) are true

u P ⇒ Q is true if whenever P is true, then Q is true

u P ⇔ Q is true if P and Q are either both true or both false

More on Implication

x By convention we regard P ⇒ Q as being true if P is false

x In fact, it is common to regard P ⇒ Q as equivalent to ¬P ∨Q

x Some philosophers disagree with this treatment of implication

u since any implication A⇒ B is true if A is false

u e.g. (1 < 0) ⇒ (2 + 2 = 3)

u search web for “paradoxes of implication”

x P ⇔ Q is equivalent to (P ⇒ Q) ∧ (Q⇒ P)

x Sometimes write P = Q or P ≡ Q for P ⇔ Q

Precedence

x To reduce the need for brackets it is assumed that

u ¬ is more binding than ∧ and ∨

u ∧ and ∨ are more binding than ⇒ and ⇔

x For example

¬P ∧Q is equivalent to (¬P) ∧Q
P ∧Q⇒ R is equivalent to (P ∧Q)⇒ R
P ∧Q⇔ ¬R ∨ S is equivalent to (P ∧Q)⇔ ((¬R) ∨ S)

Universal quantification

x If S is a statement and x a variable

x Then ∀x. S means:

‘for all values of x, the statement S is true’

x The statement
∀x1 x2 . . . xn. S

abbreviates
∀x1. ∀x2. . . . ∀xn. S

x It is usual to adopt the convention that any unbound (i.e. free) vari-
ables in a statement are to be regarded as implicitly universally
quantified

x For example, if n is a variable then the statement n+0 = n is regarded
as meaning the same as ∀n. n + 0 = n

Existential quantification

x If S is a statement and x a variable

x Then ∃x. S means

‘for some value of x, the statement S is true’

x The statement
∃x1 x2 . . . xn. S

abbreviates
∃x1. ∃x2. . . . ∃xn. S

Summary

x Predicate calculus forms the basis for program specification

x It is used to describe the acceptable initial states, and intended final
states of programs

x We will next look at how to prove programs meet their specifications

x Proof of theorems within predicate calculus assumed known!

Floyd-Hoare Logic

x To construct formal proofs of partial correctness specifications,
axioms and rules of inference are needed

x This is what Floyd-Hoare logic provides

u the formulation of the deductive system is due to Hoare

u some of the underlying ideas originated with Floyd

x A proof in Floyd-Hoare logic is a sequence of lines, each of which is
either an axiom of the logic or follows from earlier lines by a rule of
inference of the logic

u proofs can also be trees, if you prefer

x A formal proof makes explicit what axioms and rules of inference
are used to arrive at a conclusion

Notation for Axioms and Rules

x If S is a statement, ⊢ S means S has a proof

u statements that have proofs are called theorems

x The axioms of Floyd-Hoare logic are specified by schemas

u these can be instantiated to get particular partial correctness specifications

x The inference rules of Floyd-Hoare logic will be specified with a
notation of the form

⊢ S1, . . . , ⊢ Sn

⊢ S

u this means the conclusion ⊢ S may be deduced

from the hypotheses ⊢ S1, . . . , ⊢ Sn

u the hypotheses can either all be theorems of Floyd-Hoare logic

u or a mixture of theorems of Floyd-Hoare logic and theorems of mathematics

An example rule

The sequencing rule

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

x If a proof has lines matching ⊢ {P} C1 {Q} and ⊢ {Q} C2 {R}
x One may deduce a new line ⊢ {P} C1;C2 {R}
x For example if one has deduced:

⊢ {X=1} X:=X+1 {X=2}
⊢ {X=2} X:=X+1 {X=3}

x One may then deduce:

⊢ {X=1} X:=X+1; X:=X+1 {X=3}
x Method of verification conditions (VCs) generates proof obligation

⊢ X=1 ⇒ X+(X+1)=3

u VCs are handed to a theorem prover
u “Extended Static Checking” (ESC) is an industrial example

Reminder of our little programming language

x The proof rules that follow constitute an axiomatic semantics of our
programming language

Expressions

E ::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

Boolean expressions

B ::= T | F | E1=E2 | E1 ≤ E2 | . . .

Commands

C ::= V := E Assignments

| C1 ; C2 Sequences

| IF B THEN C1 ELSE C2 Conditionals

| WHILE B DO C WHILE-commands

Judgements

x Three kinds of things that could be true or false:

u statements of mathematics, e.g. (X + 1)2 = X2 + 2× X + 1

u partial correctness specifications {P} C {Q}
u total correctness specifications [P] C [Q]

x These three kinds of things are examples of judgements

u a logical system gives rules for proving judgements

u Floyd-Hoare logic provides rules for proving partial correctness specifications

u the laws of arithmetic provide ways of proving statements about integers

x ⊢ S means statement S can be proved

u how to prove predicate calculus statements assumed known

u this course covers axioms and rules for proving

program correctness statements

Syntactic Conventions

x Symbols V , V1, . . . , Vn stand for arbitrary variables

u examples of particular variables are X, R, Q etc

x Symbols E, E1, . . . , En stand for arbitrary expressions (or terms)

u these are things like X + 1,
√
2 etc. which denote values (usually numbers)

x Symbols S, S1, . . . , Sn stand for arbitrary statements

u these are conditions like X < Y, X2 = 1 etc. which are either true or false

u will also use P , Q, R to range over pre and postconditions

x Symbols C, C1, . . . , Cn stand for arbitrary commands

Substitution Notation

x Q[E/V] is the result of replacing all occurrences of V in Q by E

u read Q[E/V] as ‘Q with E for V ’

u for example: (X+1 > X)[Y+Z/X] = ((Y+Z)+1 > Y+Z)

u ignoring issues with bound variables for now (e.g. variable capture)

x Same notation for substituting into terms, e.g. E1[E2/V]

x Think of this notation as the ‘cancellation law’

V [E/V] = E

which is analogous to the cancellation property of fractions

v × (e/v) = e

x Note that Q[x/V] doesn’t contain V (if V 6= x)

The Assignment Axiom (Hoare)

x Syntax: V := E

x Semantics: value of V in final state is value of E in initial state

x Example: X:=X+1 (adds one to the value of the variable X)

The Assignment Axiom

⊢ {Q[E/V]} V :=E {Q}
Where V is any variable, E is any expression, Q is any statement.

x Instances of the assignment axiom are

u ⊢ {E = x} V := E {V = x}
u ⊢ {Y = 2} X := 2 {Y = X}
u ⊢ {X + 1 = n + 1} X := X + 1 {X = n + 1}
u ⊢ {E = E} X := E {X = E} (if X does not occur in E)

The Backwards Fallacy

x Many people feel the assignment axiom is ‘backwards’

x One common erroneous intuition is that it should be

⊢ {P} V :=E {P[V/E]}

u where P[V/E] denotes the result of substituting V for E in P

u this has the false consequence ⊢ {X=0} X:=1 {X=0}
(since (X=0)[X/1] is equal to (X=0) as 1 doesn’t occur in (X=0))

x Another erroneous intuition is that it should be

⊢ {P} V :=E {P[E/V]}

u this has the false consequence ⊢ {X=0} X:=1 {1=0}
(which follows by taking P to be X=0, V to be X and E to be 1)

A Forwards Assignment Axiom (Floyd)

x This is the original semantics of assignment due to Floyd

⊢ {P} V :=E {∃v. V = E[v/V] ∧ P[v/V]}
u where v is a new variable (i.e. doesn’t equal V or occur in P or E)

x Example instance

⊢ {X=1} X:=X+1 {∃v. X = X+1[v/X] ∧ X=1[v/X]}

x Simplifying the postcondition

⊢ {X=1} X:=X+1 {∃v. X = X+1[v/X] ∧ X=1[v/X]}
⊢ {X=1} X:=X+1 {∃v. X = v + 1 ∧ v = 1}
⊢ {X=1} X:=X+1 {∃v. X = 1 + 1 ∧ v = 1}
⊢ {X=1} X:=X+1 {X = 1 + 1 ∧ ∃v. v = 1}
⊢ {X=1} X:=X+1 {X = 2 ∧ T}
⊢ {X=1} X:=X+1 {X = 2}

x Forwards Axiom equivalent to standard one but harder to use

Precondition Strengthening

x Recall that

⊢ S1, . . . , ⊢ Sn

⊢ S

means ⊢ S can be deduced from ⊢ S1, . . . , ⊢ Sn

x Using this notation, the rule of precondition strengthening is

Precondition strengthening

⊢ P ⇒ P ′, ⊢ {P ′} C {Q}
⊢ {P} C {Q}

x Note the two hypotheses are different kinds of judgements

Example

x From

u ⊢ X=n ⇒ X+1=n+1

u trivial arithmetical fact

u ⊢ {X + 1 = n + 1} X := X + 1 {X = n + 1}

u from earlier slide (instance of assignment axiom)

x It follows by precondition strengthening that

⊢ {X = n} X := X + 1 {X = n + 1}

x Note that n is an auxiliary (or ghost) variable

Postcondition weakening

x Just as the previous rule allows the precondition of a partial cor-
rectness specification to be strengthened, the following one allows
us to weaken the postcondition

Postcondition weakening

⊢ {P} C {Q′}, ⊢ Q′ ⇒ Q

⊢ {P} C {Q}

Validity

x Important to establish the validity of axioms and rules

x Later will give a formal semantics of our little programming language

u then prove axioms and rules of inference of Floyd-Hoare logic are sound

u this will only increase our confidence in the axioms and rules to the extent

that we believe the correctness of the formal semantics!

x The Assignment Axiom is not valid for ‘real’ programming languages

u In an early PhD on Hoare Logic G. Ligler showed that the assignment axiom

can fail to hold in six different ways for the language Algol 60

Expressions with Side-effects

x The validity of the assignment axiom depends on expressions not
having side effects

x Suppose that our language were extended so that it contained the
‘block expression’

BEGIN Y:=1; 2 END

u this expression has value 2, but its evaluation also ‘side effects’ the variable Y

by storing 1 in it

x If the assignment axiom applied to block expressions, then it could
be used to deduce

⊢ {Y=0} X:=BEGIN Y:=1; 2 END {Y=0}
u since (Y=0)[E/X] = (Y=0) (because X does not occur in (Y=0))

u this is clearly false; after the assignment Y will have the value 1

An Example Formal Proof

x Here is a little formal proof

1. ⊢ {R=X ∧ 0=0} Q:=0 {R=X ∧ Q=0} By the assignment axiom

2. ⊢ R=X ⇒ R=X ∧ 0=0 By pure logic

3. ⊢ {R=X} Q:=0 {R=X ∧ Q=0} By precondition strengthening

4. ⊢ R=X ∧ Q=0 ⇒ R=X+(Y× Q) By laws of arithmetic

5. ⊢ {R=X} Q:=0 {R=X+(Y× Q)} By postcondition weakening

x The rules precondition strengthening and postcondition weakening
are sometimes called the rules of consequence

The sequencing rule

x Syntax: C1; · · · ;Cn

x Semantics: the commands C1, · · · , Cn are executed in that order

x Example: R:=X; X:=Y; Y:=R

u the values of X and Y are swapped using R as a temporary variable

u note side effect : value of R changed to the old value of X

The sequencing rule

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

Example Proof

Example: By the assignment axiom:

(i) ⊢ {X=x∧Y=y} R:=X {R=x∧Y=y}
(ii) ⊢ {R=x∧Y=y} X:=Y {R=x∧X=y}
(iii) ⊢ {R=x∧X=y} Y:=R {Y=x∧X=y}

Hence by (i), (ii) and the sequencing rule

(iv) ⊢ {X=x∧Y=y} R:=X; X:=Y {R=x∧X=y}

Hence by (iv) and (iii) and the sequencing rule

(v) ⊢ {X=x∧Y=y} R:=X; X:=Y; Y:=R {Y=x∧X=y}

Conditionals

x Syntax: IF S THEN C1 ELSE C2

x Semantics:

u if the statement S is true in the current state, then C1 is executed

u if S is false, then C2 is executed

x Example: IF X<Y THEN MAX:=Y ELSE MAX:=X

u the value of the variable MAX it set to the maximum of the values of X and Y

The Conditional Rule

The conditional rule

⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧ ¬S} C2 {Q}
⊢ {P} IF S THEN C1 ELSE C2 {Q}

x From Assignment Axiom + Precondition Strengthening and

⊢ (X≥Y ⇒ X = max(X,Y)) ∧ (¬(X≥Y) ⇒ Y = max(X,Y))

it follows that

⊢ {T ∧ X≥Y} MAX:=X {MAX=max(X,Y)}
and

⊢ {T ∧ ¬(X≥Y)} MAX:=Y {MAX=max(X,Y)}

x Then by the conditional rule it follows that

⊢ {T} IF X≥Y THEN MAX:=X ELSE MAX:=Y {MAX=max(X,Y)}

WHILE-commands

x Syntax: WHILE S DO C

x Semantics:

u if the statement S is true in the current state, then C is executed and
the WHILE-command is repeated

u if S is false, then nothing is done

u thus C is repeatedly executed until the value of S becomes false

u if S never becomes false, then the execution of the command never terminates

x Example: WHILE ¬(X=0) DO X:= X-2

u if the value of X is non-zero, then its value is decreased by 2
and then the process is repeated

x This WHILE-command will terminate (with X having value 0) if the
value of X is an even non-negative number

u in all other states it will not terminate

Invariants

x Suppose ⊢ {P ∧ S} C {P}

x P is said to be an invariant of C whenever S holds

x The WHILE-rule says that

u if P is an invariant of the body of a WHILE-command
whenever the test condition holds

u then P is an invariant of the whole WHILE-command

x In other words

u if executing C once preserves the truth of P

u then executing C any number of times also preserves the truth of P

x The WHILE-rule also expresses the fact that after a WHILE-command
has terminated, the test must be false

u otherwise, it wouldn’t have terminated

The WHILE-Rule

The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

x It is easy to show

⊢ {X=R+(Y×Q)∧Y≤R} R:=R-Y; Q:=Q+1 {X=R+(Y×Q)}

x Hence by the WHILE-rule with P = ‘X=R+(Y×Q)’ and S = ‘Y≤R’

⊢ {X=R+(Y×Q)}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ ¬(Y≤R)}

Example

x From the previous slide

⊢ {X=R+(Y×Q)}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ ¬(Y≤R)}

x It is easy to deduce that

⊢ {T} R:=X; Q:=0 {X=R+(Y×Q)}

x Hence by the sequencing rule and postcondition weakening

⊢ {T}
R:=X;

Q:=0;

WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{R<Y ∧ X=R+(Y×Q)}

How does one find an invariant?

The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

x Look at the facts:

u invariant P must hold initially

u with the negated test ¬S the invariant P must establish the result

u when the test S holds, the body must leave the invariant P unchanged

x Think about how the loop works – the invariant should say that:

u what has been done so far together with what remains to be done

u holds at each iteration of the loop

u and gives the desired result when the loop terminates

Example

x Consider a factorial program

{X=n ∧ Y=1}
WHILE X 6=0 DO

(Y:=Y×X; X:=X-1)

{X=0 ∧ Y=n!}
x Look at the facts

u initially X=n and Y=1

u finally X=0 and Y=n!

u on each loop Y is increased and, X is decreased

x Think how the loop works

u Y holds the result so far
u X! is what remains to be computed

u n! is the desired result

x The invariant is X!×Y = n!

u ‘stuff to be done’ × ‘result so far’ = ‘desired result’
u decrease in X combines with increase in Y to make invariant

Related example

{X=0 ∧ Y=1}
WHILE X<N DO (X:=X+1; Y:=Y×X)
{Y=N!}

x Look at the Facts

u initially X=0 and Y=1

u finally X=N and Y=N!

u on each iteration both X an Y increase: X by 1 and Y by X

x An invariant is Y = X!

x At end need Y = N!, but WHILE-rule only gives ¬(X<N)

x Ah Ha! Invariant needed: Y = X! ∧ X≤N

x At end X ≤ N ∧¬(X<N) ⇒ X=N

x Often need to strengthen invariants to get them to work

u typical to add stuff to ‘carry along’ like X≤N

Two useful – but redundant – rules

Specification conjunction

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∧ P2} C {Q1 ∧Q2}

Specification disjunction

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∨ P2} C {Q1 ∨Q2}

x These rules are useful for splitting a proof into independent bits

u they enable ⊢ {P} C {Q1 ∧ Q2} to be proved by proving separately that both

⊢ {P} C {Q1} and also that ⊢ {P} C {Q2}

x Any proof with these rules could be done without using them

u i.e. they are theoretically redundant (proof omitted)

u however, useful in practice

Summary

x We have given:

u a notation for specifying what a program does

u a way of proving that it meets its specification

x Later we look at how to find proofs and organise them:

u derived rules

u backwards proofs

u annotating programs prior to proof

u mechanising verification

x However, first some meta-theory

Some meta-theory: soundness and completeness

x Review of first-order logic

u syntax: languages, function symbols, predicate symbols, terms, formulae

u semantics: interpretations, valuations

u soundness and completeness

x Formal semantics of Hoare triples

u preconditions and postconditions as terms

u semantics of commands

u soundness of Hoare axioms and rules

u completeness and relative completeness

Terminology

x First-order logic, as described in logic books, has terms and formulae

x For consistency with earlier stuff we use expressions and statements

x Will define sets Exp of expressions and Sta of statements

x Sets Exp and Sta depend on a language L (see next slide)

u will write ExpL and StaL to make this clear

u if language is clear from context may omit language subscript

x Assume an infinite set Var of variables

u doesn’t depend on a language

First-order languages

x A first-order language L contains

u zero or more predicate symbols, p1, p2, . . . each with an arity ≥ 0

u zero or more function symbols, f1, f2, . . . each with an arity ≥ 0

u L = ({p1, p2, . . .}, {f1, f2, . . .})

x ExpL is the smallest set such that:

u Var ⊆ ExpL

u f a function symbols of L of arity 0, then f ∈ ExpL

u f a function symbols of L of arity n > 0 and Ei ∈ ExpL, then f(E1, . . . , En) ∈ ExpL

x StaL is the smallest set such that:

u p a predicate symbols of L of arity 0, then p ∈ StaL

u p a predicate symbols of L of arity n > 0 and Ei ∈ ExpL, then p(E1, . . . , En) ∈ StaL

u S, S1, S2 in StaL, then ¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2 are in StaL

u v ∈ Var and S in StaL, then ∀v. S and ∃v. S are in StaL

Equality =

x Sometimes considered built-in

u if E1 and E2 are in ExpL then E1 = E2 is in StaL

u first-order logic with equality

x Sometimes not built in but part of a language L
u first-order logic without equality

u L= = {{=}, {}}

u ‘=’ a predicate symbol with arity 2

u written infixed: E1 = E2 rather than =(E1, E2)

x Philosophical issue: is ‘=’ partof logic (like∧)ormathematics (like+)?

x Henceforth we normally assume first-order logic with equality

Some languages: Peano arithmetic, arrays, ZF set theory

x LPA = {{}, {0, suc,+,×}}
u 0 has arity 0, suc has arity 1, +, × have arity 2 (usually written infixed)

x LARRAY = {{isarray}, {lookup, update}}
u isarray has arity 1, lookup has arity 2, update has arity 3

x LZF = {{∈}, {}}
u ∈ has arity 2 (usually written infixed)

Semantics: interpretations

x An interpretation I of language L provides:

u domain D of values, also called a universe

u meaning I [p] for predicate symbols p and I [f] for function symbols f

x Some notation:
u B = {true, false} (booleans)
u N = {0, 1, 2, . . .} (natural numbers)

u if n > 0, then An = {(a1, . . . , an) | ai ∈ A}
u A→ B = {u | u : A→ B} (alternative notation: BA)

x If I = (D, I) then:

u if p is a predicate symbol of arity 0, then I [p] ∈ B

u if p is a predicate symbol of arity n > 0, then I [p] ∈ Dn→ B

u if f is a function symbol of arity 0, then I [f] ∈ D

u if f is a function symbol of arity n > 0, then I [f] ∈ Dn→ D

Example interpretations

x IPA
u domain is natural numbers N = {0, 1, 2, . . .}
u IPA[0] is zero

u IPA[suc] is successor function: IPA[suc](n) = n + 1

u IPA[+] is addition: IPA[+](m,n) = m + n

u IPA[×] is multiplication: IPA[×](m,n) = m×n

x IARRAY

u domain is V ∪ {φ | φ : N→ V} for some set of values V

u IARRAY[isarray](a) is true iff a is a function φ

u IARRAY[lookup](a, i) = if a is a function φ then φ(i) else 0

u IARRAY[update](a, i, v) = if a is a function φ then φ[v/i] else a

(where: φ[v/i] = λj. if i=j then v else φ(j))

x IZF
u domain is a set of sets
u IZF[∈] is set membership: IZF[∈](x, y) = (x∈y)

Semantics: valuations

x Interpretation provide meaning for predicate and function symbols

x A valuation s for I = (D, I) determines the values of variables in D

u s ∈ Var→ D

x Often ‘V ’ not ‘s’ used for valuations – reasons for using ‘s’ here are:

u valuations are states in the semantics of Hoare triples

u avoid confusion with earlier use of ‘V ’ to range over variables

x Define s[a/x] to be identical to s except that x is mapped to a:

(s[a/x])(y) = if y = x then a else s(y)

x Warning: also use [· · · / · · ·] notation for syntactic substitution

u e.g. in assignment axiom {Q[E/V]}V :=E{Q}
u will relate syntactic and semantic uses of [· · · / · · ·] soon (substitution lemmas)

Semantics: terms and formulae

x Assume: language L, interpretation I = (I,D), valuation s ∈ Var→ D

x Define Esem E s ∈ D by:
u if E ∈ Var then Esem E s = s(E)

u if E = f , where f a function symbol of arity 0, then Esem E s = I [f]

u if E = f(E1, . . . , En), then Esem E s = I [f](Esem E1 s, . . . , Esem En s)

x Define Ssem S s ∈ Bool by:
u if S = p, where p a predicate symbol of arity 0, then Ssem S s = I [p]

u if S = p(E1, . . . , En), then Ssem S s = I [p](Esem E1 s, . . . , Esem En s)
u Ssem (E1 = E2) s = ((Esem E1 s) = (Esem E2 s))

Ssem (¬S) s = ¬(Ssem S s)

Ssem (S1 ∧ S2) s = (Ssem S1 s) ∧ (Ssem S2 s)

Ssem (S1 ∨ S2) s = (Ssem S1 s) ∨ (Ssem S2 s)

Ssem (S1 ⇒ S2) s = (Ssem S1 s)⇒ (Ssem S2 s)

u Ssem (∀v. S) s = if for all d ∈ D : Ssem S (s[d/v]) = true then true else false

Ssem (∃v. S) s = if for some d ∈ D : Ssem S (s[d/v]) = true then true else false

x Note: will just say “Ssem S s” to mean that “Ssem S s = true”

x Note: may write SsemI and EsemI to show dependence on I

Satisfiability, validity and completeness

x Assume a language L

x S is satisfiable iff for some interpretation of L and s: Ssem S s = true

x S is valid iff for all interpretations of L and all s: Ssem S s = true

x Notation: |= S means S is valid

x Deductive system for first-order logic specifies ⊢ S – i.e. S is provable

x Soundness: if ⊢ S then |= S (easy induction on length of proof)

x Completeness: if |= S then ⊢ S (Gödel 1929)

Sentences, Theories

x A sentence is a statement with no free variables

u truth or falsity of sentences solely determined by interpretation

u if S is a sentence then Ssem S s1 = Ssem S s2 for all s1, s2

x A theory Γ is a set of sentences

x Γ ⊢ S means S can be deduced from Γ using first-order logic

x Γ is consistent iff there is no S such that Γ ⊢ S and Γ ⊢ ¬S

x Γ |=I S means S true in I if I makes all of Γ true

x Γ |= S means Γ |=I S true for all I

x Soundness and Completeness: Γ |= S iff Γ ⊢ S

Example theory: PA

x PA contains the following six axioms

u ∀x. ¬(0 = suc(x))

u ∀x y. (suc(x) = suc(y))⇒ (x = y)

u ∀x. x + 0 = x

u ∀x y. x + suc(y) = suc(x + y)

u ∀x. x× 0 = 0

u ∀x y. x× suc(y) = (x× y) + x

x Induction: PA contains universal closures of formulae of the form:

S[0/V] ∧ (∀x. S[x/V]⇒ S[suc(x)/V])⇒ ∀x. S[x/V]

u where S, V range over formulae and variables, respectively

u substitutions assumed not to capture variables (technical detail)

u universal closure of S is ∀V1 · · ·Vn. S, where V1, . . . Vn are the free variables in S

x Note: PA is infinite

Example theory: ARRAY

x ARRAY contains the following axioms

u ∀a i v. isarray(a)⇒ (lookup(update(a, i, v), i) = v)

u ∀a i j v. isarray(a) ∧ ¬(i = j)⇒ (lookup(update(a, i, v), j) = lookup(a, j))

u ∀a1 a2. isarray(a1) ∧ isarray(a2) ∧ (∀i. lookup(a1, i) = lookup(a2, i))⇒ (a1 = a2)

x Will sometimes write “a(i)” to mean “lookup(a, i)”

x Will sometimes write “a{i←v}” to mean “update(a, i, v)”

x Assuming a is an array (isarray(a) is true) then from array axioms:

u a{i←v}(i) = v

u ¬(i = j)⇒ (a{i←v}(j) = a(j))

Gödel’s incompleteness theorem

x LPA is the language of Peano Arithmetic

x IPA is the standard interpretation of arithmetic

x |=IPA S means S is true in IPA

x PA is the first-order theory of Peano Arithmetic

x There exists a sentence G of LPA and neither PA ⊢ G nor PA ⊢ ¬G
u Gödel’s first incompleteness theorem (1930)

u as G is a sentence either |=IPA G or |=IPA ¬G
u so there are sentences true in IPA that can’t be proved from PA

Semantics of Hoare triples

x Recall that {P} C {Q} is true if
u whenever C is executed in a state satisfying P
u and if the execution of C terminates
u then C terminates in a state satisfying Q

x P and Q are first-order statements

x Can partially formalise semantics of {P} C {Q} as:
u whenever C is executed in a state s1 such that Ssem P s1 = true
u and if the execution of C starting in s1 terminates
u then C terminates in a state s2 such that Ssem Q s2 = true

x Need to define “C starts in s1 and terminates in s2”
u this is the semantics of commands
u will define Csem C s1 s2 to mean if C starts in s1 then it can terminate in s2

x Semantics of {P} C {Q} is Hsem P C Q where:

Hsem P C Q = ∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2

x Sometimes write |= {P} C {Q} to mean Hsem P C Q

x Use |=I {P} C {Q} and HsemI{P}C{Q} to show dependence on I

Semantics of commands

x Assignments

Csem (V :=E) s1 s2 = (s2 = s1[(Esem E s1)/V])

x Sequences

Csem (C1;C2) s1 s2 = ∃s. Csem C1 s1 s ∧ Csem C2 s s2

x Conditional
Csem (IFS THENC1 ELSEC2) s1 s2 =
if Ssem S s1 then Csem C1 s1 s2 else Csem C2 s1 s2

x While-commands

Csem (WHILES DOC) s1 s2 = ∃n. Iter n (Ssem S) (Csem C) s1 s2

where the function Iter is defined by recursion on n as follows:

Iter 0 p c s1 s2 = ¬(p s1) ∧ (s1=s2)
Iter (n+1) p c s1 s2 = p s1 ∧ ∃s. c s1 s ∧ Iter n p c s s2

u argument n of Iter is the number of iterations
u argument p is a predicate on states (e.g. Ssem S)

u argument c is a semantic function (e.g. Csem C)
u arguments s1 and s2 are the initial and final states, respectively

Soundness of Hoare Logic

x Semantics of {P} C {Q}:
∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2

x Assignment axiom: ⊢ {Q[E/V]} V :=E {Q}
x Must show:

∀s1 s2. Ssem (Q[E/V]) s1 ∧ Csem (V :=E) s1 s2 ⇒ Ssem Q s2

x Unfolding the definition of Csem converts this to:

∀s1 s2. Ssem (Q[E/V]) s1 ∧ (s2 = s1[(Esem E s1)/V])⇒ Ssem Q s2

x This simplifies to:

∀s1. Ssem (Q[E/V]) s1 ⇒ Ssem Q (s1[(Esem E s1)/V])

intuitively:

Ssem (· · ·E · · ·) s1 ⇒ Ssem (· · ·V · · ·) (s1[(Esem E s1)/V])

x Substitution lemma: Ssem (S[E/V]) s = Ssem S (s[(Esem E s)/V])

u [· · · / · · ·] has different meanings in LHS and RHS of equation
u in LHS S[E/V] is substituting E for V in S
u in RHS s1[(Esem E s1)/V] is updating s1 so value of V is value of E in s1

Substitution lemma for expressions: variables

x Assume: language L, interpretation I = (I,D), valuation s ∈ Var→ D

x ∀s. Esem (E[E ′/V]) s = Esem E (s[(Esem E ′ s)/V]) by induction on E

x If E = V then must show

Esem (V [E/V]) s = Esem V (s[(Esem E s)/V])

Esem E s = (s[(Esem E s)/V])(V)

Esem E s = Esem E s

x If E = V ′, where V 6= V ′, then must show

Esem (V ′[E/V]) s = Esem V ′ (s[(Esem E s)/V])

Esem V ′ s = (s[(Esem E s)/V])(V ′)

s(V ′) = s(V ′)

Substitution lemma for expressions: applications

x Assume: language L, interpretation I = (I,D), valuation s ∈ Var→ D

x ∀s. Esem (E[E ′/V]) s = Esem E (s[(Esem E ′ s)/V]) by induction on E

x Assume Esem (Ei[E
′/V]) s = Esem Ei (s[(Esem E ′ s)/V]) for 1 ≤ i ≤ n

x If E = f , where f has arity 0, then must show

Esem (f[E ′/V]) s = Esem f (s[(Esem E ′ s)/V])

I [f] = I [f]

x If E = f(E1, . . . , En) then must show

Esem (f(E1, . . . , En)[E
′/V]) s = Esem (f(E1, . . . , En)) (s[(Esem E ′ s)/V])

Esem (f(E1[E
′/V], . . . , En[E

′/V])) s =
I [f](Esem E1 (s[(Esem E ′ s)/V]), . . . , Esem En (s[(Esem E ′ s)/V]))

I [f](Esem (E1[E
′/V]) s, . . . , Esem (En[E

′/V]) s) =
I [f](Esem E1 (s[(Esem E ′ s)/V]), . . . , Esem En (s[(Esem E ′ s)/V]))

Equation true by induction

Substitution lemma for statements

x Assume: language L, interpretation I = (I,D), valuation s ∈ Var→ D

x ∀s. Ssem (S[E/V]) s = Ssem S (s[(Esem E s)/V]) by induction on S

x Proof similar to expressions except care needed with bound variables

x Assume bound variables renamed to avoid clashes, then:

(∀v. S)[E/V] = ∀v. S[E/V]

(∃v. S)[E/V] = ∃v. S[E/V]

x Need lemma for expressions when S is p(E1, . . . , En)

Ssem (p(E1, . . . , En)[E/V]) s = Ssem (p(E1, . . . , En)) (s[(Esem E s)/V])

Ssem (p(E1[E/V], . . . , En[E/V])) s =
I [p](Esem E1 (s[(Esem E s)/V]), . . . , Esem En (s[(Esem E s)/V]))

I [p](Esem (E1[E/V]) s, . . . , Esem (En[E/V]) s) =
I [p](Esem E1 (s[(Esem E s)/V]), . . . , Esem En (s[(Esem E s)/V]))

Equation true by induction and lemma for expressions

Soundness of Assignment Axiom

x Semantics of {P} C {Q}:

∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2

x Assignment axiom:

⊢ {Q[E/V]} V :=E {Q}
x Must show:

∀s1 s2. Ssem (Q[E/V]) s1 ∧ Csem (V :=E) s1 s2 ⇒ Ssem Q s2

x Showed earlier that this simplifies to:

∀s1. Ssem (Q[E/V]) s1 ⇒ Ssem Q (s1[(Esem E s1)/V])

x Follows from substitution lemma for statements

Soundness of Precondition Strengthening

x Precondition strengthening:

⊢ P⇒P ′, ⊢ {P ′} C {Q}
⊢ {P} C {Q}

x Sound if for all P , P ′, C and Q:

(∀s. Ssem P s⇒ Ssem P ′ s) ∧ Hsem P ′ C Q⇒ Hsem P C Q

x After expanding the definition of Hsem:

(∀s. Ssem P s⇒ Ssem P ′ s) ∧
(∀s1 s2. Ssem P ′ s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2)
⇒
∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2

x An instance of the clearly true:

(∀s. p s⇒ p′ s) ∧ (∀s1 s2. p
′ s1 ∧ c s1 s2 ⇒ q s2)

⇒
∀s1 s2. p s1 ∧ c s1 s2 ⇒ q s2

x Soundness of postcondition weakening similar

Soundness of Sequencing Rule

x Conditional rule:

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

x Sound if:

Hsem P C1 Q ∧ Hsem Q C2 R⇒ Hsem P (C1;C2) R

x After expanding the definition of Hsem:

(∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2) ∧
(∀s1 s2. Ssem Q s1 ∧ Csem C s1 s2 ⇒ Ssem R s2)
⇒
∀s1 s2. Ssem P s1 ∧ Csem (C1;C2) s1 s2 ⇒ Ssem R s2

x An instance of the clearly true:

(∀s1 s2. p s1 ∧ c1 s1 s2 ⇒ q s2) ∧ (∀s1 s2. q s1 ∧ c2 s1 s2 ⇒ r s2)
⇒
∀s1 s2. p s1 ∧ (∃s. c1 s1 s ∧ c2 s s2)⇒ r s2

x Soundness of conditional rule similar

Soundness of WHILE Rule

x WHILE-Rule:

⊢ {P∧S} C {P}
⊢ {P} WHILE S DO C {P∧¬S}

x Sound if:

Hsem (P ∧ S) C P ⇒ Hsem P (WHILES DOC) (P ∧ ¬S))
x Expands to:

(∀s1 s2. Ssem (P ∧ S) s1 ∧ Csem C s1 s2 ⇒ Ssem P s2)
⇒ ∀s1 s2. Ssem P s1 ∧ Csem (WHILES DOC) s1 s2 ⇒ Ssem (P ∧ ¬S) s2

x Expanding the definition of Hsem (WHILES DOC) and simplifying:

(∀s1 s2. Ssem P s1 ∧ Ssem S s1 ∧ Csem C s1 s2⇒ Ssem P s1
⇒ ∀s1 s2. Ssem P s1 ∧ (∃n. Iter n (Ssem S) (Csem C) s1 s2)

⇒ Ssem P s2 ∧ ¬(Ssem S s2)

x An instance of:

(∀s1 s2. p s1 ∧ b s1 ∧ c s1 s2 ⇒ p s1)
⇒ ∀s1 s2. p s1 ∧ (∃n. Iter n b c s1 s2)⇒ p s2 ∧ ¬(b s2)

Soundness of WHILE Rule (continued)

x From last slide need to prove:

(∀s1 s2. p s1 ∧ b s1 ∧ c s1 s2 ⇒ p s1)
⇒ ∀s1 s2. p s1 ∧ (∃n. Iter n b c s1 s2)⇒ p s2 ∧ ¬(b s2)

x This is equivalent to:

(∀s1 s2. p s1 ∧ b s1 ∧ c s1 s2 ⇒ p s1)
⇒
∀n s1 s2. p s1 ∧ Iter n b c s1 s2 ⇒ p s2 ∧ ¬(b s2)

x Assume ∀s1 s2. p s1 ∧ b s1 ∧ c s1 s2 ⇒ p s1, then prove:

∀n s1 s2. p s1 ∧ Iter n b c s1 s2 ⇒ p s2 ∧ ¬(b s2)

by mathematical induction of n

x Routine using definition of Iter:

Iter 0 p c s1 s2 = ¬(p s1) ∧ (s1=s2)
Iter (n+1) p c s1 s2 = p s1 ∧ ∃s. c s1 s ∧ Iter n p c s s2

details in background reading

Soundness of Hoare Logic: summary
x Assignment axiom:
∀s1 s2. Ssem (Q[E/V]) s1 ∧ Csem (V :=E) s1 s2 ⇒ Ssem Q s2
|= {Q[E/V]}V :=E{Q}

x Precondition strengthening:
(∀s. Ssem P s⇒ Ssem P ′ s) ∧ Hsem P ′ C Q⇒ Hsem P C Q

(|= P ⇒ P ′) ∧ |= {P ′}C{Q} ⇒ |= {P}C{Q}
x Postcondition weakening:
Hsem P C Q′ ∧ (∀s. Ssem Q′ s⇒ Ssem Q s)⇒ Hsem P C Q

|= {P}C{Q′} ∧ (|= Q′⇒ Q) ⇒ |= {P}C{Q}
x Sequencing rule:
Hsem P C1 Q ∧ Hsem Q C2 R⇒ Hsem P (C1;C2) R

|= {P}C1{Q} ∧ |= {Q}C2{R} ⇒ |= {P}C1;C2{R}
x Conditional rule:
Hsem (P∧S) C1 Q∧Hsem (P∧¬Q) C2 Q⇒ Hsem P (IF S THEN C1 ELSE C2) Q

|= {P∧S}C1{Q} ∧ |= {P∧¬S}C2{Q} ⇒ |= {P}IF S THEN C1 ELSE C2 {Q}
x WHILE rule:
Hsem (P ∧ S) C P ⇒ Hsem P (WHILE S DO C) (P ∧ ¬S))
|= {P ∧ S}C{P} ⇒ |= {P}WHILE S DO C

Completeness and decidability of Hoare Logic

x Soundness: ⊢ {P}C{Q} ⇒ |= {P}C{Q}

x Decidability: {T}C{F} ⇔ C doesn’t halt

u halting problem is undecidable

x Completeness: really want |=IPA {P}C{Q} ⇒ PA ⊢ {P}C{Q}
u not possible

u |=IPA {T}X:=X{P} if and only if |=IPA P

u PA ⊢ {T}X:=X{P} if and only if PA ⊢ P

x If complete, as above, then for any statement P :

|=IPA P ⇒ |=IPA {T}X:=X{P} ⇒ PA ⊢ {T}X:=X{P} ⇒ PA ⊢ P

x In general, if S is a sentence then |=IPA S does not imply PA ⊢ S

u if it did, then by completeness PA ⊢ G or PA ⊢ ¬G, contradicting Gödel

x Must separate completeness of programming and specification logics

Relative completeness (Cook 1978) – basic idea

x Let ΓIPA = {S | |=IPA S} (i.e. set of true PA statements)

x Assume wlp(C,Q) expressible in LPA with properties:

u precondition for Q: ΓIPA ⊢ {wlp(C,Q)}C{Q}

u weakest: |=IPA {P}C{Q} entails |=IPA P ⇒ wlp(C,Q)

x wlp(C,Q) is Dijkstra’s weakest liberal precondition – more on this later

x Completeness: |=IPA {P}C{Q} entails ΓIPA ⊢ {P}C{Q}
u assume |=IPA {P}C{Q}
u then by second assumed property (P ⇒ wlp(C,Q)) ∈ ΓIPA
u by first assumed property: ΓIPA ⊢ {wlp(C,Q)}C{Q}
u hence by precondition strengthening: ΓIPA ⊢ {P}C{Q}

x Thus Hoare logic is complete ... but only:

u relative to {S | |=IPA S} (i.e. assuming an oracle for proving PA statements)

u assuming wlp(C,Q) is expressible in LPA

Discussion of proof of relative completeness

x Expressing wlp(C,Q) easy for assignments, sequences, conditionals

wlp(V := E, Q) = Q[E/V]

wlp(C1 ; C2, Q) = wlp(C1, wlp(C2, Q))

wlp(IF S THEN C1 ELSE C2, Q) = (S ∧ wlp(C1, Q)) ∨ (¬S ∧ wlp(C2, Q))

x Expressing wlp((WHILES DOC), Q) is harder
u tricky encoding in first-order arithmetic using Gödel’s β function

(see Winskel’s book The formal semantics of programming languages: an introduction)

x In background reading

u wlp(WHILES DOC,Q) defined using infinite conjunctions (expressibility)

u |=IPA {P}C{Q} implies |=IPA P ⇒ wlp(C,Q) by induction on C and semantics

u {S | |=IPA S} ⊢ {wlp(C,Q)}C{Q} by induction on C and Hoare logic

u hence |=IPA {P}C{Q} implies {S | |=IPA S} ⊢ {P}C{Q}

Clarke’s Results

x Hoare logic for the simple language is relatively complete

x Ed Clarke (of Carnegie Mellon University) has proved the impossi-
bility of giving complete inference systems for certain combinations
of programming language constructs

x He shows it is impossible to give a sound and relatively complete
system for any language combining:

u procedures as parameters of procedure calls

u recursion

u static scopes

u global variables

u internal procedures as parameters of procedure calls

x This shows Algol 60 cannot have an adequate Floyd-Hoare logic

Summary: soundness, decidability, completeness

x Hoare logic is sound

x Hoare logic is undecidable
u deciding {T}C{F} is halting problem

x Hoare logic for simple languages is complete relative to an oracle

u oracle must be able to prove P ⇒ wlp(C,Q)

u requires expressibility: wlp(C,Q) expressible in assertion language

u real languages are not simple (Clarke’s theorem)!

x Can use sp(P,C) (see later) to show relative completeness

u then expressibility is that sp(P,C) is expressible in assertion language

For simple languages, incompleteness of the proof system for Hoare
logic stems from weakness of the proof system of the assertion lan-
guage logic, not any weakness of the Hoare logic proof system.

For real languages there is no relatively complete Hoare logic.

x End of meta-theory: back to using Hoare logic . . .

Derived rules: combining multiple steps

x Proofs involve lots of tedious fiddly small steps

u similar sequences are used over and over again

x It is tempting to take short cuts and apply several rules at once

u this increases the chance of making mistakes

x Example:

u by assignment axiom & precondition strengthening

u ⊢ {T} R := X {R = X}

x Rather than:

u by the assignment axiom

u ⊢ {X = X} R := X {R = X}

u by precondition strengthening with ⊢ T ⇒ X=X

u ⊢ {T} R := X {R = X}

Derived rules for finding proofs

x Suppose the goal is to prove {Precondition} Command {Postcondition}

x If there were a rule of the form

⊢ H1, · · · , ⊢ Hn

⊢ {P} C {Q}

then we could instantiate

P 7→ Precondition, C 7→ Command , Q 7→ Postcondition

to get instances of H1, · · · , Hn as subgoals

x Some of the rules are already in this form e.g. the sequencing rule

x We will derive rules of this form for all commands

x Then we use these derived rules for mechanising Hoare Logic proofs

Derived Rules

x We will establish derived rules for all commands

· · ·
⊢ {P} V :=E {Q}

· · ·
⊢ {P} C1;C2 {Q}

· · ·
⊢ {P} IF S THEN C1 ELSE C2 {Q}

· · ·
⊢ {P} WHILE S DO C {Q}

x These support ‘backwards proof’ starting from a goal {P} C {Q}

The Derived Assignment Rule

x An example proof

1. ⊢ {R=X ∧ 0=0} Q:=0 {R=X ∧ Q=0} By the assignment axiom.

2. ⊢ R=X ⇒ R=X ∧ 0=0 By pure logic.

3. ⊢ {R=X} Q:=0 {R=X ∧ Q=0} By precondition strengthening.

x Can generalise this proof to a proof schema:

1. ⊢ {Q[E/V]} V :=E {Q} By the assignment axiom.

2. ⊢ P ⇒ Q[E/V] By assumption.

3. ⊢ {P} C {Q} By precondition strengthening.

x This proof schema justifies:

Derived Assignment Rule

⊢ P ⇒ Q[E/V]

⊢ {P} V :=E {Q}

x Note: Q[E/V] is the weakest liberal precondition wlp(V :=E,Q)

x Example proof above can now be done in one less step

1. ⊢ R=X ⇒ R=X ∧ 0=0 By pure logic.

2. ⊢ {R=X} Q:=0 {R=X ∧ Q=0} By derived assignment.

Derived Sequenced Assignment Rule

x The following rule will be useful later

Derived Sequenced Assignment Rule

⊢ {P} C {Q[E/V]}
⊢ {P} C;V :=E {Q}

x Intuitively work backwards:

u push Q ‘through’ V :=E, changing it to Q[E/V]

x Example: By the assignment axiom:

⊢ {X=x∧Y=y} R:=X {R=x∧Y=y}

x Hence by the sequenced assignment rule

⊢ {X=x∧Y=y} R:=X; X:=Y {R=x∧X=y}

Backward Hoare & forward Floyd assignment axioms

x Recall Hoare (backward) and Floyd (forward) assignment axioms

Hoare axiom: ⊢ {P[E/V]} V :=E {P}

Floyd axiom: ⊢ {P} V :=E {∃v. V = E[v/V] ∧ P[v/V]}

x Exercise 1 (easy): derive forward axiom from Hoare axiom

u hint: P ⇒ ∃v. E = E[v/V] ∧ P[v/V]

x Exercise 2 (a bit harder): derive Hoare axiom from forward axiom

u hint: if v is a new variable then P[E/V][v/V] = P[E[v/V]/V]

x Exercise 3: devise and justify a derived assignment rule based on
the Floyd assignment axiom

The Derived While Rule

Derived While Rule

⊢ P ⇒ R ⊢ {R ∧ S} C {R} ⊢ R ∧ ¬S ⇒ Q

⊢ {P} WHILE S DO C {Q}

x This follows from the While Rule and the rules of consequence

x Example: it is easy to show

⊢ R=X ∧ Q=0 ⇒ X=R+(Y×Q)
⊢ {X=R+(Y×Q)∧Y≤R} R:=R-Y; Q:=Q+1 {X=R+(Y×Q)}
⊢ X=R+(Y×Q)∧¬(Y≤R) ⇒ X=R+(Y×Q)∧¬(Y≤R)

x Then, by the derived While rule

⊢ {R=X ∧ Q=0}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ ¬(Y≤R)}

The Derived Sequencing Rule

x The rule below follows from the sequencing and consequence rules

The Derived Sequencing Rule

⊢ P ⇒ P1

⊢ {P1} C1 {Q1} ⊢ Q1⇒ P2

⊢ {P2} C2 {Q2} ⊢ Q2⇒ P3

. .

. .

. .
⊢ {Pn} Cn {Qn} ⊢ Qn ⇒ Q

⊢ {P} C1; . . . ; Cn {Q}

x Exercise: why no derived conditional rule?

Example

x By the assignment axiom

(i) ⊢ {X=x∧Y=y} R:=X {R=x∧Y=y}
(ii) ⊢ {R=x∧Y=y} X:=Y {R=x∧X=y}
(iii) ⊢ {R=x∧X=y} Y:=R {Y=x∧X=y}

x Using the derived sequencing rule, it can be deduced in one step from
(i), (ii), (iii) and the fact that for any P : ⊢ P ⇒ P

⊢ {X=x ∧ Y=y} R:=X; X:=Y; Y:=R {Y=x ∧ X=y}

Forwards and backwards proof

x Previously it was shown how to prove {P}C{Q} by
u proving properties of the components of C

u and then putting these together, with the appropriate proof rule,

to get the desired property of C

x For example, to prove ⊢ {P}C1;C2{Q}

x First prove ⊢ {P}C1{R} and ⊢ {R}C2{Q}

x then deduce ⊢ {P}C1;C2{Q} by sequencing rule

x This method is called forward proof

u move forward from axioms via rules to conclusion

x The problem with forwards proof is that it is not always easy to see
what you need to prove to get where you want to be

x It is more natural to work backwards
u starting from the goal of showing {P}C{Q}
u generate subgoals until problem solved

Example

x Suppose one wants to show

{X=x ∧ Y=y} R:=X; X:=Y; Y:=R {Y=x ∧ X=y}

x By the assignment axiom and derived sequenced assignment rule it
is sufficient to show the subgoal

{X=x ∧ Y=y} R:=X; X:=Y {R=x ∧ X=y}

x Similarly this subgoal can be reduced to

{X=x ∧ Y=y} R:=X {R=x ∧ Y=y}

x This clearly follows from the assignment axiom

Backwards versus Forwards Proof

x Backwards proof just involves using the rules backwards

x Given the rule

⊢ S1 . . . ⊢ Sn

⊢ S

x Forwards proof says:

u if we have proved ⊢ S1 . . . ⊢ Sn we can deduce ⊢ S

x Backwards proof says:

u to prove ⊢ S it is sufficient to prove ⊢ S1 . . . ⊢ Sn

x Having proved a theorem by backwards proof, it is simple to extract
a forwards proof

Example Backwards Proof

x To prove

⊢ {T}
R:=X;

Q:=0;

WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ R<Y}

x By the sequencing rule, it is sufficient to prove

(i) ⊢ {T} R:=X; Q:=0 {R=X ∧ Q=0}
(ii) ⊢ {R=X ∧ Q=0}

WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ R<Y}

x Where does {R=X ∧ Q=0} come from? (Answer later)

Example Continued (1)

x From previous slide:

(i) ⊢ {T} R:=X; Q:=0 {R=X ∧ Q=0}

x To prove (i), by the sequenced assignment axiom, we must prove:

(iii) ⊢ {T} R:=X {R=X ∧ 0=0}

x To prove (iii), by the derived assignment rule, we must prove:

⊢ T ⇒ X=X ∧ 0=0

x This is true by pure logic

Example continued (2)

x From an earlier slide:

(ii) ⊢ {R=X ∧ Q=0}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ R<Y}

x To prove (ii), by the derived while rule, we must prove:

(iv) R=X ∧ Q=0 ⇒ (X = R+(Y×Q))
(v) X = R+Y×Q ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

and

(vi)
{X = R+(Y×Q) ∧ (Y≤R)}
(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q)}

x (iv) and (v) are proved by pure arithmetic

Example Continued (3)

x To prove (vi), we must prove

(vii)
{X = R+(Y×Q) ∧ (Y≤R)}
(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q)}
x To prove (vii), by the sequenced assignment rule, we must prove

(viii)
{X=R+(Y×Q) ∧ (Y≤R)}
R:=R-Y

{X=R+(Y×(Q+1))}
x To prove (viii), by the derived assignment rule, we must prove

(ix) X=R+(Y×Q) ∧ Y≤R ⇒ (X = (R-Y)+(Y×(Q+1)))
x This is true by arithmetic

x Exercise: Construct the forwards proof that corresponds
to this backwards proof

Annotations

x The sequencing rule introduces a new statement R

⊢ {P} C1 {R} ⊢ {R} C2 {Q}
⊢ {P} C1;C2 {Q}

x To apply this backwards, one needs to find a suitable statement R

x If C2 is V :=E then sequenced assignment gives Q[E/V] for R

x If C2 isn’t an assignment then need some other way to choose R

x Similarly, to use the derived While rule, must invent an invariant

Annotate First

x It is helpful to think up these statements before you start the proof
and then annotate the program with them

u the information is then available when you need it in the proof

u this can help avoid you being bogged down in details

u the annotation should be true whenever control reaches that point

x Example, the following program could be annotated at the points
P1 and P2 indicated by the arrows

{T}
R:=X;

Q:=0; {R=X ∧ Q=0} ←−P1
WHILE Y≤R DO {X = R+Y×Q} ←−P2
(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

Summary

x We have looked at three ways of organizing proofs that make it
easier for humans to apply them:

u deriving “bigger step” rules

u backwards proof

u annotating programs

x Next we see how these techniques can be used to mechanize program
verification

NEW TOPIC: Mechanizing Program Verification

x The architecture of a simple program verifier will be described

x Justified with respect to the rules of Floyd-Hoare logic

x It is clear that

u proofs are long and boring, even if the program being verified is quite simple

u lots of fiddly little details to get right, many of which are trivial, e.g.

⊢ (R=X ∧ Q=0) ⇒ (X = R + Y×Q)

Mechanization

x Goal: automate the routine bits of proofs in Floyd-Hoare logic

x Unfortunately, as we have seen, it is impossible in principle to design
a decision procedure to decide automatically the truth or falsehood of
an arbitrary mathematical statement

x This does not mean that one cannot have procedures that will prove
many useful theorems

u the non-existence of a general decision procedure merely shows that one can-

not hope to prove everything automatically

u in practice, it is quite possible to build a system that will mechanize the

boring and routine aspects of verification

x The standard approach to this will be described in the course

u ideas very old (JC King’s 1969 CMU PhD, Stanford verifier in 1970s)

u used by program verifiers (e.g. Gypsy, SPARK verifier and VCC)

u provides a verification front end to different provers (see Why system)

Architecture of a Verifier

Specification to be proved

?

• human expert

Annotated specification

?

• VC generator

Set of logic statements (VCs)

?

• theorem prover

Simplified set of

verification conditions

?

• human expert

End of proof

Commentary

x Input: a Hoare triple annotated with mathematical statements

u these annotations describe relationships between variables

x The system generates a set of purely mathematical statements called
verification conditions (or VCs)

x If the verification conditions are provable, then the original specifi-
cation can be deduced from the axioms and rules of Hoare logic

x The verification conditions are passed to a theorem prover program
which attempts to prove them automatically

u if it fails, advice is sought from the user

Verification conditions

x The three steps in proving {P}C{Q} with a verifier

x 1 The program C is annotated by inserting statements (assertions)
expressing conditions that are meant to hold at intermediate points

u tricky, needs intelligence and good understanding of how program works

u automating it is an artificial intelligence problem

x 2 A set of logic statements called verification conditions (VCs) is then
generated from the annotated specification

u this is purely mechanical and easily done by a program

x 3 The verification conditions are proved

u needs automated theorem proving (i.e. more artificial intelligence)

x To improve automated verification one can try to

u reduce the number and complexity of the annotations required

u increase the power of the theorem prover

u still a research area

Validity of Verification Conditions

x It will be shown that

u if one can prove all the verification conditions generated from {P}C{Q}

u then ⊢ {P}C{Q}

x Step 2 converts a verification problem into a conventional mathe-
matical problem

x The process will be illustrated with:

{T}
R:=X;

Q:=0;

WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

Example

x Step 1 is to insert annotations P1 and P2

{T}
R:=X;

Q:=0; {R=X ∧ Q=0} ←−P1
WHILE Y≤R DO {X = R+Y×Q} ←−P2
(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

x The annotations P1 and P2 state conditions which are intended to
hold whenever control reaches them

Example Continued

{T}
R:=X;

Q:=0; {R=X ∧ Q=0} ←−P1
WHILE Y≤R DO {X = R+Y×Q} ←−P2
(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

x Control only reaches the point at which P1 is placed once

x It reaches P2 each time the WHILE body is executed

u whenever this happens X=R+Y×Q holds, even though the values of R and Q vary

u P2 is an invariant of the WHILE-command

Generating and Proving Verification Conditions

x Step 2 will generate the following four verification conditions

(i) T ⇒ (X=X ∧ 0=0)

(ii) (R=X ∧ Q=0) ⇒ (X = R+(Y×Q))
(iii) (X = R+(Y×Q)) ∧ Y≤R) ⇒ (X = (R-Y)+(Y×(Q+1)))
(iv) (X = R+(Y×Q)) ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

x Notice that these are statements of arithmetic

u the constructs of our programming language have been ‘compiled away’

x Step 3 consists in proving the four verification conditions

u easy with modern automatic theorem provers

Annotation of Commands

x An annotated command is a command with statements (assertions)
embedded within it

x A command is properly annotated if statements have been inserted at
the following places

(i) before C2 in C1;C2 if C2 is not an assignment command

(ii) after the word DO in WHILE commands

x The inserted assertions should express the conditions one expects to
hold whenever control reaches the point at which the assertion occurs

x Can reduce number of annotations using weakest preconditions
(see later)

Annotation of Specifications

x A properly annotated specification is a specification {P}C{Q} where
C is a properly annotated command

x Example: To be properly annotated, assertions should be at points
1© and 2© of the specification below

{X=n}
Y:=1; ←− 1©
WHILE X 6=0 DO ←− 2©
(Y:=Y×X; X:=X-1)

{X=0 ∧ Y=n!}

x Suitable statements would be

at 1©: {Y = 1 ∧ X = n}
at 2©: {Y×X! = n!}

Verification Condition Generation

x The VCs generated from an annotated specification {P}C{Q} are
obtained by considering the various possibilities for C

x We will describe it command by command using rules of the form:

x The VCs for C(C1, C2) are

u vc1, ... , vcn

u together with the VCs for C1 and those for C2

x Each VC rule corresponds to either a primitive or derived rule

A VC Generation Program

x The algorithm for generating verification conditions is recursive on
the structure of commands

x The rule just given corresponds to the recursive program clause:

VC (C(C1, C2)) = [vc1, ... ,vcn]@ (VC C1) @ (VC C2)

x The rules are chosen so that only one VC rule applies in each case

u applying them is then purely mechanical

u the choice is based on the syntax

u only one rule applies in each case so VC generation is deterministic

Justification of VCs

x This process will be justified by showing that ⊢ {P}C{Q} if all the
verification conditions can be proved

x We will prove that for any C

u assuming the VCs of {P}C{Q} are provable

u then ⊢ {P}C{Q} is a theorem of the logic

Justification of Verification Conditions

x The argument that the verification conditions are sufficient will be
by induction on the structure of C

x Such inductive arguments have two parts

u show the result holds for atomic commands, i.e. assignments

u show that when C is not an atomic command, then if the result holds for

the constituent commands of C (this is called the induction hypothesis), then it

holds also for C

x The first of these parts is called the basis of the induction

x The second is called the step

x The basis and step entail that the result holds for all commands

VC for Assignments

Assignment commands

The single verification condition generated by

{P} V :=E {Q}
is

P ⇒ Q[E/V]

x Example: The verification condition for

{X=0} X:=X+1 {X=1}
is

X=0 ⇒ (X+1)=1

(which is clearly true)

x Note: Q[E/V] = wlp("V :=E", Q)

Justification of Assignment VC

x We must show that if the VCs of {P} V := E {Q} are provable
then ⊢ {P} V := E {Q}

x Proof:

u Assume ⊢ P ⇒ Q[E/V] as it is the VC

u From derived assignment rule it follows that ⊢ {P} V := E {Q}

Derived Assignment Rule

⊢ P ⇒ Q[E/V]

⊢ {P} V :=E {Q}

VCs for Conditionals

Conditionals
The verification conditions generated from

{P} IF S THEN C1 ELSE C2 {Q}
are

(i) the verification conditions generated by

{P ∧ S} C1 {Q}
(ii) the verifications generated by

{P ∧ ¬S} C2 {Q}

x Example: The verification conditions for

{T} IF X≥Y THEN MAX:=X ELSE MAX:=Y {MAX=max(X,Y)}
are

(i) the VCs for {T ∧ X≥Y} MAX:=X {MAX=max(X,Y)}
(ii) the VCs for {T ∧ ¬(X≥Y)} MAX:=Y {MAX=max(X,Y)}

Justification for the Conditional VCs (1)

x Must show that if VCs of

{P} IF S THEN C1 ELSE C2 {Q}
are provable, then

⊢ {P} IF S THEN C1 ELSE C2 {Q}

x Proof:

u Assume the VCs {P ∧ S} C1 {Q} and {P ∧ ¬S} C2 {Q}

u The inductive hypotheses tell us that if these VCs are provable then the

corresponding Hoare Logic theorems are provable

u i.e. by induction ⊢ {P ∧ S} C1 {Q} and ⊢ {P ∧ ¬S} C2 {Q}

u Hence by the conditional rule ⊢ {P} IF S THEN C1 ELSE C2 {Q}

Review of Annotated Sequences

x If C1;C2 is properly annotated, then either

Case 1: it is of the form C1;{R}C2 and C2 is not an assignment

Case 2: it is of the form C;V := E

x And C, C1 and C2 are properly annotated

VCs for Sequences

Sequences

1. The verification conditions generated by

{P} C1 {R} C2 {Q}
(where C2 is not an assignment) are the union of:

(a) the verification conditions generated by {P} C1 {R}
(b) the verifications generated by {R} C2 {Q}

2. The verification conditions generated by

{P} C;V :=E {Q}
are the verification conditions generated by {P} C {Q[E/V]}

Example

x The verification conditions generated from

{X=x ∧ Y=y} R:=X; X:=Y; Y:=R {X=y ∧ Y=x}

x Are those generated by

{X=x ∧ Y=y} R:=X; X:=Y {(X=y ∧ Y=x)[R/Y]}

x This simplifies to

{X=x ∧ Y=y} R:=X; X:=Y {X=y ∧ R=x}

x The verification conditions generated by this are those generated by

{X=x ∧ Y=y} R:=X {(X=y ∧ R=x)[Y/X]}

x Which simplifies to

{X=x ∧ Y=y} R:=X {Y=y ∧ R=x}

Example Continued

x The only verification condition generated by

{X=x ∧ Y=y} R:=X {Y=y ∧ R=x}

is

X=x ∧ Y=y ⇒ (Y=y ∧ R=x)[X/R]

x Which simplifies to

X=x ∧ Y=y ⇒ Y=y ∧ X=x

x Thus the single verification condition from

{X=x ∧ Y=y} R:=X; X:=Y; Y:=R {X=y ∧ Y=x}

is

X=x ∧ Y=y ⇒ Y=y ∧ X=x

Justification of VCs for Sequences (1)

x Case 1: If the verification conditions for

{P} C1 ; {R} C2 {Q}
are provable

x Then the verification conditions for

{P} C1 {R}
and

{R} C2 {Q}
must both be provable

x Hence by induction

⊢ {P} C1 {R} and ⊢ {R} C2 {Q}

x Hence by the sequencing rule

⊢ {P} C1;C2 {Q}

Justification of VCs for Sequences (2)

x Case 2: If the verification conditions for

{P} C;V := E {Q}
are provable, then the verification conditions for

{P} C {Q[E/V }
are also provable

x Hence by induction

⊢ {P} C {Q[E/V]}

x Hence by the derived sequenced assignment rule

⊢ {P} C;V := E {Q}

Derived Sequenced Assignment Rule

⊢ {P} C {Q[E/V]}
⊢ {P} C;V :=E {Q}

VCs for WHILE-Commands

x A correctly annotated specification of a WHILE-command has the form

{P} WHILE S DO {R} C {Q}

x The annotation R is called an invariant

WHILE-commands

The verification conditions generated from

{P} WHILE S DO {R} C {Q}

are

(i) P ⇒ R

(ii) R ∧ ¬S ⇒ Q

(iii) the verification conditions generated by {R ∧ S} C{R}

Example

x The verification conditions for

{R=X ∧ Q=0}
WHILE Y≤R DO {X=R+Y×Q}

(R:=R-Y; Q:=Q+1)

{X = R+(Y×Q) ∧ R<Y}
are:

(i) R=X ∧ Q=0 ⇒ (X = R+(Y×Q))

(ii) X = R+Y×Q ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

together with the verification condition for

{X = R+(Y×Q) ∧ (Y≤R)}
(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q)}
which consists of the single condition

(iii) X = R+(Y×Q) ∧ (Y≤R) ⇒ X = (R-Y)+(Y×(Q+1))

Example Summarised

x By previous transparency

⊢ {R=X ∧ Q=0}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X = R+(Y×Q) ∧ R<Y}

if

⊢ R=X ∧ Q=0 ⇒ (X = R+(Y×Q))

and

⊢ X = R+(Y×Q) ∧ ¬(Y≤R)⇒ (X = R+(Y×Q) ∧ R<Y)

and

⊢ X = R+(Y×Q) ∧ (Y≤R) ⇒ X = (R-Y)+(Y×(Q+1))

Justification of WHILE VCs

x If the verification conditions for

{P} WHILE S DO {R} C {Q}
are provable, then

⊢ P ⇒ R
⊢ (R ∧ ¬S) ⇒ Q
and the verification conditions for

{R ∧ S} C {R}
are provable

x By induction

⊢ {R ∧ S} C {R}
x Hence by the derived WHILE-rule

⊢ {P} WHILE S DO C {Q}

Derived While Rule

⊢ P ⇒ R ⊢ {R ∧ S} C {R} ⊢ R ∧ ¬S ⇒ Q

⊢ {P} WHILE S DO C {Q}

Summary

x Have outlined the design of an automated program verifier

x Annotated specifications compiled to mathematical statements

u if the statements (VCs) can be proved, the program is verified

x Human help is required to give the annotations and prove the VCs

x The algorithm was justified by an inductive proof

u it appeals to the derived rules

x All the techniques introduced earlier are used

u backwards proof

u derived rules

u annotation

More on Dijkstra’s weakest preconditions

Recall:

x If P and Q are predicates then Q ⇒ P means P is ‘weaker’ than Q

x If C is a command and Q a predicate, then informally:

• wlp(C,Q) = ‘The weakest predicate P such that {P} C {Q}’
• wp(C,Q) = ‘The weakest predicate P such that [P] C [Q]’

x Weakest preconditions (wp) are for total correctness

x Weakest liberal preconditions (wlp) for partial correctness

Rules for weakest preconditions

x Relation with Hoare specifications:

{P} C {Q} ⇔ P ⇒ wlp(C,Q)

[P] C [Q] ⇔ P ⇒ wp(C,Q)

x Dijkstra gives rules for computing weakest preconditions:

wp(V :=E,Q) = Q[E/V]

wp(C1;C2, Q) = wp(C1, wp(C2, Q))

wp(IF B THEN C1 ELSE C2, Q) = (B ⇒ wp(C1, Q)) ∧ (¬B ⇒ wp(C2, Q))

for deterministic loop-free code the same equations hold for wlp

x Rule for WHILE-commands doesn’t give a usable first order result

x Weakest preconditions closely related to verification conditions

x VCs for {P} C {Q} are related to P ⇒ wlp(C,Q)

u VCs use annotations to generate first order formulae

Using wlp to improve verification condition method

x If C is loop-free then VC for {P} C {Q} is P ⇒ wlp(C,Q)

u no annotations needed in sequences

u not even before conditionals

x The following holds

wlp(WHILE S DO C, Q) = if S then wlp(C, wlp(WHILE S DO C, Q)) else Q

x Above doesn’t define wlp(C,Q) as a finite statement

x We will describe a hybrid VC and wlp method

wlp-based verification condition method

x We define awp(C,Q) and wvc(C,Q)

u awp(C,Q) is a statement sort of approximating wlp(C,Q)

u wvc(C,Q) is a set of verification conditions

x If C is loop-free then

u awp(C,Q) = wlp(C,Q)

u wvc(C,Q) = {}

x Denote by
∧S the conjunction of all the statements in S

u
∧
{} = T

u
∧
(S1 ∪ S2) = (

∧
S1) ∧ (

∧
S2)

x It will follow that
∧
wvc(C,Q)⇒ {awp(C,Q)} C {Q}

x Hence to prove {P}C{Q} it is sufficient to prove
all the statements in wvc(C,Q) and P ⇒ awp(C,Q)

Definition of awp

x Assume all WHILE-commands are annotated: WHILE S DO {R} C

x Define awp recursively by:

awp(V := E, Q) = Q[E/V]

awp(C1 ; C2, Q) = awp(C1, awp(C2, Q))

awp(IF S THEN C1 ELSE C2, Q) = (S ∧ awp(C1, Q)) ∨ (¬S ∧ awp(C2, Q))

awp(WHILE S DO {R} C, Q) = R

x Note:
(S ∧awp(C1, Q))∨(¬S∧awp(C2, Q) = if S then awp(C1, Q) else awp(C2, Q)

Definition of wvc

x Assume all WHILE-commands are annotated: WHILE S DO {R} C

x Define wvc recursively by:

wvc(V := E, Q) = {}
wvc(C1 ; C2, Q) = wvc(C1, awp(C2, Q)) ∪ wvc(C2, Q)

wvc(IF S THEN C1 ELSE C2, Q) = wvc(C1, Q) ∪ wvc(C2, Q)

wvc(WHILE S DO {R} C, Q) = {R ∧ ¬S ⇒ Q, R ∧ S ⇒ awp(C,R)}
∪ wvc(C,R)

x Note similarity to VC generating algorithm

Correctness of wlp-based verification conditions
x Theorem:

∧
wvc(C,Q)⇒ {awp(C,Q)} C {Q}. Proof by Induction on C

u
∧
wvc(V :=E,Q)⇒ {awp(C,Q)} C {Q} is T⇒ {Q[E/V]} V := E {Q}

u
∧
wvc(C1;C2, Q)⇒ {awp(C1;C2, Q)} C1;C2 {Q} is

∧
(wvc(C1, awp(C2, Q)) ∪ wvc(C2, Q))⇒ {awp(C1, awp(C2, Q))} C1;C2 {Q}.

By induction
∧
wvc(C2, Q)⇒ {awp(C2, Q)} C1 {Q}

and
∧
wvc(C1, awp(C2, Q))⇒ {awp(C1, awp(C2, Q))} C2 {awp(C2, Q)},

hence result by the Sequencing Rule.

u
∧
wvc(IF S THEN C1 ELSE C2, Q)

⇒ {awp(IF S THEN C1 ELSE C2, Q)} IF S THEN C1 ELSE C2 {Q}
is

∧
(wvc(C1, Q) ∪ wvc(C2, Q))

⇒ {(S ∧ awp(C1, Q)) ∨ (¬S ∧ awp(C2, Q)} IF S THEN C1 ELSE C2 {Q}.
By induction

∧
wvc(C1, Q)⇒ {awp(C1, Q)} C1 {Q}

and
∧
wvc(C2, Q)⇒ {awp(C2, Q)} C2 {Q}. Strengthening preconditions

gives
∧
wvc(C1, Q)⇒ {awp(C1, Q) ∧ S} C1 {Q}

and
∧
wvc(C2, Q)⇒ {awp(C2, Q) ∧ ¬S} C2 {Q}, hence

∧
wvc(C1, Q)⇒ {((S ∧ awp(C1, Q)) ∨ (¬S ∧ awp(C2, Q))) ∧ S} C1 {Q}

and
∧
wvc(C2, Q)⇒ {((S ∧ awp(C1, Q)) ∨ (¬S ∧ awp(C2, Q))) ∧ ¬S} C2 {Q},

hence result by the Conditional Rule.

u
∧
wvc(WHILE S DO {R} C,Q)⇒ {awp(WHILE S DO {R} C,Q)} WHILE S DO {R} C {Q}

is
∧
({R ∧¬S ⇒ Q, R ∧ S ⇒ awp(C,R)} ∪ wvc(C,R))⇒ {R} WHILE S DO {R} C {Q}.

By induction
∧
wvc(C,R)⇒ {awp(C,R)} C {R}, hence result by WHILE-Rule.

Strongest postconditions

x Define sp(C,P) to be ‘strongest’ Q such that {P} C {Q}
u partial correctness: {P} C {sp(C, P)}

u strongest means if {P} C {Q} then sp(C, P)⇒ Q

x Note that wlp goes ‘backwards’, but sp goes ‘forwards’

u verification condition for {P} C {Q} is: sp(C, P)⇒ Q

x By ‘strongest’ and Hoare logic postcondition weakening

u {P} C {Q} if and only if sp(C, P)⇒ Q

Strongest postconditions for loop-free code

x Only consider loop-free code

x sp(V := E, P) = ∃v. V = E[v/V] ∧ P[v/V]

x sp(C1 ; C2, P) = sp(C2, sp(C1, P))

x sp(IF S THEN C1 ELSE C2, P) = sp(C1, P ∧ S) ∨ sp(C2, P ∧ ¬S)

x sp(V :=E, P) corresponds to Floyd assignment axiom

x Can dynamically prune conditionals because sp(C, F) = F

x Computer strongest postconditions is symbolic execution

Sequencing example

x sp(R:=X; X:=Y; Y:=R, X = x ∧ Y = y)
= sp(Y:=R, sp(X:=Y, sp(R:=X, X = x ∧ Y = y)))
= sp(Y:=R, sp(X:=Y, (∃v. R = X[v/R] ∧ (X = x ∧ Y = y)[v/R])))
= sp(Y:=R, sp(X:=Y, (∃v. R = X ∧ (X = x ∧ Y = y))))
= sp(Y:=R, sp(X:=Y, (R = X ∧ X = x ∧ Y = y)))
= sp(Y:=R, (∃v. X = Y[v/X] ∧ (R = X ∧ X = x ∧ Y = y)[v/X]))
= sp(Y:=R, (∃v. X = Y ∧ (R = v ∧ v = x ∧ Y = y)))
= sp(Y:=R, (∃v. X = Y ∧ (R = x ∧ v = x ∧ Y = y)))
= sp(Y:=R, (X = Y ∧ (R = x ∧ (∃v. v = x) ∧ Y = y)))
= sp(Y:=R, (X = Y ∧ (R = x ∧ T ∧ Y = y)))
= sp(Y:=R, (X = Y ∧ R = x ∧ Y = y))
= ∃v. Y = R[v/Y] ∧ (X = Y ∧ R = x ∧ Y = y)[v/Y]
= ∃v. Y = R ∧ (X = v ∧ R = x ∧ v = y)
= ∃v. Y = R ∧ (X = y ∧ R = x ∧ v = y)
= Y = R ∧ (X = y ∧ R = x ∧ (∃v. v = y))
= Y = R ∧ (X = y ∧ R = x ∧ T)
= Y = R ∧ X = y ∧ R = x
= Y = x ∧ X = y ∧ R = x

x So to prove {X = x ∧ Y = y} R:=X; X:=Y; Y:=R {Y = x ∧ X = y}
just prove: (Y = x ∧ X = y ∧ R = x)⇒ Y = x ∧ X = y

Conditional example

x Compute sp of the maximum program:

sp(IF X<Y THEN MAX:=Y ELSE MAX:=X, (X = x ∧ Y = y))

= sp(MAX:=Y, ((X = x ∧ Y = y) ∧ X < Y))
∨
sp(MAX:=X, ((X = x ∧ Y = y) ∧ ¬(X < Y)))

= ∃v. MAX = Y[v/MAX] ∧ ((X = x ∧ Y = y) ∧ X < Y)[v/MAX]
∨
∃v. MAX = X[v/MAX] ∧ ((X = x ∧ Y = y) ∧ ¬(X < Y))[v/MAX]

= ∃v. MAX = Y ∧ ((X = x ∧ Y = y) ∧ X < Y)
∨
∃v. MAX = X ∧ X = x ∧ Y = y ∧ ¬(X < Y))

= (MAX = Y ∧ X = x ∧ Y = y ∧ X < Y) ∨ (MAX = X ∧ X = x ∧ Y = y ∧ ¬(X < Y)

= (MAX = y ∧ X = x ∧ Y = y ∧ x < y) ∨ (MAX = x ∧ X = x ∧ Y = y ∧ ¬(x < y)

= if x < y then (MAX = y ∧ X = x ∧ Y = y) else (MAX = x ∧ X = x ∧ Y = y)

= MAX = (if x < y then y else x) ∧ X = x ∧ Y = y

= MAX = max(x, y) ∧ X = x ∧ Y = y

Computing sp versus wlp

x Computing sp is like execution

u can simplify as one goes along with the ‘current state’

u may be able to resolve branches, so can avoid executing them

u Floyd assignment rule complicated in general

u sp used for symbolically exploring ‘reachable states’

(related to model checking)

x Computing wlp is like backwards proof

u don’t have ‘current state’, so can’t simplify using it

u can’t determine conditional tests, so get big if-then-else trees

u Hoare assignment rule simpler for arbitrary formulae

u wlp used for improved verification conditions

Using sp to generate verification conditions

x If C is loop-free then VC for {P} C {Q} is sp(C, P)⇒ Q

x Cannot in general compute a finite formula for sp(WHILE S DO C, P)

x The following holds

sp(WHILE S DO C, P) = sp(WHILE S DO C, sp(C, (P ∧ S))) ∨ (P ∧ ¬S)

x Above doesn’t define sp(C,P) to be a finite statement

x As with wlp, can define a hybrid VC and sp method

x Proof by induction on C (exercise)

Summary

x Annotate then generate VCs is the classical method

u practical tools: Gypsy (1970s), SPARK, VCC

u weakest preconditions are alternative explanation of VCs

u wlp needs fewer annotations than VC method described earlier

u wlp also used for refinement

x VCs and wlp go backwards, sp goes forward

u sp provides verification method based on symbolic simulation

u widely used for loop-free code

u current research potential for forwards full proof of correctness

u probably need mixture of forwards and backwards methods (Hoare’s view)

x Implementation issues

u should verifier be proof-producing?

u debugging versus assurance

Range of methods for proving {P}C{Q}

• Bounded model checking (BMC)

– unwind loops a finite number of times

– then symbolically execute

– check states reached satisfy decidable properties

• Full proof of correctness

– add invariants to loops

– generate verification conditions

– prove verification conditions with a theorem prover

• Research goal: unifying framework for a spectrum of methods

decidable checking proof of correctness

Total Correctness Specification

x So far our discussion has been concerned with partial correctness

u what about termination

x A total correctness specification [P] C [Q] is true if and only if

u whenever C is executed in a state satisfying P ,

then the execution of C terminates

u after C terminates Q holds

x Except for the WHILE-rule, all the axioms and rules described so far
are sound for total correctness as well as partial correctness

Termination of WHILE-Commands

x WHILE-commands are the only commands that might not terminate

x Consider now the following proof

1. ⊢ {T} X := X {T} (assignment axiom)

2. ⊢ {T ∧ T} X := X {T} (precondition strengthening)

3. ⊢ {T} WHILE T DO X := X {T ∧ ¬T} (2 and the WHILE-rule)

x If the WHILE-rule worked for total correctness, then this would show:

⊢ [T] WHILE T DO X := X [T ∧ ¬T]

x Thus the WHILE-rule is unsound for total correctness

Rules for Non-Looping Commands

x Replace { and } by [and], respectively, in:

u Assignment axiom (see next slide for discussion)

u Consequence rules

u Conditional rule

u Sequencing rule

x The following is a valid derived rule

⊢ {P} C {Q}
⊢ [P] C [Q]

if C contains no WHILE-commands

Total Correctness Assignment Axiom

x Assignment axiom for total correctness

⊢ [P[E/V]] V :=E [P]

x Note that the assignment axiom for total correctness states that
assignment commands always terminate

x So all function applications in expressions must terminate

x This might not be the case if functions could be defined recursively

x Consider X := fact(−1), where fact(n) is defined recursively:

fact(n) = if n = 0 then 1 else n× fact(n−1)

Possibilities

x There are at least three possibilities

(i) 1/0 denotes some number;

(ii) 1/0 denotes some kind of ‘error value’.

(iii) 1/0 is ‘undefined’ (needs new logic).

x It seems at first sight that adopting (ii) is the most natural choice

u this makes it tricky to see what arithmetical laws should hold

u is (1/0)× 0 equal to 0 or to some ‘error value’?

u if the latter, then it is no longer the case that ∀n. n× 0 = 0 is valid

x It is possible to make everything work with undefined and/or error
values, but the resultant theory is a bit messy

x A logic of partial functions (LPF) is still being considered

LPF

Peter Landin Annual Semantics Seminar

6 December 2011, BCS London Offices

"To be or not to be" valid?

Professor Cliff Jones (University of Newcastle)

Abstract:

The problem of reasoning about undefined terms has been "solved" (or

avoided) in a variety of ways. (Think about division by zero - but

undefinedness comes up in many ways in program specifications.) For a

long-time, I’ve used a non-standard logic (LPF) but few others have

joined this movement because such good tools exist for standard,

classical, logic. At some level, I believe that alternative approaches

are "workarounds". I’ll try to show why the workarounds present

problems and report on recent positive ideas for mechanising LPF in a

way whose efficiency is close to that of classical logic. To make the

talk accessible to as wide an audience as possible, I’ll place the

ideas in a framework that goes back (if not to Shakespeare, at least)

a long way.

We use classical logic here (option (i))

x We assume that arithmetic expressions always denote numbers

x In some cases exactly what the number is will be not fully specified

u for example, we will assume that m/n denotes a number for any m and n

u only assume: ¬(n = 0) ⇒ (m/n)× n = m

u it is not possible to deduce anything about m/0 from this

u in particular it is not possible to deduce that (m/0)× 0 = 0

u but (m/0)× 0 = 0 does follow from ∀n. n× 0 = 0

x As LPF shows, people still argue about this

Error Termination

x We assume erroneous expressions like 1/0 don’t cause problems

x Most programming languages will raise an error on division by zero

x In our logic it follows that

⊢ [T] X := 1/0 [X = 1/0]

x The assignment X := 1/0 halts in a state in which X = 1/0 holds

x This assumes that 1/0 denotes some value that X can have

WHILE-rule for Total Correctness (i)

x WHILE-commands are the only commands in our little language that
can cause non-termination

u they are thus the only kind of command with a non-trivial termination rule

x The idea behind the WHILE-rule for total correctness is

u to prove WHILE S DO C terminates

u show that some non-negative quantity decreases on each iteration of C

u this decreasing quantity is called a variant

WHILE-Rule for Total Correctness (ii)

x In the rule below, the variant is E, and the fact that it decreases is
specified with an auxiliary variable n

x The hypothesis ⊢ P ∧S ⇒ E ≥ 0 ensures the variant is non-negative

WHILE-rule for total correctness

⊢ [P ∧ S ∧ (E = n)] C [P ∧ (E < n)], ⊢ P ∧ S ⇒ E ≥ 0

⊢ [P] WHILE S DO C [P ∧ ¬S]

where E is an integer-valued expression

and n is an identifier not occurring in P , C, S or E.

Example

x We show

⊢ [Y > 0] WHILE Y≤R DO (R:=R-Y; Q:=Q+1) [T]

x Take

P = Y > 0

S = Y ≤ R

E = R

C = (R:=R-Y; Q:=Q+1)

x We want to show ⊢ [P] WHILE S DO C [T]

x By the WHILE-rule for total correctness it is sufficient to show

(i) ⊢ [P ∧ S ∧ (E = n)] C [P ∧ (E < n)]

(ii) ⊢ P ∧ S ⇒ E ≥ 0

x Then use postcondition weakening and ⊢ P ∧ ¬S ⇒ T

Example Continued (1)

x From previous slide:

P = Y > 0

S = Y ≤ R

E = R

C = (R:=R-Y; Q:=Q+1)

x We want to show

(i) ⊢ [P ∧ S ∧ (E = n)] C [P ∧ (E < n)]

(ii) ⊢ P ∧ S ⇒ E ≥ 0

x The first of these, (i), can be proved by establishing

⊢ {P ∧ S ∧ (E = n)} C {P ∧ (E < n)}

x Then using the total correctness rule for non-looping commands

Example Continued (2)

x From previous slide:

P = Y > 0

S = Y ≤ R

E = R

C = R:=R-Y; Q:=Q+1)

x The verification condition for {P ∧ S ∧ (E = n)} C {P ∧ (E < n)} is:

Y > 0 ∧ Y ≤ R ∧ R = n ⇒
(Y > 0 ∧ R < n)[Q+1/Q][R−Y/R]

i.e. Y > 0 ∧ Y ≤ R ∧ R = n ⇒ Y > 0 ∧ R−Y < n

which follows from the laws of arithmetic

x The second subgoal, (ii), is just ⊢ Y > 0 ∧ Y ≤ R⇒ R ≥ 0

Termination Specifications

x The relation between partial and total correctness is informally
given by the equation

Total correctness = Termination + Partial correctness

x This informal equation can be represented by the following two rules
of inferences

⊢ {P} C {Q} ⊢ [P] C [T]

⊢ [P] C [Q]

⊢ [P] C [Q]

⊢ {P} C {Q} ⊢ [P] C [T]

Derived Rules

x Multiple step rules for total correctness can be derived in the same
way as for partial correctness

u the rules are the same up to the brackets used

u same derivations with total correctness rules replacing partial correctness ones

u only significant change is the derived WHILE-rule

x Derived WHILE-rule needs to handle the variant

Derived WHILE-rule for total correctness

⊢ P ⇒ R

⊢ R ∧ S ⇒ E ≥ 0

⊢ R ∧ ¬S ⇒ Q

⊢ [R ∧ S ∧ (E = n)] C [R ∧ (E < n)]

⊢ [P] WHILE S DO C [Q]

VCs for Termination

x Verification conditions are easily extended to total correctness

x To generate total correctness verification conditions for WHILE-
commands, it is necessary to add a variant as an annotation in ad-
dition to an invariant

x Variant added directly after the invariant, in square brackets

x No other extra annotations are needed for total correctness

x VCs generation algorithm same as for partial correctness

WHILE Annotation

x A correctly annotated total correctness specification of a WHILE-
command thus has the form

[P] WHILE S DO {R}[E] C [Q]

where R is the invariant and E the variant

x Note that the variant is intended to be a non-negative expression
that decreases each time around the WHILE loop

x The other annotations, which are enclosed in curly brackets, are
meant to be conditions that are true whenever control reaches them
(as before)

WHILE VCs

x A correctly annotated specification of a WHILE-command has the form

[P] WHILE S DO {R}[E] C [Q]

WHILE-commands

The verification conditions generated from

[P] WHILE S DO {R}[E] C [Q]

are

(i) P ⇒ R

(ii) R ∧ ¬S ⇒ Q

(iii) R ∧ S ⇒ E ≥ 0

(iv) the verification conditions generated by

[R ∧ S ∧ (E = n)] C[R ∧ (E < n)]

where n is a variable not occurring in
P , R, E, C, S or Q.

Example

x The verification conditions for

[R=X ∧ Q=0]
WHILE Y≤R DO {X=R+Y×Q}[R]
(R:=R-Y; Q=Q+1)

[X = R+(Y×Q) ∧ R<Y]

are:

(i) R=X ∧ Q=0 ⇒ (X = R+(Y×Q))

(ii) X = R+Y×Q ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

(iii) X = R+Y×Q ∧ Y≤R ⇒ R≥0

together with the verification condition for

[X = R+(Y×Q) ∧ (Y≤R) ∧ R=n]
(R:=R-Y; Q:=Q+1)

[X=R+(Y×Q) ∧ R<n]

Example Continued

x The single verification condition for

[X = R+(Y×Q) ∧ (Y≤R) ∧ R=n]
(R:=R-Y; Q:=Q+1)

[X=R+(Y×Q) ∧ R<n]

is

(iv) X = R+(Y×Q) ∧ (Y≤R) ∧ R=n ⇒
X = (R-Y)+(Y×(Q+1)) ∧ (R-Y)<n

x But this isn’t true

u take Y=0

x To prove R-Y<n we need to know Y>0

x Exercise: Explain why one would not expect to be able to prove the
verification conditions of this last example

x Hint: Consider the original specification

Summary

x We have given rules for total correctness

x They are similar to those for partial correctness

x The main difference is in the WHILE-rule

u because WHILE commands are the only ones that can fail to terminate

x Must prove a non-negative expression is decreased by the loop body

x Derived rules and VC generation rules for partial correctness easily
extended to total correctness

x Interesting stuff on the web

u http://www.crunchgear.com/2008/12/31/zune-bug-explained-in-detail

u http://research.microsoft.com/TERMINATOR

Overview

x All the axioms and rules given so far were quite straightforward

u may have given a false sense of simplicity

x Hard to give rules for anything other than very simple constructs

u an incentive for using simple languages

x We already saw with the assignment axiom that intuition over how
to formulate a rule might be wrong

u the assignment axiom can seem ‘backwards’

x We now add some new commands to our little language

u array assignments

u blocks

u FOR-commands

Array assignments

x Syntax: V (E1):=E2

x Semantics: the state is changed by assigning the value of the term
E2 to the E1-th component of the array variable V

x Example: A(X+1) := A(X)+2

u if the the value of X is x

u and the value of the x-th component of A is n

u then the value stored in the (x+1)-th component of A becomes n+2

Naive Array Assignment Axiom Fails

x The axiom

⊢ {P[E2/A(E1)]} A(E1) := E2 {P}
doesn’t work

x Take P ≡ ‘X=Y ∧ A(Y)=0’, E1 ≡ ‘X’, E2 ≡ ‘1’

u since A(X) does not occur in P

u it follows that P[1/A(X)] = P

u hence the axiom yields: ⊢ {X=Y ∧ A(Y)=0} A(X):=1 {X=Y ∧ A(Y)=0}

x Must take into account possibility that changes to A(X)

may change A(Y), A(Z) etc

u since X might equal Y, Z etc (i.e. aliasing)

x Related to the Frame Problem in AI

Reasoning About Arrays

x The naive array assignment axiom

⊢ {P[E2/A(E1)]} A(E1) := E2 {P}
does not work: changes to A(X) may also change A(Y), A(Z), . . .

x The solution, due to Hoare, is to treat an array assignment

A(E1):=E2

as an ordinary assignment

A := A{E1←E2}

where the term A{E1←E2} denotes an array identical to A, except
that the E1-th component is changed to have the value E2

Array Assignment axiom

x Array assignment is a special case of ordinary assignment

A:=A{E1←E2}

x Array assignment axiom just ordinary assignment axiom

⊢ {P[A{E1←E2}/A]} A:=A{E1←E2} {P}

x Thus:

The array assignment axiom

⊢ {P[A{E1←E2}/A]} A(E1):=E2 {P}

Where A is an array variable, E1 is an integer valued expression, P is
any statement and the notation A{E1←E2} denotes the array identical
to A, except that A(E1) = E2.

Array Axioms

x In order to reason about arrays, the following axioms, which define
the meaning of the notation A{E1←E2}, are needed

The array axioms

⊢ A{E1←E2}(E1) = E2

⊢ E1 6= E3 ⇒ A{E1←E2}(E3) = A(E3)

x Second of these is a Frame Axiom

For more rigour recall first order theory ARRAY

x LARRAY = {{isarray}, {lookup, update}}
u isarray has arity 1, lookup has arity 2, update has arity 3

x IARRAY

u domain is V ∪ {φ | φ : N→ V} for some set of values V

u IARRAY[isarray](a) is true iff a is a function φ

u IARRAY[lookup](a, i) = if a is a function φ then φ(i) else 0

u IARRAY[update](a, i, v) = if a is a function φ then φ[v/i] else a

x ARRAY contains the following axioms
u ∀a i v. isarray(a)⇒ (lookup(update(a, i, v), i) = v)

u ∀a i j v. isarray(a) ∧ ¬(i = j)⇒ (lookup(update(a, i, v), j) = lookup(a, j))

u ∀a1 a2. isarray(a1) ∧ isarray(a2) ∧ (∀i. lookup(a1, i) = lookup(a2, i))⇒ (a1 = a2)

x “a(i)” means “lookup(a, i)” and “a{i←v}” means “update(a, i, v)”

x Assuming a is an array (isarray(a) is true) then from array axioms:
u a{i←v}(i) = v

u ¬(i = j)⇒ (a{i←v}(j) = a(j))

Example

x We show

⊢ {A(X)=x ∧ A(Y)=y}
R := A(X);

A(X) := A(Y);

A(Y) := R

{A(X)=y ∧ A(Y)=x}

x Working backwards using the array assignment axiom

⊢ {(A{Y←R})(X)=y ∧ (A{Y←R})(Y)=x}
A(Y) := R

{A(X)=y ∧ A(Y)=x}

x Array assignments are variable assignments of array values, so:

⊢ {(A{Y←R})(X)=y ∧ (A{Y←R})(Y)=x}
A := A{Y←R}
{A(X)=y ∧ A(Y)=x}

Example Continued (1)

x Using

⊢ A{Y←R}(Y) = R

x It follows that

⊢ {(A{Y←R})(X)=y ∧ R=x}
A(Y) := R

{A(X)=y ∧ A(Y)=x}

x Continuing backwards

⊢ {((A{X←A(Y)}){Y←R})(X)=y ∧ R=x}
A(X) := A(Y)

{(A{Y←R})(X)=y ∧ R=x}

x Maybe more intuitive if the assignment is rewritten

⊢ {((A{X←A(Y)}){Y←R})(X)=y ∧ R=x}
A := A{X←A(Y)}
{(A{Y←R})(X)=y ∧ R=x}

Example Continued (2)

x Continuing backwards

⊢ {((A{X←A(Y)}){Y←A(X)})(X)=y ∧ A(X)=x}
R := A(X)

{((A{X←A(Y)}){Y←R})(X)=y ∧ R=x}

x Hence by the derived sequencing rule

⊢ {((A{X←A(Y)}){Y←A(X)})(X)=y ∧ A(X)=x}
R := A(X); A(X) := A(Y); A(Y) := R

{A(X)=y ∧ A(Y)=x}

x By the array axioms (considering the cases X=Y and X6=Y separately):

⊢ ((A{X←A(Y)}){Y←A(X)})(X) = A(Y)

x Hence (as desired)

⊢ {A(Y)=y ∧ A(X)=x}
R := A(X); A(X) := A(Y); A(Y) := R

{A(X)=y ∧ A(Y)=x}

Blocks (not in handout)

x Syntax: BEGIN VAR V1; · · · VAR Vn; C END

x Semantics: command C is executed, then the values of V1, · · · , Vn are
restored to the values they had before the block was entered

u the initial values of V1, · · · , Vn inside the block are unspecified

x Example: BEGIN VAR R; R:=X; X:=Y; Y:=R END

u the values of X and Y are swapped using R as a temporary variable

u this command does not have a side effect on the variable R

The Block Rule

x The block rule takes care of local variables

The block rule

⊢ {P} C {Q}
⊢ {P} BEGIN VAR V1; . . . ; VAR Vn; C END {Q}

where none of the variables V1, . . . , Vn occur in P or Q.

x Note that the block rule is regarded as including the case when there
are no local variables (the ‘n = 0’ case)

The Side Condition

x The syntactic condition that none of the variables V1, . . . , Vn occur in
P or Q is an example of a side condition

x From

⊢ {X=x ∧ Y=y} R:=X; X:=Y; Y:=R {Y=x ∧ X=y}
it follows by the block rule that

⊢ {X=x ∧ Y=y} BEGIN VAR R; R:=X; X:=Y; Y:=R END {Y=x ∧ X=y}
since R does not occur in X=x ∧ Y=y or X=y ∧ Y=x

x However from

⊢ {X=x ∧ Y=y} R:=X; X:=Y {R=x ∧ X=y}
one cannot deduce

⊢ {X=x ∧ Y=y} BEGIN VAR R; R:=X; X:=Y END {R=x ∧ X=y}
since R occurs in R=x ∧ X=y

Exercises

x Consider the specification

{X=x} BEGIN VAR X; X:=1 END {X=x}
Can this be deduced from the rules given so far?

(i) if so, give a proof of it

(ii) if not, explain why not and suggest additional rules
and/or axioms to enable it to be deduced

x Is the following true?

⊢ {X=x ∧ Y=y} X:=X+Y; Y:=X-Y; X:=X-Y {Y=x ∧ X=y}
u if so prove it

u if not, give the circumstances when it fails

x Show

⊢ {X=R+(Y×Q)} BEGIN R:=R-Y; Q:=Q+1 END {X=R+(Y×Q)}

FOR-commands

x Syntax: FOR V :=E1 UNTIL E2 DO C

u restriction: V must not occur in E1 or E2,

or be the left hand side of an assignment in C

(explained later)

x Semantics:

u if the values of terms E1 and E2 are positive numbers e1 and e2

u and if e1 ≤ e2

u then C is executed (e2−e1)+1 times with the variable V taking on the sequence

of values e1, e1+1, . . . , e2 in succession

u for any other values, the FOR-command has no effect

x Example: FOR N:=1 UNTIL M DO X:=X+N

u if the value of the variable M is m and m ≥ 1, then the command X:=X+N is

repeatedly executed with N taking the sequence of values 1, . . . , m

u if m < 1 then the FOR-command does nothing

Subtleties of FOR-commands

x There are many subtly different versions of FOR-commands

x For example

u the expressions E1 and E2 could be evaluated at each iteration

u and the controlled variable V could be treated as global rather than local

x Early languages like Algol 60 failed to notice such subtleties

x Note that with the semantics presented here
FOR-commands cannot generate non termination

More on the semantics of FOR-commands

x The semantics of

FOR V :=E1 UNTIL E2 DO C

is as follows

(i) E1 and E2 are evaluated once to get values e1 and e2, respectively.

(ii) If either e1 or e2 is not a number, or if e1 > e2, then nothing is done.

(iii) If e1 ≤ e2 the FOR-command is equivalent to:

BEGIN VAR V ; V :=e1; C; V :=e1+1; C ; . . . ; V :=e2; C END

i.e. C is executed (e2−e1)+1 times with V taking on the sequence of
values e1, e1+1, . . . , e2

x If C doesn’t modify V then FOR-command equivalent to:

BEGIN VAR V ; V :=e1; . . . C ; V :=V +1
︸ ︷︷ ︸

repeated

; . . . V :=e2; C END

The Rule of Constancy(Derived Frame Rule in handout)

x The following derived rule is used on the next slide

The rule of constancy

⊢ {P} C {Q}
⊢ {P ∧R} C {Q ∧R}

where no variable assigned to in C occurs in R

x Outline of derivation
u prove {R} C {R} by induction on C
u then use Specification Conjunction

x Assume C doesn’t modify V and ⊢ {P} C {P[V +1/V]} then:

⊢ {P ∧ V =v} C {P[V +1/V] ∧ V =v} (assumption + constancy rule)

⊢ {P[V +1/V] ∧ V =v} V :=V +1 {P ∧ V=v+1}(assign. ax + pre. streng.)

⊢ {P ∧ V =v} C; V :=V +1 {P ∧ V =v+1} (sequencing)

x So C; V :=V +1 has P as an invariant and increments V

Towards the FOR-Rule

x If e1 ≤ e2 the FOR-command is equivalent to:

BEGIN VAR V ; V :=e1; . . . C ; V :=V+1; . . . V :=e2; C END

x Assume C doesn’t modify V and ⊢ {P} C {P[V +1/V]}
x Hence:

⊢ {P[e1/V]} V :=e1 {P ∧ V =e1} (assign. ax + pre. streng.)
...
⊢ {P ∧ V =v} C; V :=V +1 {P ∧ V =v+1} (last slide; V = e1, e1+1, . . . , e2−1)
...
⊢ {P ∧ V=e2} C {P[V +1/V] ∧ V=e2} (assumption + constancy rule)

⊢ {P ∧ V=e2} C {P[e2+1/V]} (post. weak.)

x Hence by the sequencing and block rules

⊢ {P}C{P[V +1/V]}
⊢ {P[e1/V]}BEGIN VAR V ;V :=e1; . . . C;V :=V +1; . . . V :=e2;C END{P[e2+1/V]}

Problems with the FOR-rule (i)

x Previous derivation suggests a rule

⊢ {P} C {P[V +1/V]}
⊢ {P[E1/V]} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V]}

x This is a good start, but needs debugging

x Consider:

⊢ {X=Y} X:=Y+1 {X=Y+1}

x Taking P as ‘X=Y’ this is:

⊢ {P} X:=Y+1 {P[Y+1/Y]}

x By the FOR-rule above, with V = Y, E1 = 3 and E2 = 1

⊢ { X=3︸︷︷︸

P[3/Y]

} FOR Y:=3 UNTIL 1 DO X:=Y+1 { X=2︸︷︷︸

P[1+1/Y]

}

Problems with the FOR-rule (ii)

x The conclusion below is clearly undesirable

⊢ { X=3︸︷︷︸

P[3/Y]

} FOR Y:=3 UNTIL 1 DO X:=Y+1 { X=2︸︷︷︸

P[1+1/Y]

}

x It was specified that

u if the value of E1 were greater than the value of E2

u then the FOR-command should have no effect

u in this example it changes the value of X from 3 to 2

x To avoid this, the FOR-rule can be modified to

⊢ {P} C {P[V +1/V]}
⊢ {P[E1/V] ∧ E1 ≤ E2} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V]}

Problems with the FOR-rule (iii)

x FOR-rule so far

⊢ {P} C {P[V +1/V]}
⊢ {P[E1/V] ∧ E1 ≤ E2} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V]}

x On the example just considered this rule results in

⊢ {X=3 ∧ 3 ≤ 1
︸ ︷︷ ︸
never true!

} FOR Y:=3 UNTIL 1 DO X:=Y+1 {X=2}

x This conclusion is harmless

u only asserts X changed if FOR-command executed in impossible starting state

Problems with the FOR-rule (iv)

x Unfortunately, there is still a bug in

⊢ {P} C {P[V +1/V]}
⊢ {P[E1/V] ∧ E1 ≤ E2} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V]}

x Take P to be ‘Y=1’ and note that

⊢ {Y=1︸︷︷︸

P

} Y:=Y-1 { Y+1=1︸ ︷︷ ︸

P[Y+1/Y]

}

x So by this FOR-rule

⊢ { 1=1︸︷︷︸

P[1/Y]

∧ 1 ≤ 1} FOR Y:=1 UNTIL 1 DO Y:=Y-1 { 2=1︸︷︷︸

P[1+1/Y]

}

Problems with the FOR-rule (v)

x Whatever the command does, it doesn’t lead to a state in which 2=1

x The problem is that the body of the FOR-command modifies the
controlled variable

x This is why it was explicitly assumed that the body didn’t modify
the controlled variable

Problems with the FOR-rule (vi)

x Problem may also arise if variables in expressions E1 or E2 modified

x For example, taking P to be Z=Y, then

⊢ {Z=Y︸︷︷︸

P

} Z:=Z+1 { Z=Y+1︸ ︷︷ ︸

P[Y+1/Y]

}

x Thus the following can be derived

⊢ { Z=1︸︷︷︸

P[1/Y]

∧ 1 ≤ Z} FOR Y:=1 UNTIL Z DO Z:=Z+1 { Z=Z+1︸ ︷︷ ︸

P[Z+1/Y]

}

x This is clearly wrong

u one can never have Z=Z+1

x Not a problem because the FOR-command doesn’t terminate?

u in some languages this might be the case

u semantics of our language defined so that FOR-commands always terminate

The FOR-Rule

x To rule out the problems that arise when the controlled variable or
variables in the bounds expressions, are changed by the body, we
simply impose a side condition on the rule that stipulates that it
cannot be used in these situations

The FOR-rule

⊢ {P ∧ (E1 ≤ V) ∧ (V ≤ E2)} C {P[V +1/V]}
⊢ {P[E1/V]∧(E1≤E2)} FOR V := E1 UNTIL E2 DO C {P[E2+1/V]}

where neither V , nor any variable occurring in E1 or E2, is assigned
to in the command C.

x Note (E1 ≤ V) ∧ (V ≤ E2) in precondition of rule hypothesis

u added to strengthen rule to allow proofs to use facts about V ’s range of values

x Can be tricky to think up P

Comment on the FOR-Rule

x The FOR-rule does not enable anything to be deduced about FOR-
commands whose body assigns to variables in the bounds expres-
sions

x This precludes such assignments being used if commands are to be
reasoned about

x Only defining rules of inference for non-tricky uses of constructs
motivates writing programs in a perspicuous manner

x It is possible to devise a rule that does cope with assignments to
variables in bounds expressions

x Consider:

⊢ {P ∧ (E1 ≤ V) ∧ (V ≤ E2)} C {P[V +1/V]}
⊢ {P[E1/V]∧(E1≤E2)∧(E2=e2)} FOR V := E1 UNTIL E2 DO C {P[e2+1/V]}

The FOR-axiom

x To cover the case when E2 < E1, we need the FOR-axiom below

The FOR-axiom

⊢ {P ∧ (E2 < E1)} FOR V := E1 UNTIL E2 DO C {P}

x This says that when E2 is less than E1 the FOR-command has no effect

Exercise: understand the example on this slide

x By the assignment axiom and precondition strengthening

⊢ {X = ((N-1)×N) DIV 2} X:=X+N {X=(N×(N+1)) DIV 2}

x Strengthening the precondition of this again yields

⊢ {(X = ((N-1)×N) DIV 2)∧(1≤N)∧(N≤M)}
X:=X+N

{X = (N×(N+1)) DIV 2}

x Hence by the FOR-rule

⊢ {(X = ((1-1)×1) DIV 2)∧(1≤M)}
FOR N:=1 UNTIL M DO X:=X+N

{X = (M×(M+1)) DIV 2}

x Hence

⊢ {(X=0)∧(1≤M)}
FOR N:=1 UNTIL M DO X:=X+N

{X = (M×(M+1)) DIV 2}

Note on using the FOR-Rule

x Note that if any of the following hold

(i) ⊢ {P} C {P[V +1/V]}
(ii) ⊢ {P ∧ (E1 ≤ V)} C {P[V +1/V]}
(iii) ⊢ {P ∧ (V ≤ E2)} C {P[V +1/V]}

x Then by precondition strengthening:

⊢ {P ∧ (E1 ≤ V) ∧ (V ≤ E2)} C {P[V +1/V]}

x So any of (i), (ii) or (iii) above is a sufficient hypothesis for FOR Rule

Deriving the For Rule

x The following is a command equivalent to FOR I:=E1 UNTIL E2 DO C

BEGIN

VAR I;

VAR UpperBound;

I := E1;

UpperBound := E2;

WHILE I≤UpperBound DO (C; I := I+1)

END

u UpperBound is assumed to be a ‘new’ variable

u and I is not assigned to inside C

x Thus we could derive a rule from the implementation

u we must be sure the implementation is correct

x Exercise: try deriving the FOR-rule from the WHILE-rule

Exercise: think about Wickerson’s FOR-Rule (see below)
The FOR rule as presented in the notes had always seemed quite unsatisfactory to me, because it couldn’t deal with
the case when the lower and upper bounds on the looping variable were the wrong way around
(hence the need for the FOR-axiom).

I have derived a new rule, which removes the need for the FOR-axiom completely. This rule doesn’t suffer from
the problems that the early incarnations of the FOR-rule suffered from in the lecture notes,
and I believe the rule to be equally powerful.

It is derived, very easily, by noting that: FOR V:=E1 UNTIL E2 DO C is equivalent to:

BEGIN VAR V; V:=E1; WHILE V<=E2 DO (C; V:=V+1) END

(where the standard syntactic constraints still apply, i.e. neither V nor any variable in E1 or E2 may be assigned
to in C). Then we simply apply the Floyd-Hoare rules of blocks, sequencing and while-commands to derive the
following rule:

|- P ==> R[E1/V] |- R & V>E2 ==> Q |- {R & V<=E2} C {R[V+1/V]}
--

|- {P} FOR V:=E1 UNTIL E2 DO C {Q}

This rule is similar to, but subtly different from, the FOR-rule derived in the notes. I’ve tried my rule on
various examples in the notes, and I reckon it works fine. I’ll just give one quick example here;
suppose we want to prove:

{X = 2} FOR V := 10 UNTIL 0 DO X:=1 {X=2}

Then we set R = (V=10 & X=2). The three antecedents of the (new) rule are instantiated to

(1) X=2 ==> 10=10 & X=2
(2) V=10 & X=2 & V>0 ==> X=2
(3) |- {V=10 & X=2 & V<=0} X:=1 {V+1=10 & X=2}

Note that (1) and (2) are trivially true, and (3) holds because the precondition is unsatisfiable
(V cannot be both equal to 10 and no greater than 0).

Soundness and Completeness

x It is clear from the discussion of the FOR-rule that it is not always
straightforward to devise correct rules of inference

x It is important that the axioms and rules be sound. There are two
approaches to ensure this

(i) define the language by the axioms and rules of the logic

(ii) prove that the logic fits the language

x Approach (i) is called axiomatic semantics

u the idea is to define the semantics of the language by requiring that it make

the axioms and rules of inference true

u it is then up to implementers to ensure that the logic matches the language

x Approach (ii) is proving soundness and completeness of the logic

Axiomatic Semantics

x One snag with axiomatic semantics is that most existing languages
have already been defined in some other way

u usually by informal and ambiguous natural language statements

x The other snag with axiomatic semantics is that by Clarke’s Theo-
rem it is known to be impossible to devise relatively complete Floyd-
Hoare logics for languages with certain constructs

u it could be argued that this is not a snag at all but an advantage, because it

forces programming languages to be made logically tractable

x An example of a language defined axiomatically is Euclid

From Proof rules for the programming language Euclid

New Topic: Refinement

x So far we have focused on proving programs meet specifications

x An alternative is to ensure a program is correct by construction

x The proof is performed in conjunction with the development

u errors are spotted earlier in the design process

u the reasons for design decisions are available

x Programming becomes less of a black art
and more like an engineering discipline

x Rigorous development methods such as the B-Method, SPARK and
the Vienna Development Method (VDM) are based on this idea

x The approach here is based on “Programming From Specifications”

u a book by Carroll Morgan

u simplified and with a more concrete semantics

Refinement Laws

x Laws of Programming refine a specification to a program

x As each law is applied, proof obligations are generated

x The laws are derived from the Hoare logic rules

x Several laws will be applicable at a given time

u corresponding to different design decisions

u and thus different implementations

x The “Art” of Refinement is in choosing appropriate laws to give an
efficient implementation

x For example, given a specification that an array should be sorted:

u one sequence of laws will lead to Bubble Sort

u a different sequence will lead to Insertion Sort

u see Morgan’s book for an example of this

Refinement Specifications

x A refinement specification has the form [P, Q]

u P is the precondition

u Q is the postcondition

x Unlike a partial or total correctness specification,
a refinement specification does not include a command

x Goal: derive a command that satisfies the specification

x P and Q correspond to the pre and post condition of a
total correctness specification

x A command is required which if started in a state satisfying P ,
will terminate in a state satisfying Q

Example

x [T, X=1]

u this specifies that the code provided should terminate in a state where X has

value 1 whatever state it is started in

x [X>0, Y=X2]

u from a state where X is greater than zero, the program should terminate with

Y the square of X

A Little Wide Spectrum Programming Language

x Let P , Q range over statements (predicate calculus formulae)

x Add specifications to commands

E ::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

B ::= T | F | E1=E2 | E1 ≤ E2 | . . .

C ::= SKIP (does nothing, SKIP-Axiom is ⊢ [P] SKIP [P])

| V := E

| C1 ; C2

| IF B THEN C1 ELSE C2

| BEGIN VAR V 1 ; .. VAR V 1 ; C END

| WHILE B DO C

| [P, Q]

Specifications as Sets of Commands

x Refinement specifications can be mixed with other commands but
are not in general executable

x Example

R:=X;

Q:=0;

[R=X ∧ Y> 0 ∧ Q=0, X=R+Y×Q]

x Think of a specification as defining the set of implementations

[P, Q] = { C | ⊢ [P] C [Q] }

x For example

[T, X=1] = {"X:=1", "IF ¬(X=1) THEN X:=1", "X:=2;X:=X-1", · · · }

Notation for combining sets of commands

x Wide spectrum language commands are sets of ordinary commands

x Let C, C1, C2 etc. denote sets of commands, then define:

C1; · · · ;Cn = { C | ∃C1 · · · Cn. C = C1; · · · ;Cn ∧
C1 ∈ C1 ∧ · · · ∧ Cn ∈ Cn }

= { C1; · · · ;Cn | C1 ∈ C1 ∧ · · · ∧ Cn ∈ Cn }

BEGIN VAR V1; · · · VAR Vn; C END = { BEGIN VAR V1; · · · VAR Vn; C END | C ∈ C }

IF S THEN C1 ELSE C2 = { IF S THEN C1 ELSE C2 | C1 ∈ C1 ∧ C2 ∈ C2 }

WHILE S DO C = { WHILE S DO C | C ∈ C }

Refinement based program development

x The client provides a non-executable program (the specification)

x The programmer’s job is to transform it into an executable program

x It will pass through a series of stages in which some parts are
executable, but others are not

x Specifications give lots of freedom about how a result is obtained

u executable code has no freedom

u mixed programs have some freedom

x We use the notation p1⊇ p2 to mean program p2 is more refined
(i.e. has less freedom) than program p1

x N.B. The standard notation is p1 ⊑ p2

x A program development takes us from the specification, through a
series of mixed programs to (we hope) executable code

spec⊇ mixed1⊇ ...⊇ mixedn⊇code

Skip Law

The Skip Law

[P, P] ⊇ {SKIP}

x Derivation:

C ∈ {SKIP}
⇔ C = SKIP

⇒ ⊢ [P] C [P] (Skip Axiom)
⇔ C ∈ [P, P] (Definition of [P, P])

x Examples

[X=1, X=1] ⊇ {SKIP}
[T, T] ⊇ {SKIP}

[X=R+Y×Q, X=R+Y×Q] ⊇ {SKIP}

Notational Convention

x Omit { and } around individual commands

x Skip law becomes:
[P, P] ⊇ SKIP

x Examples become:

[X=1, X=1] ⊇ SKIP

[T, T] ⊇ SKIP

[X=R+Y×Q, X=R+Y×Q] ⊇ SKIP

Assignment Law

The Assignment Law

[P [E/V], P] ⊇ {V := E}

x Derivation

C ∈ {V := E}
⇔ C = V := E
⇒ ⊢ [P[E/V]] C [P] (Assignment Axiom)
⇔ C ∈ [P[E/V], P] (Definition of [P[E/V], P])

x Examples

[Y=1, X=1] ⊇ X:=Y

[X+1=n+1, X=n+1] ⊇ X:=X+1

Laws of Consequence

Precondition Weakening

[P, Q] ⊇ [R, Q]

provided ⊢ P ⇒ R

Postcondition Strengthening

[P, Q] ⊇ [P, R]

provided ⊢ R ⇒ Q

x We are now “weakening the precondition”
and “strengthening the post condition”

u this is the opposite terminology to the Hoare rules

u refinement consequence rules are ‘backwards’

Derivation of Consequence Laws

x Derivation of Precondition Weakening

C ∈ [R, Q]
⇔ ⊢ [R] C [Q] (Definition of [R, Q])
⇒ ⊢ [P] C [Q] (Precondition Strengthening ⊢P⇒R)
⇔ C ∈ [P, Q] (Definition of [P, Q])

x Derivation of Postcondition Strengthening

C ∈ [P, R]
⇔ ⊢ [P] C [R] (Definition of [R, Q])
⇒ ⊢ [P] C [Q] (Postcondition Weakening ⊢R⇒Q)
⇔ C ∈ [P, Q] (Definition of [P, Q])

Examples (illustrates refinement notation)

x A previous example:

[X=1, X=1]

⊇ (Skip)

SKIP

x An alternative refinement:

[Y=1, X=1]

⊇ (Precondition Weakening ⊢ Y=1 ⇒ 1=1)

[1=1, X=1]

⊇ (Assignment)

X := 1

x Another example

[T, R=X]

⊇ (Precondition Weakening ⊢ T ⇒ X=X)

[X=X, R=X]

⊇ (Assignment)

R := X

Derived Assignment Law

Derived Assignment Law

[P, Q] ⊇ {V :=E}
provided ⊢ P ⇒ Q[E/V]

x Derivation

[P, Q]

⊇ (Precondition Weakening ⊢ P ⇒ Q[E/V])

[Q[E/V], Q]

⊇ (Assignment)

V :=E

x Example

[T, R=X]

⊇ (Derived Assignment ⊢ T ⇒ X=X)

R := X

One Slide Technical Interlude: Monotonicity

x A command can be refined by separately refining its constituents

x This is because sets of commands are monotonic w.r.t. ⊇
u if C⊇C′, C1⊇C′1, . . . , Cn⊇C′n
u then:

C1; · · · ;Cn ⊇ C′1; · · · ;C′n

BEGIN VAR V1; · · · VAR Vn; C END ⊇ BEGIN VAR V1; · · · VAR Vn; C′ END

IF S THEN C1 ELSE C2 ⊇ IF S THEN C′1 ELSE C
′
2

WHILE S DO C ⊇ WHILE S DO C′

x Laws of refinement for non-atomic commands now follow

Sequencing

The Sequencing Law

[P, Q] ⊇ [P, R]; [R, Q]

x Derivation of Sequencing Law

C ∈ [P, R] ; [R, Q]

⇔ C ∈ { C1 ; C2 | C1 ∈ [P, R] ∧ C2 ∈ [R, Q]} (Definition of C1 ; C2)
⇔ C ∈ { C1 ; C2 | ⊢ [P] C1 [R] ∧ ⊢ [R] C2 [Q]} (Definition of [P, R] and [R, Q])

⇒ C ∈ { C1 ; C2 | ⊢ [P] C1 ; C2 [Q]} (Sequencing Rule)

⇒ ⊢ [P] C [Q]

⇔ C ∈ [P, Q] (Definition of [P, Q])

x Example

[T, R=X∧Q=0]
⊇ (Sequencing)
[T, R=X] ; [R=X, R=X∧Q=0]
⊇ (Derived Assignment ⊢ T ⇒ X=X)
R:=X; [R=X, R=X∧Q=0]
⊇ (Derived Assignment ⊢ R=X ⇒ R=X ∧ 0=0)
R:=X; Q:=0

Creating different Programs

x By applying the laws in a different way, we obtain different programs

x Consider previous example: using a different assertion with the se-
quencing law creates a program with the assignments reversed

[T, R=X∧Q=0]
⊇ (Sequencing)

[T, Q=0] ; [Q=0, R=X∧Q=0]
⊇ (Derived Assignment ⊢ T ⇒ 0=0)

Q:=0; [Q=0, R=X∧Q=0]
⊇ (Derived Assignment ⊢ Q=0 ⇒ X=X ∧ Q=0)

Q:=0; R:=X

Inefficient Programs

x Refinement does not prevent you making silly coding decisions

x It does prevent you from producing incorrect executable code

x Example

[T, R=X∧Q=0]
⊇ (Sequencing)

[T, R=X∧Q=0] ; [R=X∧Q=0, R=X∧Q=0]
⊇ (as previous example)

Q:=0; R:=X; [R=X∧Q=0, R=X∧Q=0]
⊇ (Skip)

Q:=0; R:=X; SKIP

Blind Alleys

x The refinement rules give the freedom to wander down blind alleys

x We may end up with an unrefinable step
u since it will not be executable, this is safe

u we will not get an incorrect executable program

x Example

[X=x∧Y=y, X=y∧Y=x]
⊇ (Sequencing)

[X=x∧Y=y, X=x∧Y=x] ; [X=x∧Y=x, X=y∧Y=x]
⊇ (Derived Assignment ⊢ X=x∧Y=y⇒X=x∧X=x)
Y:=X; [X=x∧Y=x, X=y∧Y=x]
⊇ (Sequencing)

Y:=X;

[X=x∧Y=x, Y=y∧Y=x];
[Y=y∧Y=x, X=y∧Y=x]
⊇ (Assignment)

Y:=X;

[X=x∧Y=x, Y=y∧Y=x];
X:=Y

Blocks

The Block Law

[P, Q] ⊇ BEGIN VAR V1; . . . ; VAR Vn; [P, Q] END

where V1, . . . , Vn do not occur in P or Q

x Derivation: exercise

x Example

[X=x∧Y=y, X=y∧Y=x]
⊇ (Block)

BEGIN VAR R; [X=x∧Y=y, X=y∧Y=x] END

⊇ (Sequencing and Derived Assignment)

BEGIN VAR R; R:=X; X:=Y; Y:=R END

Conditional

The Conditional Law

[P, Q] ⊇ IF S THEN [P ∧ S, Q] ELSE [P ∧ ¬S, Q]

x The Conditional Law can be used to refine any specification and any
test can be introduced

x You may not make any progress by applying the law however

u you may need the same program on each branch!

Derivation of the Conditional Law

C ∈ IF S THEN [P∧S, Q] ELSE [P∧¬S, Q]

⇔ C ∈ {IF S THEN C1 ELSE C2 |
C1 ∈ [P∧S, Q] & C2 ∈ [P∧¬S, Q]} (Definition of IF S THEN {· · ·} ELSE {· · ·})

⇔ C ∈ {IF S THEN C1 THEN C2 |
⊢ [P∧S] C1 [Q] & ⊢ [P∧¬S] C2 [Q]} (Definition of [P∧S, Q] & [P∧¬S, Q])

⇒ C ∈ {IF S THEN C1 ELSE C2 |
⊢ [P] IF S THEN C1 ELSE C2 [Q]} (Two-armed Conditional Rule)

⇒ ⊢ [P] C [Q]

⇔ C ∈ [P, Q] (Definition of [P, Q])

Example

[T, M=max(X,Y)]

⊇ (Conditional)

IF X≥Y
THEN [T∧ X≥Y, M=max(X,Y)]

ELSE [T∧¬(X≥Y), M=max(X,Y)]

⊇ (Derived Assignment ⊢ T∧X≥Y ⇒ X=max(X,Y))

IF X≥Y
THEN M:=X

ELSE [T∧¬X≥Y, M=max(X,Y)]

⊇ (Derived Assignment ⊢ T∧¬X≥Y ⇒ Y=max(X,Y))

IF X≥Y THEN M:=X ELSE M:=Y

While

The While Law

[R, R ∧ ¬S] ⊇ WHILE S DO [R ∧ S ∧ (E=n), R ∧ (E<n)]

provided ⊢ R ∧ S ⇒ E ≥ 0

and where E is an integer-valued expression and n is an identifier
not occurring in P , S, E or C.

x Example

[X=R+Y×Q ∧ Y>0, X=R+Y×Q ∧ Y>0 ∧ ¬ Y≤R]
⊇ (While ⊢ X=R+Y×Q ∧ Y>0 ∧ Y≤R ⇒ R≥0)
WHILE Y≤R DO

[X=R+Y×Q ∧ Y>0 ∧ Y≤R ∧ R=n,

X=R+Y×Q ∧ Y>0 ∧ R<n]

Derivation of the While Law

C ∈ WHILE S DO [P ∧ S ∧ (E = n), P ∧ (E < n)]

⇔ C ∈ {WHILE S DO C ′ |
C ′ ∈ [P ∧ S ∧ (E = n), P ∧ (E < n)]} (Definition of WHILE S DO {· · ·})

⇔ C ∈ {WHILE S DO C ′ | (Definition of
⊢ [P ∧ S ∧ (E = n)] C ′ [P ∧ (E < n)]} [P ∧ S ∧ (E = n), P ∧ (E < n)])

⇒ C ∈ {WHILE S DO C ′ |
⊢ [P] WHILE S DO C ′ [P ∧ ¬S]} (While Rule & ⊢ P ∧ S ⇒ E ≥ 0)

⇒ ⊢ [P] C [P ∧ ¬S]

⇔ C ∈ [P, P ∧ ¬S] (Definition of [P, P ∧ ¬S])

Example (i)

[Y>0, X=R+Y×Q ∧ R ≤ Y]

⊇ (Block)

BEGIN [Y>0, X=R+Y×Q ∧ R ≤ Y] END

⊇ (Sequencing)

BEGIN

[Y>0, R=X ∧ Y>0] ;

[R=X ∧ Y>0, X=R+Y×Q ∧ R ≤ Y]

END

⊇ (Derived Assignment ⊢ Y>0 ⇒ X=X ∧ Y>0)

BEGIN

R:=X ;

[R=X ∧ Y>0, X=R+Y×Q ∧ R ≤ Y]

END

Example (ii)

BEGIN

R:=X ;

[R=X ∧ Y>0, X=R+Y×Q ∧ R ≤ Y]

END ⊇ (Sequencing)

BEGIN

R:=X ;

[R=X ∧ Y>0, R=X ∧ Y>0 ∧ Q=0] ;

[R=X ∧ Y>0 ∧ Q=0, X=R+Y×Q ∧ R ≤ Y]

END

⊇ (Derived Assignment ⊢ R=X ∧ Y>0 ⇒ R=X ∧ Y>0 ∧ 0=0)
BEGIN

R:=X ;

Q:=0 ;

[R=X ∧ Y>0 ∧ Q=0, X=R+Y×Q ∧ R ≤ Y]

END

x Exercise: complete the refinement (see next few slides)

Example (iii)

⊇
(
Precondition Weakening

⊢ R=X ∧ Y>0 ∧ Q=0 ⇒ X=R+Y×Q ∧ Y>0

)

BEGIN

R:=X; Q:=0;

[X=R+Y×Q ∧ Y>0, X=R+Y×Q ∧ R ≤ Y]

END

⊇





Postcondition Strengthening

⊢ X=R+Y×Q ∧ Y>0 ∧ ¬(Y≤R)
⇒ X=R+Y×Q ∧ R≤Y





BEGIN

R:=X; Q:=0;

[X=R+Y×Q ∧ Y>0, X=R+Y×Q ∧ Y>0 ∧ ¬(Y≤R)]
END

⊇ (While ⊢ X=R+Y×Q ∧ Y>0 ∧ Y≤R ⇒ R≥0)
BEGIN

R:=X; Q:=0;

WHILE Y ≤ R DO

[X=R+Y×Q ∧ Y>0 ∧ Y≤R ∧ R=n,

X=R+Y×Q ∧ Y>0 ∧ R<n]

END

Example (iv)

⊇ (Block)

BEGIN

R:=X; Q:=0;

WHILE Y ≤ R DO

BEGIN

[X=R+Y×Q ∧ Y>0 ∧ Y≤R ∧ R=n,

X=R+Y×Q ∧ Y>0 ∧ R<n]

END

END

⊇ (Sequence)

BEGIN

R:=X; Q:=0;

WHILE Y ≤ R DO

BEGIN

[X=R+Y×Q ∧ Y>0 ∧ Y≤R ∧ R=n,

X=(R-Y)+Y×Q ∧ Y>0 ∧ (R-Y)<n] ;

[X=(R-Y)+Y×Q ∧ Y>0 ∧ (R-Y)<n,

X=R+Y×Q ∧ Y>0 ∧ R<n]

END

END

Example (v)
⊇ (Assignment)

BEGIN
R:=X; Q:=0;
WHILE Y ≤ R DO
BEGIN
[X=R+Y×Q ∧ Y>0 ∧ Y≤R ∧ R=n,
X=(R-Y)+Y×Q ∧ Y>0 ∧ (R-Y)<n] ;

R := R-Y
END

END

⊇





Derived Assignment
⊢ X=R+Y×Q ∧ Y>0 ∧ Y≤R ∧ R=n ⇒

X=(R-Y)+Y×(Q+1) ∧ Y>0 ∧ (R-Y)<n





BEGIN
R:=X; Q:=0;
WHILE Y ≤ R DO
BEGIN
Q:= Q+1;
R:= R-Y

END
END

More Notation

x The notation
[P1, P2, P3, · · · , Pn−1, Pn]

is used to abbreviate:

[P1, P2] ; [P2, P3] ; · · · ; [Pn−1, Pn]

x Brackets around specifications {C} omitted

x If C is a set of commands, then

R := X ; C
abbreviates

{R := X} ; C

Exercise: check the refinement on this slide
x Let I stand for X = R + (Y ×Q), then:

[Y > 0, I ∧ R ≤ Y]

⊇ (Sequencing)

[Y > 0, R = X ∧ Y > 0, I ∧ R ≤ Y]

⊇ (Assignment)

R := X ; [R = X ∧ Y > 0, I ∧ R ≤ Y]

⊇ (Sequencing)

R := X ; [R = X ∧ Y > 0, R = X ∧ Y > 0 ∧ Q = 0, I ∧ R ≤ Y]

⊇ (Assignment)

R := X ; Q := 0 ; [R = X ∧ Y > 0 ∧ Q = 0, I ∧ R ≤ Y]

⊇ (Precondition Weakening)

R := X ; Q := 0 ; [I ∧ Y > 0, I ∧ R ≤ Y]

⊇ (Postcondition Strengthening)

R := X ; Q := 0 ; [I ∧ Y > 0, I ∧ Y > 0 ∧ ¬(Y ≤ R)]

⊇ (While)

R := X ; Q := 0 ;

WHILE Y ≤ R DO [I ∧ Y > 0 ∧ Y ≤ R ∧ R = n,
I ∧ Y > 0 ∧ R < n]

⊇ (Sequencing)

R := X ; Q := 0 ;

WHILE Y ≤ R DO [I ∧ Y > 0 ∧ Y ≤ R ∧ R = n,
X = (R− Y) + (Y ×Q) ∧ Y > 0 ∧ (R− Y) < n,
I ∧ Y > 0 ∧ R < n]

⊇ (Derived Assignment)

R := X ; Q := 0 ;

WHILE Y ≤ R DO [I ∧ Y > 0 ∧ Y ≤ R ∧ R = n,
X = (R− Y) + (Y ×Q) ∧ Y > 0 ∧ (R− Y) < n];
R := R − Y

⊇ (Derived Assignment)

R := X ; Q := 0 ;

WHILE Y ≤ R DO Q := Q+ 1 ; R := R− Y

Derived Laws

x Above development could be shortened by deriving appropriate laws

x For example, a derived WHILE law could be derived

x Exercise: Develop a factorial program from the specification:

[X = n, Y = n!]

x Exercise: devise refinement laws for arrays, one-armed conditionals,
and FOR-commands

Data Refinement

x So far we have given laws to refine commands

x This is termed Operation Refinement

x It is also useful to be able to refine the representation of data

u replacing an abstract data representation by a more concrete one

u e.g. replacing numbers by binary representations

x This is termed Data Refinement

x Data Refinement Laws allow us to make refinements of this form

x The details are beyond the scope of this course

u they can be found in Morgan’s book

Summary

x Refinement ‘laws’ based on the Hoare logic can be used to develop
programs formally

x A program is gradually converted from an unexecutable specification
to executable code

x By applying different laws, different programs are obtained

u may reach unrefinable specifications (blind alleys)

u but will never get incorrect code

x A program developed in this way will meet its formal specification

u one approach to ‘Correct by Construction’ (CbC) software engineering

New Topic: Separation logic

x One of several competing methods for reasoning about pointers

x Details took 30 years to evolve

x Shape predicates due to Rod Burstall in the 1970s

x Separation logic: by O’Hearn, Reynolds and Yang around 2000

x Several partially successful attempts before separation logic

x Very active research area

u London, Cambridge, Harvard, Princeton, Yale

u Microsoft

u startup: http://www.monoidics.com/

Pointers and the state

x So far the state just determined the values of variables
u values assumed to be numbers
u preconditions and postconditions are first-order logic statements
u state same as a valuation s : Var→ Val

x To model pointers – e.g. as in C – add heap to state
u heap maps locations (pointers) to their contents
u store maps variables to values (previously called state)
u contents of locations can be locations or values

X 7→ l1 7→ l2 7→ v
store heap heap

Heap semantics

Store = V ar → Val (assume Num ⊆ Val, nil ∈ Val and nil /∈ Num)

Heap = Num ⇀fin Val

State = Store× Heap

x Note: store also called stack or environment; heap also called store

x Notation: {l1 7→ v1, . . . , ln 7→ vn, . . .} denotes a function
u with domain {l1, . . . , ln, . . .}
u mapping li to vi (for all li in the domain)

Adding pointer operations to our language

Expressions:

E::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

Boolean expressions:

B::= T | F | E1=E2 | E1 ≤ E2 | . . .

commands:

C::= V := E value assignments (i.e. ordinary assignments)

| V :=[E] fetch assignments

| [E1]:=E2 heap assignments (heap mutation)

| V :=cons(E1, . . . , En) allocation assignments

| dispose(E) pointer disposal

| C1 ; C2 sequences

| IF B THEN C1 ELSE C2 conditionals

| WHILE B DO C while commands

Pointer manipulation constructs and faulting

x Commands executed in a state (s, h)

x Reading, writing or disposing pointers might fault

x Fetch assignments: V :=[E]

u evaluate E to get a location l

u fault if l is not in the heap

u otherwise assign contents of l in heap to the variable V

x Heap assignments: [E1]:=E2

u evaluate E1 to get a location l

u fault if the l is not in the heap

u otherwise store the value of E2 as the new contents of l in the heap

x Pointer disposal: dispose(E)

u evaluate E to get a pointer l (a number)

u fault if l is not in the heap

u otherwise remove l from the heap

Allocation assignments

x Allocation assignments: V :=cons(E1, . . . , En)

u choose n consecutive locations that are not in the heap, say l, l+1, . . .

u extend the heap by adding l, l+1, . . . to it

u assign l to the variable V in the store

u make the values of E1, E2, . . . be the new contents of l, l+1, . . . in the heap

x Allocation assignments never fault

x Allocation assignments are non-deterministic

u any suitable l, l+1, . . . not in the heap can be chosen

u always exists because the heap is finite

Example (from Wickerson’s MPhil slides)

({. . .}, {})
X:=cons(3);
({X 7→ l1, . . .}, {l1 7→ 3})
Y:=cons(5, 1);
({X 7→ l1, Y 7→ l2, . . .}, {l1 7→ 3, l2 7→ 5, l2+1 7→ 1}) (where l1 6= l2)
X:=[X];
({X 7→ 3, Y 7→ l2, . . .}, {l1 7→ 3, l2 7→ 5, l2+1 7→ 1})
[Y+1]:=6;
({X 7→ 3, Y 7→ l2, . . .}, {l1 7→ 3, l2 7→ 5, l2+1 7→ 6})
dispose(Y);
({X 7→ 3, Y 7→ l2, . . .}, {l1 7→ 3, l2+1 7→ 6})

x How can we specify and prove

{empty heap}
X:=cons(3);
Y:=cons(5, 1);
X:=[X];
[Y+1]:=6;
dispose(Y);
{(X = 3) ∧
heap contains two locations: (one contains 3) ∧ (Y+1 points to a location holding 6)}

x Need formal versions of stuff in blue

Represent heap as an array H?

x Sort of works to model heap as an array H

V :=[E] ; V := H(E)

[E1]:=E2 ; H:= H{E1← E2}

x Need to represent which locations are in use

dispose(E) (delete E from domain of H)

V :=cons(E1, . . . , En) (non-deterministically allocate unused locations)

x Could have an array D: D(l) is 0 iff l not in use:

dispose(E) ; D(E):= 0

V :=cons(E1, . . . , En) ; ? (not sure how to handle non-determinism)

x Then:

{T}
X:=cons(3); Y:=cons(5, 1); X:=[X]; [Y+1]:=6; dispose(Y);
{X = 3 ∧ H(Y+1) = 6}

x Will not explore this: better alternative is Separation Logic

Separation logic

x Separation logic is an extension of Hoare logic
u contains Hoare logic for commands that just change the store

u adds new specification constructs for heap

x Key features of separation logic
u local reasoning about heap

u faulting interpretation of Hoare triples

u Floyd-style forwards rules for assignments

x Local reasoning:
u only specify changes of modified locations

u unchanged location dealt with using frame rule

x Faulting interpretation of Hoare triples
u {P} C {Q} only true if execution of C in state satisfying P doesn’t fault

u so proving {P} C {Q} proves absence of memory faults when executing C

Separation logic Hoare triples

x State consists of a store and a heap
u store specifies values of variables
u heap specifies contents of locations

x In {P} C {Q} both P and Q specify both store and heap
u P and Q are no longer formulae in ordinary first-order logic

x P , Q interpreted with respect to (s, h) where s is store, h is heap
u write S(s, h) to mean statement S true in store s and heap h
u write C(s, h)(s′, h′) if C executed in state (s, h) then it halts in state (s′, h′)
u write C(s, h)fault if C faults when executed in state (s, h)

x The non-faulting semantics of Hoare triples {P}C{Q} is:
∀s h. P (s, h)⇒ ¬(C(s, h)fault) ∧ ∀s′ h′. C(s, h)(s′, h′)⇒ Q(s′, h′)

x P , Q are not ordinary first-order formulae
u can translate them to FOL (approach implicit here)
u can use “BI logic” – combines linear and intuitionistic connectives

Separation logic assertions: emp

x emp is an atomic statement of separation logic

x emp is true iff the heap is empty

x The semantics of emp is:

emp (s, h) ⇔ h = {} (where {} is the empty heap)

x Abbreviation: E1
.
= E2 =def (E1 = E2) ∧ emp

x From the semantics: (E1
.
= E2) (s, h) ⇔ E1(s) = E2(s) ∧ h = {}

x E1 = E2 is independent of the heap and only depends on the store

x Semantics of E1 = E2 is:

(E1 = E2)(s, h)⇔ E1(s) = E2(s)

no constraint on the heap – any h will do

Separation logic assertions: points-to

x E1 7→ E2 is the points-to relation where E1, E2 are expressions

x Warning: do not confuse with notation for finite maps!

x E1 7→ E2 means:

u heap consists of one location: the value of E1

u the contents of the location (the value of E1) is the value of E2

x Semantics of E1 7→ E2 is defined by:

(E1 7→ E2)(s, h) ⇔ h = {E1(s) 7→ E2(s)}

x Example: (X 7→Y+1)(s, {20 7→ 43}) is true iff s(X) = 20 and s(Y) = 42

x Abbreviation: E 7→ =def ∃X. E 7→X (where X does not occur in E)

x By semantics: (E 7→) (s, h) ⇔ ∃x. h = {E(s) 7→ x}

Separation logic assertions: separating conjunction

x P1 ⋆ P2 is the separating conjunction of statements P1 and P2

x P1 ⋆ P2 means:

u the heap h can be split into two disjoint sub-heaps h1, h2 so that: h = h1∪̇h2

u where “h1∪̇h2” is the disjoint union of finite functions h1 and h2

u P1 is true for h1 and P2 is true for h2 (same store used for both P1 and P2)

x The semantics of the separating conjuction P ⋆ Q is defined by:

(P ⋆ Q)(s, h) ⇔ ∃h1 h2. h = h1∪̇h2 ∧ P (s, h1) ∧ Q(s, h2)

x Example: (Y 7→ 5 ⋆ Y+1 7→ 1) (s, {20 7→ 5, 21 7→ 1}) is true iff s(Y) = 20

x Abbreviation: E 7→E0, . . . , En =def (E 7→E0) ⋆ · · · ⋆ (E+n 7→En)

u specifies contents of n+1 contiguous locations starting at E

u for 0 ≤ i ≤ n the contents of location E+i is value of Ei

x Example: (X 7→Y, Z)(s, {x 7→ y, x+1 7→ z}) is true iff s(X)=x∧s(Y)=y∧s(Z)=z

Specifying the Wickerson example

x Recall the problem of specifying and proving:

{empty heap}
X:=cons(3);
Y:=cons(5, 1);
X:=[X];
[Y+1]:=6;
dispose(Y);
{(X = 3) ∧
heap contains two locations: (one contains 3) ∧ (Y+1 points to a location holding 6)}

x We can specify it by:

{emp}
X:=cons(3);
Y:=cons(5, 1);
X:=[X];
[Y+1]:=6;
dispose(Y);

{∃l. X .
= 3 ⋆ l 7→3 ⋆ Y+1 7→ 6}

x Separation logic provides rules to prove this

Store assignment axiom

Store assignment axiom

⊢ {V .
= v}V :=E {V .

= E[v/V]}
where v is an auxiliary variable not occurring in E.

x E1
.
= E2 means value of E1 and E2 equal in the store and heap is empty

x Example: ⊢ {Z .
= z}Z:=1{Z .

= 1}
u since 1[z/Z] = 1

x Example: ⊢ {Z .
= z}Z:=Z+1{Z .

= z+1}
u since (Z+1)[z/Z] = z+1

x In Hoare logic (no heap) equivalent to assignment axiom
u see background reading for details

x Goes forwards like Floyd assignment axiom

u can be ‘symbolically executed’

Fetch assignment axiom

Fetch assignment axiom

⊢ {(V .
= v1) ⋆ E 7→v2}V :=[E]{(V .

= v2) ⋆ E[v1/V] 7→v2}
where v1, v2 are auxiliary variables not occurring in E.

x Precondition guarantees the assignment doesn’t fault

x V is assigned the contents of E in the heap

x Small axiom: precondition and postcondition specify singleton heap

x If neither V nor v occur in E then the following holds:

⊢ {E 7→v}V :=[E]{(V .
= v) ⋆ E 7→v}

(proof: instantiate v1 to V and v2 to v and then simplify)

x Exercise: which of the following can be proved?

⊢ {X 7→3}Y:=[X]{(Y .
= 3) ⋆ X 7→3}

⊢ {X 7→3}X:=[X]{(X .
= 3) ⋆ X 7→3}

⊢ {(X .
= x) ⋆ X 7→3}X:=[X]{(X .

= 3) ⋆ x 7→3}
For each, either give a proof, or explain why no proof is possible.

Heap assignment axiom

Heap assignment axiom (heap mutation)

⊢ {E 7→ }[E]:=F {E 7→F}

x Precondition guarantees the assignment doesn’t fault
u non-faulting semantics of Hoare triples makes {T}[0]:=0{0 7→ 0} false

u precondition T doesn’t ensure 0 in the heap

u precondition E 7→ ensures value of E in the heap

x Contents of E in heap is updated to be value of F

x Small axiom: precondition and postcondition specify singleton heap

x Example: ⊢ {Y+1 7→ }[Y+1]:=6{Y+1 7→6}
x Little example proof:

⊢ {Y+1 7→ }[Y+1]:=6{Y+1 7→6} heap assignment axiom

⊢ Y+1 7→1 ⇒ ∃X. Y+1 7→X logic (note: not ordinary first-order logic)

⊢ {Y+1 7→1}[Y+1]:=6{Y+1 7→6} consequence rules (hold for separation logic)

Pointer allocation

Allocation assignment axiom

⊢ {V .
= v}V :=cons(E1, . . . , En){V 7→E1[v/V], . . . , En[v/V]}

where v is an auxiliary variable not equal to V or occurring in E1,. . .,En

x Never faults

x In the background reading we justify:

Derived allocation assignment axiom

⊢ {emp}V :=cons(E1, . . . , En){V 7→E1, . . . , En}
where V doesn’t occur in E1,. . .,En.

x Example: ⊢ {emp}X:=cons(3){X 7→3}

x Example: ⊢ {emp}Y:=cons(5, 1){Y 7→5, 1}

x Last example is: ⊢ {emp}Y:=cons(5, 1){Y 7→5 ⋆ Y+1 7→1}

Pointer deallocation

Dispose axiom

⊢ {E 7→ }dispose(E){emp}

x Attempting to deallocate a pointer not in the heap faults

x Small axiom: singleton precondition heap, empty postcondition heap

x Example: ⊢ {Y 7→ }dispose(Y){emp}

x Recall: E 7→ =def ∃X. E 7→X (where X does not occur in E)

x Little example proof:

⊢ {Y 7→ }dispose(Y){emp} dispose axiom

⊢ Y 7→5 ⇒ ∃X. Y 7→X logic (note: not ordinary first-order logic)

⊢ {Y 7→5}dispose(Y){emp} consequence rules (hold for separation logic)

Summary of pointer manipulating axioms

Store assignment axiom

⊢ {V .
= v}V :=E {V .

= E[v/V]}
where v is an auxiliary variable not occurring in E.

Fetch assignment axiom

⊢ {(V .
= v1) ⋆ E 7→v2}V :=[E]{(V .

= v2) ⋆ E[v1/V] 7→v2}
where v1, v2 are auxiliary variables not occurring in E.

Heap assignment axiom

⊢ {E 7→ }[E]:=F {E 7→F}

Allocation assignment axiom

⊢ {V .
= v}V :=cons(E1, . . . , En){V 7→E1[v/V], . . . , En[v/V]}

where v is an auxiliary variable not equal to V or occurring in E1,. . .,En

Dispose axiom

⊢ {E 7→ }dispose(E){emp}

Compound command rules
x Following rules apply to both Hoare logic and separation logic

The consequence rules

⊢ P ⇒ P ′, ⊢ {P ′} C {Q′}, ⊢ Q′⇒ Q

⊢ {P} C {R}

The sequencing rule

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

The conditional rule

⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧ ¬S} C2 {Q}
⊢ {P}IFS THENC1 ELSEC2 {Q}

The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

x For separation logic, need to think about faulting

The frame rule

The rule of constancy

⊢ {P}C {Q}
⊢ {P ∧R}C {Q ∧R}

where no variable modified by C occurs free in R.

x Not valid for heap assignments

⊢ {X 7→ }[X]:=0{X 7→ 0}
but not

{X 7→ ∧ Y 7→ 1}[X]:=0{X 7→ 0 ∧ Y 7→ 1}
since could have X = Y

The frame rule

⊢ {P}C {Q}
⊢ {P ⋆ R}C {Q ⋆ R}

no variable modified by store, fetch or allocation assignments in C occurs free in R.

x Note that {(X 7→) ⋆ (Y 7→ 1)}[X]:=0{(X 7→0) ⋆ (Y 7→ 1)} is OK

x Note that {(X 7→) ⋆ (X
.
= 1)}[X]:=0{(X 7→ 0) ⋆ (X

.
= 1)} is also OK

Exists introduction rule

Exists introduction

⊢ {P} C {Q}
⊢ {∃x. P} C {∃x. Q}

where x does not occur in C

x Valid for both Hoare logic and separation logic

x Example: deriving assignment axiom from store assignment axiom

⊢ {V =v}V :=E {V =E[v/V]} store assignment axiom

⊢ {V =v ∧Q[E[v/V]/V]}V :=E {V =E[v/V] ∧Q[E[v/V]/V]} rule of constancy

⊢ {∃v. V =v ∧Q[E[v/V]/V]}V :=E {∃v. V =E[v/V] ∧Q[E[v/V]/V]} exists introduction

⊢ {∃v. V =v ∧Q[E[V /V]/V]}V :=E {∃v. V =E[v/V] ∧Q[V /V]} predicate logic

⊢ {∃v. V =v ∧Q[E/V]}V :=E {∃v. V =E[v/V] ∧Q} [V /V] is identity

⊢ {(∃v. V =v) ∧Q[E/V]}V :=E {(∃v. V =E[v/V]) ∧Q} predicate logic as v not in E

⊢ {T ∧Q[E/V]}V :=E {(∃v. V =E[v/V]) ∧Q} predicate logic

⊢ {Q[E/V]}V :=E {Q} rules of consequence

x Generally more useful for separation logic

x Exercise: prove ⊢ {∃x. (X .
= x) ⋆ X 7→3}X:=[X]{∃x. (X .

= 3) ⋆ x 7→3}
x Exercise: prove ⊢ {X 7→3}X:=[X]{∃x. (X .

= 3) ⋆ x 7→3}

Small axioms

x A key idea of separation logic is to make the axioms small

x Precondition of {P}C{Q} specifies smallest heap ensuring no fault

x Effects on bigger heaps derived from frame rule

QP
C

1

QP

C

R R

Summary of separation logic assertions (there are more)

x Points-to E1 7→ E2

(E1 7→ E2)(s, h) ⇔ h = {E1(s) 7→ E2(s)}

x Separating conjuction P ⋆ Q

(P ⋆ Q)(s, h) ⇔ ∃h1 h2. h = h1∪̇h2 ∧ P (s, h1) ∧ Q(s, h2)

x Empty heap emp

emp (s, h) ⇔ h = {} (where {} is the empty heap)

x Abbreviation: E 7→ =def ∃X. E 7→X (where X does not occur in E)

x Abbreviation: E 7→F0, . . . , Fn =def (E 7→F0) ⋆ · · · ⋆ (E+n 7→Fn)

x Abbreviation: E1
.
= E2 =def (E1 = E2) ∧ emp

Wickerson’s example again (corrected on 03.04.2012)

{emp} {emp}
X:=cons(3); X:=cons(3);
{X 7→3} {X 7→3}

{emp} {emp ⋆ X 7→3}
Y:=cons(5, 1); by frame rule: Y:=cons(5, 1);
{Y 7→5 ⋆ Y+1 7→1} {Y 7→5 ⋆ Y+1 7→1 ⋆ X 7→3}

{X 7→3} {X 7→3 ⋆ Y 7→5 ⋆ Y+1 7→1}
X:=[X]; by frame rule: X:=[X];

{∃x. X .
= 3 ⋆ x 7→3} {(∃x. X .

= 3 ⋆ x 7→3) ⋆ Y 7→5 ⋆ Y+1 7→1}

{Y+1 7→1} {(∃x. X .
= 3 ⋆ x 7→3) ⋆ Y 7→5 ⋆ Y+1 7→1}

[Y+1]:=6; by frame rule: [Y+1]:=6;
{Y+1 7→6} {(∃x. X .

= 3 ⋆ x 7→3) ⋆ Y 7→5 ⋆ Y+1 7→6}

{Y 7→5} {(∃x. X .
= 3 ⋆ x 7→3) ⋆ Y+1 7→6 ⋆ Y 7→5}

dispose(Y); by frame rule: dispose(Y);

{emp} {(∃x. X .
= 3 ⋆ x 7→3) ⋆ Y+1 7→6 ⋆ emp}

by logic laws: {∃l. X .
= 3 ⋆ l 7→3 ⋆ Y+1 7→6}

Proof outline

{emp}
X:=cons(3);
{X 7→3}
{emp ⋆ X 7→3}
Y:=cons(5, 1);
{Y 7→5 ⋆ Y+1 7→1 ⋆ X 7→3}
{X 7→3 ⋆ Y 7→5 ⋆ Y+1 7→1}
X:=[X];

{(∃x. X .
= 3 ⋆ x 7→3) ⋆ Y 7→5 ⋆ Y+1 7→1}

[Y+1]:=6;
{(∃x. X .

= 3 ⋆ x 7→3) ⋆ Y 7→5 ⋆ Y+1 7→6}
{(∃x. X .

= 3 ⋆ x 7→3) ⋆ Y+1 7→6 ⋆ Y 7→5}
dispose(Y);

{(∃x. X .
= 3 ⋆ x 7→3) ⋆ Y+1 7→6 ⋆ emp}

{∃l. X .
= 3 ⋆ l 7→3 ⋆ Y+1 7→ 6}

Proof outlines and annotation

x Proof outlines superficially similar to annotated triples
u specify what has to be done to get a complete proof

u prove ⊢ P ⇒ Q for each sequence of sentences {P}{Q}
u prove ⊢ {P} C {Q} for each occurrence of a Hoare triple

u proving these is not always straightforward or mechanisable

x No established methodology for proving P ⇒ Q when P , Q are arbi-
trary assertions of separation logic

u one relies on manual methods from incomplete sets of axioms and rules

u or decision procedures for weak subsets

x Assignment axioms of separation logic only support local reasoning
u needs to the extend local Hoare triples using the frame rule

u finding the right frame to use is tricky

u related to “abduction”

x Proof outlines are an informal notation

Logic of separating assertions, soundness, completeness

x To use separation logic various properties of ⋆, 7→ etc. are needed

x For example that ⋆ is commutative with identity emp

x Need to be able to prove implications like:

⊢ ((∃x. X .
= 3 ⋆ x 7→3) ⋆ Y+1 7→6 ⋆ emp)⇒ (∃l. X .

= 3 ⋆ l 7→3 ⋆ Y+1 7→6)

⊢ (E1
.
= E2) ⋆ P ⇔ (E1 = E2) ∧ P

x No complete deductive system exists – not a problem in practice

x Using separation logic like ordinary Hoare logic, but more fiddly

x Separation logic is sound and has some kind of completeness
u I’m not completely sure what this means (have been asking experts)!

u proof uses appropriate generalisations of wlp or sp

u faulting adds complications

Example: reversing a linked list

x Diagram of list [a, b, c] stored in a linked-list data-structure

a b c

l l+1 m m+1 n n+1

nilm n

u a is the contents of location l, m is the contents of location l+1

u b is the contents of location m, n is the contents of location m+1

u c then contents of location n, nil is the contents of location n+1

x Would like to specify

{X points to a linked list holding x}
Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

{Y points to a linked list holding rev(x)}

x Need to formalize “X points to a linked list holding x”

u rev([a0, a1, . . . , an−1, an]) = [an, an−1, . . . , a1, a0]

Diagram illustrating linked list reverse operation

{X points to a linked list holding [a, b, c]}
Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

{Y points to a linked list holding [c, b, a]}

a b c

a c

a b c

Y=l Z=n

l l+1 m m+1 n n+1

nilY=nilX=l

bX=m

Z=?

l l+1 m m+1 n n+1

nil nil

Y=m Z=nilX=n

l l+1 m m+1 n n+1

nil

a b cY=n Z=nilX=nil

l l+1 m m+1 n n+1

nil

Lists
x Assume nil ∈ Val and [a1, . . . , an] ∈ Val for ai ∈ Val

x Define list x E to mean x is stored as a linked list at location E:

list [] E ⇔ (E
.
= nil)

list ([a0, a1, . . . , an]) E ⇔ ∃E ′. (E 7→a0, E
′) ⋆ list [a1, . . . , an] E

′

a
0

1

n

a

a nil

E

E’

list [a ,...,a]1 n E’

x Can then specify:

{list x X}
Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

{list (rev(x)) Y}
x Proof given in John Wickerson’s slides (see course web page)

Proof outline (explanation in background reading)

{list α0 X}
Y:=nil;

{∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)}
WHILE ¬(X=nil) DO {∃α β. list α X ⋆ list β Y ∧ (rev(α0)=rev(α) · β)}
({∃α β. list α X ⋆ list β Y ∧ (rev(α0)=rev(α) · β) ∧ ¬(X=nil)}
{∃α β a l α′.
(X+1 7→ l) ⋆ X 7→a ⋆ list α′ l ⋆ list β Y ∧ (rev(α0)=rev(a · α′) · β) ∧ ¬(X=nil)}
Z:=[X+1];

{∃α β a l α′.
((Z=l) ∧ X+1 7→ l) ⋆ X 7→a ⋆ list α′ l ⋆ list β Y ∧ (rev(α0)=rev(a · α′) · β) ∧ ¬(X=nil)}
{∃a α β. X 7→a, Z ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β)}
[X+1]:=Y;

{∃a α β. X 7→a, Y ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β)}
{∃a α β. list α Z ⋆ list (a · β) X ∧ (rev(α0) = rev(α) · a · β)}
{∃α β. list α Z ⋆ list β X ∧ (rev(α0) = rev(α) · β)}
Y:=X; X:=Z

{∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)})
{list (rev(α0)) Y}

Current research and the future

x Extending separation logic to cover practical language features
u various concurrency idioms
u objects

x Building tools to mechanise separation logic
u much work on shape analysis, e.g.:

{∃x. list x X}
Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

{∃x. list x Y }
automatically finds memory usage errors

u abduction: given assumption A and goal G, find M so that A ⋆M ⊢ G

x Finally, something to think about:
should we be verifying code in old fashioned languages (pramatism)
or creating new methods to create correct software (idealism)?

“The tension between idealism and pragmatism is as profound (almost)
as that between good and evil (and just as pervasive).” [Tony Hoare]

Holfoot - the ‘state of the art’ in mechanisation

x Thomas Türk’s PhD (Computer Laboratory 2011)

x Web site: http://holfoot.heap-of-problems.org/

x Try online: http://holfoot.heap-of-problems.org/web-interface.php

x What it can do: http://holfoot.heap-of-problems.org/EXAMPLES/

x A Heap of Problems: http://heap-of-problems.org

