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CakeML 
What?
1.  A programming language in the style of Standard ML and OCaml.

2.  An ecosystem of proofs and verification tools

strict evaluation, stateful

3.  A verified, end-to-end development



Verified compilation…



State of the art

Compiles C source code to assembly

Good performance numbers

CompCert

Leroy et al.  Source: http://compcert.inria.fr/

Ecosystem:  Verified Software Toolchain - Princeton University



Verified compilation…
…for functional languages?

Answer: Many, but all are ‘toy’.

Attempt: CakeML first ‘realistic’ verified ML compiler (plus ecosystem).



The CakeML language

CakeML, the language
≈ Standard ML without functors

  

i.e. with almost everything else:
✓  higher-order functions
✓  mutual recursion and polymorphism
✓  datatypes and (nested) pattern matching
✓  references and (user-defined) exceptions
✓  arbitrary-precision integers
✓  modules, signatures, abstract types



The CakeML languageLanguage
was originally

i.e. with almost everything else:
✓  higher-order functions
✓  mutual recursion and polymorphism
✓  datatypes and (nested) pattern matching
✓  references and (user-defined) exceptions
✓  arbitrary-precision integers
✓  modules, signatures, abstract types

CakeML, the language
≈ Standard ML without functors

  

Update! New since POPL’14:
✓  foreign-function interface
✓  mutable arrays, byte arrays, bytes
✓  vectors strings, chars
✓  type abbreviations



Ecosystem

Proof-producing synthesis

Verified parsing Verified type inference

Soon: Proof-producing verification-condition generation

Also: x86 implementation with read-eval-print-loop

HOL functions CakeML AST

Verified compiler backend

CakeML AST machine code

ASCII CakeML AST CakeML AST typeable yes/no

CakeML AST Characteristic Formula i.e. a ‘verification condition’



This talk: Compiler verification

Verified compiler backend

CakeML AST machine code

user expectations

real behaviour of hardware

observational behaviour 
of source code

modelled behaviour of 
generated machine code
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The entire development is in 
the HOL4 theorem prover.



The CakeML compiler

Version 1 & 2

Verified compiler backend

CakeML AST machine code
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Abstract

We have developed and mechanically verified an ML system called

CakeML, which supports a substantial subset of Standard ML.

CakeML is implemented as an interactive read-eval-print loop

(REPL) in x86-64 machine code. Our correctness theorem ensures

that this REPL implementation prints only those results permitted

by the semantics of CakeML. Our verification effort touches on

a breadth of topics including lexing, parsing, type checking, in-

cremental and dynamic compilation, garbage collection, arbitrary-

precision arithmetic, and compiler bootstrapping.

Our contributions are twofold. The first is simply in build-

ing a system that is end-to-end verified, demonstrating that each

piece of such a verification effort can in practice be composed

with the others, and ensuring that none of the pieces rely on any

over-simplifying assumptions. The second is developing novel ap-

proaches to some of the more challenging aspects of the veri-

fication. In particular, our formally verified compiler can boot-

strap itself: we apply the verified compiler to itself to produce a

verified machine-code implementation of the compiler. Addition-

ally, our compiler proof handles diverging input programs with a

lightweight approach based on logical timeout exceptions. The en-

tire development was carried out in the HOL4 theorem prover.
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ing]: Software/Program Verification—Correctness proofs, Formal
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1. Introduction

The last decade has seen a strong interest in verified compilation;

and there have been significant, high-profile results, many based

on the CompCert compiler for C [1, 14, 16, 29]. This interest is

easy to justify: in the context of program verification, an unverified

compiler forms a large and complex part of the trusted computing

base. However, to our knowledge, none of the existing work on

verified compilers for general-purpose languages has addressed all

aspects of a compiler along two dimensions: one, the compilation

algorithm for converting a program from a source string to a list of

numbers representing machine code, and two, the execution of that

algorithm as implemented in machine code.

Our purpose in this paper is to explain how we have verified

a compiler along the full scope of both of these dimensions for a

practical, general-purpose programming language. Our language is

called CakeML, and it is a strongly typed, impure, strict functional

language based on Standard ML and OCaml. By verified, we mean

that the CakeML system is ultimately x86-64 machine code along-

side a mechanically checked theorem in higher-order logic saying

that running that machine code causes an input program to yield

output or diverge as specified by the semantics of CakeML.

We did not write the CakeML compiler and platform directly in

machine code. Instead we write it in higher-order logic and synthe-

sise CakeML from that using our previous technique [22], which

puts the compiler on equal footing with other CakeML programs.

We then apply the compiler to itself, i.e., we bootstrap it. This

avoids a tedious manual refinement proof relating the compilation

algorithm to its implementation, as well as providing a moderately

large example program. More specifically,

• we write, and can run, the compiler as a function in the logic,

and we synthesise a CakeML implementation of the compiler

inside the logic;

• we bootstrap the compiler to get a machine-code implementa-

tion inside the logic; and

• the compiler correctness theorem thereby applies to the

machine-code implementation of the compiler.

Another consequence of bootstrapping is that we can include the

compiler implementation as part of the runtime system to form an

interactive read-eval-print loop (REPL). A verified REPL enables

high-assurance applications that provide interactivity, an important

feature for interactive theorem provers in the LCF tradition, which

were the original motivation for ML.

Contributions
• Semantics that are carefully designed to be simultaneously suit-

able for proving meta-theoretic language properties and for sup-

porting a verified implementation. (Section 3)

• An extension of a proof-producing synthesis pathway [22] orig-

inally from logic to ML, now to machine code (via verified

compilation). (Sections 4–6, 10)

POPL’14

Version 1
First bootstrapping of a verified compiler.



Dimensions of Compiler Verification

source code

abstract syntax

intermediate language

VM bytecode

machine code

how far compiler goes

compiler
algorithm

implementation
in ML

implementation
in machine code

interactive call in read-
eval-print loop runtime

the thing that is verified

First verification to cover the full
spectrum of both dimensions.



Intuition for Bootstrapping
Proof-producing synthesis

Verified parsing Verified type inference

HOL functions CakeML AST

Verified compiler backend

CakeML AST machine code

ASCII CakeML AST CakeML AST typeable yes/no

Verified compiler backend

CakeML AST machine codeCakeML AST machine codeHOL functions CakeML AST CakeML AST machine codeCakeML AST machine codeCakeML AST machine code



Intuition for Bootstrapping

CakeML AST machine code

ASCII CakeML AST CakeML AST typeable yes/no

CakeML AST machine codeCakeML AST machine code

HOL functions CakeML AST

CakeML AST machine codeCakeML AST machine code

CakeML AST machine code

HOL functions

input

output

verified x86 implementation of parsing, type inference, and compilation



Version 1 as in POPL’14

Compiler phases:

string tokens AST IL bytecode x86

huge step huge step

Bytecode simplified proofs of 
read-eval-print loop, but made 

optimisation impossible.

Almost no optimisations possible…
Poor design.



Version 2

Goals:
Design compatible with optimisations.

Acceptable performance.

Strategy: take inspiration from OCaml compiler (for some parts).



source syntax

source AST

no modules

Parse concrete syntax

no cons. names

no declarations

full pat. match

no pat. match

last language 
with closures 

(has multi-arg. 
closures)

Eliminate modules

Infer types, exit if fail

Replace constructor 
names with numbers
Reduce declarations to 
exps; introduce global vars
Make patterns exhaustive
Compile pattern matches 
to nested Ifs and Lets
Rephrase language
Fuse function calls/apps 
into multi-arg calls/apps
Eliminate dead code
Prepare for closure conv.
Perform closure conv.

func. lang. 
without 
closures

Fold constants
Shrink Lets

only 1 global
Compile global vars into a 
dynamically resized array

abstract 
imperative
language

Switch to imperative style

imperative 
language with 

machine words, 
memory and a 
GC primitive

Remove data abstraction
Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Allocate register names
Concretise stack

imperative
language 

with array-like 
stack and 

optional GC

Implement GC primitive
Turn stack access into 
memory acceses
Rename register to match 
arch registers/conventions
Flatten code

labelled 
assembly lang. Delete no-ops (Tick, Skip)

Encode program as 
concrete machine code

ARMv6
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ARMv8 x86-64 MIPS-64 RISC-V

Combine adjacent
memory allocations

All languages communicate with the external world 
via a byte-array-based foreign-function interface.

Reduce caller-saved vars 

Result:
12 intermediate languages (ILs)
and many within-IL optimisations

each IL at the right level of abstraction

for the benefit of 
proofs and compiler 

implementation

(next slides will zoom in)
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Combine adjacent
memory allocations

All languages communicate with the external world 
via a byte-array-based foreign-function interface.

Reduce caller-saved vars 

Parser and type 
inferencer as before

Early phases reduce 
the number of 

language features

Values used by 
the semantics

Language with multi-
argument closures
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ARMv8 x86-64 MIPS-64 RISC-V

Combine adjacent
memory allocations

All languages communicate with the external world 
via a byte-array-based foreign-function interface.

Reduce caller-saved vars 

 Simple first-order 
functional language

Imperative language

Machine-like types

the number of 
language features

Language with multi-
argument closures
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ARMv8 x86-64 MIPS-64 RISC-V

Combine adjacent
memory allocations

All languages communicate with the external world 
via a byte-array-based foreign-function interface.

Reduce caller-saved vars 

Imperative compiler 
with an FP twist:  
garbage collector, 

live-var annotations, 
fast exception 
mechanisms

Targets 5 architectures

Machine-like types



expected number of arguments 
(multi-argument closures)

expected number of arguments 
(multi-argument closures)

makes its way towards the concrete machine code of the target
architectures. Along the way, we provide commentary on our in-
variants and proofs. The description of the interaction between the
verification of the register allocator and our garbage collector, in
Section 7, is given most space.

3. Early phases

The compiler starts by parsing the concrete syntax and by running
type inference – two phases that we re-use from the previous
CakeML compiler (Kumar et al. 2014; Tan et al. 2015).

The first few transformations of the input program focus solely
on reducing the features of the source language. Modules are re-
moved, algebraic datatypes are converted to numerically tagged tu-
ples, declarations are compiled to updates and lookups in a global
store, and pattern matches are made exhaustive and then compiled
into nested combinations of if- and let-expressions (which get op-
timised further down).

The early stages of the compiler end in a language called
CLOSLANG. This language is the last language with explicit closure
values, and is designed as a place where functional-programming
specific optimisations (e.g., lambda lifting) can prepare the input
programs for closure conversion.

CLOSLANG is the first language to add a feature: it adds sup-
port for multi-argument functions, i.e., function applications that
can apply a function to multiple arguments at once and construct
closures that expect multiple simultaneous arguments. All previous
languages required either currying or tupled inputs in order to sim-
ulate multi-argument functions. A naive implementation of curried
functions causes heap-allocation overhead which we reduce with
this feature.

A value in CLOSLANG’s semantics is a number, an immutable
block of values (constructor or vector), a pointer to an array, or a
closure. A closure can either be a non-recursive closure (Closure)
or a closure for a mutually recursive function (Recclosure). The
arguments for the Closure constructor are an optional location
for where the code for the body will be placed, an evaluation
environment (values for the free variables in exp), the values of the
already-applied arguments, the number of arguments this closure
expects, and finally the body of the closure. The arguments for
Recclosure are similar.3

v =
Number int

| Block num (v list)
| RefPtr num
| Closure (num option) (v list) (v list) num exp

| Recclosure (num option) (v list) (v list) . . .

Having closure values as part of the language adds a layer of
complication to the compiler proofs, since program expressions
(exp above) are affected by the compiler’s transformations. There
are different ways to tackle this complication in proofs.

For pragmatic reasons, most of our proofs use a simple syntac-
tic approach. Our proofs relate the values before a transformation
with the values that will be produced by the code after the trans-
formation. Concretely, for a compiler function compile, we define
a syntactic relation v_rel which recursively relates each syntactic
form to the equivalent form after the transformation. For example,

v_rel (Closure loc1 env1 args1 arg_count1 exp1)
(Closure loc2 env2 args2 arg_count2 exp2)

is true if the environment and arguments are related by v_rel and
the expressions are related by the compiler function compile, i.e.,

3 Through the paper, we use HOL4’s type definition syntax: each construc-
tor name is followed by the types of its arguments (Haskell-style), but type
constructors use postfix application (ML-style).

exp2 = compile exp1. This style of value relation is very simple to
write, but causes some dull repetition in proofs.

An alternative strategy is to use logical relations to relate the
values via the semantics: two values are related if they are semanti-
cally equivalent. We use an untyped logical relation for CLOSLANG
in some proofs (e.g., multi-argument introduction and dead-code
elimination), but will not go into details about this logical relation
in this paper.

4. Closure conversion

Closures are implemented in the translation from CLOSLANG into a
language called bytecode-value language (BVL). We use this name
because BVL uses almost the same value type as the semantics for
the bytecode language of the original CakeML compiler. BVL’s
value type is also almost identical to CLOSLANG’s value type; the
difference being that BVL does not have closure values, instead it
has code pointers that can be used as part of closure representations.

v = Number int | Block num (v list) | CodePtr num | RefPtr num

BVL is an important language for the new CakeML compiler,
and is perhaps the simplest language in the compiler. One can
view CLOSLANG, which comes before, as an extension of BVL
with closures; and one can view the languages below BVL as
reformulations of BVL that successively reduce BVL to machine
code.

BVL is a first-order functional language with a code store. It
uses de Bruijn indices for local variables. The abstract syntax for
BVL is given below. Tick decrements the clock in BVL’s functional
big-step semantics. Call also decrements the clock: its first argu-
ment indicates the number of ticks the call consumes. Its second
argument is the optional destination of the call, where None means
the call is to jump to a CodePtr provided as the last argument in
the argument list.

exp =
Var num

| If exp exp exp

| Let (exp list) exp
| Raise exp

| Handle exp exp

| Tick exp

| Call num (num option) (exp list)
| Op op (exp list)

Figure 2 shows an extract of BVL’s functional big-step semantics,
i.e., functions in HOL that define BVL’s big-step semantics.

We use BVL’s Blocks and value arrays to represent closures in
BVL. Non-recursive and singly recursive closures are represented
as Blocks with a code pointer and the argument count followed by
the values of the free variables of the body of the closure.

Block closure_tag
([CodePtr ptr ; Number arg_count ] @ free_var_vals)

Mutually recursive closures are represented as Blocks, where the
free-variable part is a reference pointer to a value array.

Block closure_tag
[CodePtr ptr ; Number arg_count ; RefPtr ref _ptr ]

This value array contains the closures for each of the functions in
the mutual recursion and the values of all their free variables. Ar-
rays are used for the representation of mutually recursive closures
since these closures need to contain themselves. Mutable arrays are
the only way to construct such cyclic structures in BVL. For clo-
sures they are only mutated as part of the closure-creation process.

The compilation of closure construction relies on a preliminary
pass within CLOSLANG that annotates each closure creation with the
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Closures are values with a code pointer:

For mutually recursive closures:
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v = Number int | Block num (v list) | CodePtr num | RefPtr num

BVL is an important language for the new CakeML compiler,
and is perhaps the simplest language in the compiler. One can
view CLOSLANG, which comes before, as an extension of BVL
with closures; and one can view the languages below BVL as
reformulations of BVL that successively reduce BVL to machine
code.

BVL is a first-order functional language with a code store. It
uses de Bruijn indices for local variables. The abstract syntax for
BVL is given below. Tick decrements the clock in BVL’s functional
big-step semantics. Call also decrements the clock: its first argu-
ment indicates the number of ticks the call consumes. Its second
argument is the optional destination of the call, where None means
the call is to jump to a CodePtr provided as the last argument in
the argument list.

exp =
Var num

| If exp exp exp

| Let (exp list) exp
| Raise exp

| Handle exp exp

| Tick exp

| Call num (num option) (exp list)
| Op op (exp list)

Figure 2 shows an extract of BVL’s functional big-step semantics,
i.e., functions in HOL that define BVL’s big-step semantics.

We use BVL’s Blocks and value arrays to represent closures in
BVL. Non-recursive and singly recursive closures are represented
as Blocks with a code pointer and the argument count followed by
the values of the free variables of the body of the closure.

Block closure_tag
([CodePtr ptr ; Number arg_count ] @ free_var_vals)

Mutually recursive closures are represented as Blocks, where the
free-variable part is a reference pointer to a value array.

Block closure_tag
[CodePtr ptr ; Number arg_count ; RefPtr ref _ptr ]

This value array contains the closures for each of the functions in
the mutual recursion and the values of all their free variables. Ar-
rays are used for the representation of mutually recursive closures
since these closures need to contain themselves. Mutable arrays are
the only way to construct such cyclic structures in BVL. For clo-
sures they are only mutated as part of the closure-creation process.

The compilation of closure construction relies on a preliminary
pass within CLOSLANG that annotates each closure creation with the
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for both 64- and 32-bit architectures forces us to be flexible with
the details of the data representation.

We opt for an informal description of the specifics of the repre-
sentation of BVP’s values in WORDLANG. Our convention is to use
word values with a least significant bit of zero for values that the
GC is not to treat as pointers (i.e., small numbers, empty Blocks
and code pointers). We chose zero because it allows addition and
subtraction of small numbers to be performed directly on the word
values. Similarly, we arrange the assembler to 2-byte align all la-
bels so that Loc values are all represented (further down) with zero
as the least significant bit.

Pointers can carry information. Each pointer has a least signif-
icant bit of 1, followed by a length field, a tag field, some zero
padding and finally the actual address of the pointer.

0 . . . 00110011101 00 01 010 1

length
tag

padding
address value marker

Example pointer value:

The lengths of the padding-, length- and tag-fields are config-
urable and can be set to zero, i.e., removing them from the repre-
sentation. The padding helps remove extra shift instructions. Each
pointer dereference uses shifts to remove the extra information
around the pointer value. One (logical) right shift deletes the ex-
tra information. An additional left shift is required to word align
the address value in case there aren’t enough zero padding bits (3
for 64-bit and 2 for 32-bit) for the first shift to leave behind.

The length and tag fields are used for storing information about
the object pointed to. These fields are used in the implementation
of BVP primitives used by pattern matching: if the tag and length
values to be checked are small enough to fit in these fields, then no
pointer dereference is needed. Values that exceed the capacity of
the small length and tag fields of pointers are represented as a bit
pattern of all ones.

Currently, elements on the heap are represented by a header
word followed by the payload of the heap element. The header con-
tains information of what kind of heap element it is. For example,
the header of a Block element:

• tells the GC that the payload is garbage collectable values, and
• contains the tag and length of the Block.

At the time of writing, we are considering dropping the header
from the memory representation in cases where the tag and length
fields of pointers carry all the necessary information. Such an
optimisation would save space for many common constructors, e.g.
list-cons is likely to be represented as two words in memory as
opposed to the current three.

7. Register allocation

Once data abstraction has been removed, the compiler runs instruc-
tion selection, an SSA-like variable transformation, and register al-
location. We describe these transformations next.

In our context—a functional language with a copying garbage
collector—verifying register allocation is more complicated than
usual. The GC affects the situation via a combination of circum-
stances:

• The GC looks for roots in the stack as part of its operation.
• The order in which these roots are processed affects the output

of our copying GC. A new order can result in a different output.
• The exact order of the roots on the stack is determined by the

register allocator when it gives names to spilled variables.

• The verification proof for the register allocator does not have
direct access to invariants from the BVP-to-WORD proof, which
imply that any order will do.

In what follows, we explain how we have used a semantic device,
which we call a permute oracle, to communicate that any order
picked by the register allocator will do for the overall proof.

7.1 Permute oracle

The WORDLANG semantics has a component called the permute
oracle which allows us to influence the order in which the GC
primitive sees its roots. Briefly speaking, we use this oracle to
control variable orderings on the stack in WORDLANG so that we can
decouple reasoning about an abstract GC function from its concrete
implementation in STACKLANG (the language after WORDLANG).
Formally, a permutation oracle is an infinite sequence of bijections
between natural numbers (i.e. WORDLANG variable names).

Stack frames in WORDLANG are created when a caller function
needs to give up control to its callee: it saves the local variables it
needs onto the stack and pops them off when control is returned4.
To create a stack frame, the locals are first reduced down to the
set of variables that need to be saved, then they are sorted by
variable names to get a list of pairs of variable names and their
values. The head of the permutation oracle is popped and used to
permute this sorted list by index, and the resulting list is added to
the WORDLANG stack as a new stack frame. The semantics uses the
following functions to push a stack frame onto the stack. Here the
option indicates whether an exception handler is to be pushed, and
the list_rearrange function permutes a list according to a given
function.

env_to_list env bij_seq =
let mover = bij_seq 0;

permute = (�n. bij_seq (n + 1));
l = toAList env ;
l = sort key_val_compare l ;
l = list_rearrange mover l

in

(l ,permute)

push_env env None s =
let (l ,p) = env_to_list env s.permute
in

s with

<|stack := StackFrame l None::s.stack; permute := p|>

push_env env (Some (w ,h,l1,l2)) s =
let (l ,p) = env_to_list env s.permute;

h = Some (s.handler,l1,l2)
in

s with

<|stack := StackFrame l h::s.stack; permute := p;
handler := len s.stack|>

The presence of this oracle component in WORDLANG is best
motivated by considering the adjacent correctness theorems. For
brevity, we only show the general shape of these theorems. We also
annotate each of the evaluation and compilation functions with the
first letter of the associated languages.

For compilation from BVP into WORDLANG (BVP-to-WORD),
we want to show that it is correct regardless of the order in which
the GC visits the roots. This is controlled by the order in which
values appear on the stack, and therefore, by how we permute the
values when creating stack frames. Hence, in the theorem below,
we prove that BVP-to-WORD is correct for all choices of permuta-

4 We treat calls to the GC similarly so that the it only needs to look at the
stack for the root set.
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Even more details
Stack contains information about live vars for the GC

Next, we extract from the input WORDLANG program a simple
tree-like control flow structure, where each instruction is reduced
to the list of variables that it reads and writes. Correspondingly,
we define and verify a colouring function checker that checks the
aforementioned injectivity property over this tree. Crucially, this
intermediary checker is designed to evaluate efficiently in the logic
and it will be used later in Section 11.

Finally, we verify a graph colouring register allocator that pro-
duces the actual colouring function. One common property of many
graph colouring algorithms is that they can be viewed as heuris-
tics for choosing an appropriate order in which to pick colours for
vertices of the graph. For correctness, we only need to verify the
colour picking function, i.e., show that it always gives any two con-
nected vertices distinct colours (and also that it generates the syn-
tactic properties we need). Using this technique, we verified both a
simple allocator and an Iterated Register Coalescing-based alloca-
tor (George and Appel 1996); since the latter allocator is relatively
slow, a flag controls which of these allocators is used during com-
pilation. The correctness theorem here is connected back to our
semantics theorem by showing that all the vertices in any clique of
the clash graph are given distinct colours by the colouring function
produced, and then showing that this implies the required injectiv-
ity property.

Register allocation performance can be further improved by re-
ducing the live ranges of the input program’s variables. We achieve
this by performing an Static Single Assignment (SSA)-like pass be-
fore register allocation. The resulting program is not strictly in SSA
form because our semantics do not have �-functions. Instead, we
implicitly perform �-elimination (replacing �-functions with vari-
able movement) directly inside the SSA pass. Since this transfor-
mation renames variables (like register allocation), we again have
to provide oracle permutations. The insight here is, similarly, to
show that the SSA mapping defines an injective function.The rea-
soning about the interaction between stack frames and the oracle is
then similar to that used for the liveness analysis proofs.

Instruction selection in another important pass within WORD-
LANG. It flattens arbitrary depth expression trees down to a se-
quence of instructions implementing that tree. The instructions
need to make use of extra temporaries, but since we have an SSA
pass, it uses the same temporaries throughout and relies on the SSA
pass to appropriately rename the temporaries. We use a maximal
munch instruction selector that is parametrised by the target archi-
tecture’s constraints, e.g. whether it only allows 2-register instruc-
tions, and the bounds on allowed memory operation constants. Ad-
ditional expression-based optimisations are also performed within
the phase, e.g. constant folding. Unlike the two aforementioned
passes, this pass does not perform any variable renaming. Instead,
it just introduces an extra temporary, and so the form of its cor-
rectness theorem does not need to mention the permutation oracle.
The correctness theorem shows that the sequence of instructions
picked for each expression correctly implements that expression,
and that WORDLANG programs are invariant to extra temporaries
not mentioned in the program. This is the usual form of a forward
simulation-style proof, and it can be composed with our permuta-
tion oracle-style theorems as well.

8. Compilation of stack and exceptions

The overall aim of STACKLANG, as its name suggests, is to support
a concrete implementation of the stack. The STACKLANG transfor-
mations also implement the GC primitive as STACKLANG code.

8.1 An array-like stack

The translation from WORDLANG into STACKLANG compiles the
abstract stack of WORDLANG into an array-like stack. Here, we
implement the naming conventions used by the register allocator:

WORDLANG names corresponding to stack variables are compiled
into element lookups in stack frames, and those corresponding to
registers are compiled into registers. In addition, we compile the
parallel moves generated within WORDLANG down to single simple
move instructions in STACKLANG.6

Unlike stack frames in WORDLANG, stack frames in STACKLANG
allocate enough space for all of the stack variables that may be used
inside a function body. However, not all of these stack positions will
be live at every call from the body and, in particular, it would be
inefficient to sanitise all of the non-live positions in stack frames
on every function call. Therefore, caller functions always write a
number into the top entry of their stack frames. This is used to
index into a bitmap table to obtain a bitmap that corresponds to the
live positions in each stack frame. When the GC is called, it looks
up and decodes the retrieved bitmap, and then uses it to consider
only the variables that are live in each stack frame.

stack

0010110101010 . . . . . . . . . . . . . . .

bitmaps

These bitmaps are designed to be as compact as possible. A
bitmap can consist of multiple words. Each word except the last
has its most significant bit set to one; in the last word, the most
significant one bit represents the end of the frame being described.
The payload of the bitmap, consisting of the remaining bits, has
the same length as the length of the stack frame it describes. Each
position in the bitmap tells the GC whether the corresponding index
in the stack frame contains a live variable that the GC needs to
process. Bitmaps are shared between call sites that happen to have
the same bitmap layout.

The following diagram illustrates how the details of bitmaps
are set up. Note that this illustration shows the most significant bit
furthest to the right. The GC walks these bitmaps from left-to-right,
from least-significant bit to most-signifiant bit. This illustration
pretends that words are 8 bits. In reality they are 32 or 64 bits.

. . . | 00000101 | 00100100 | . . .

pointer live var

continues last word
end of frame

The STACKLANG semantics represents the bitmaps as a state
component separate from the array-like stack which is also separate
from the data heap. The bitmaps are moved into the state’s memory
component by a later transformation (Section 8.3).

In addition to concretising stack variables, the WORD-to-STACK
compiler also concretises the exception mechanisms. Stack frames
with exception-handling information are converted to two stack
frames: one for the variables part and one small frame for the han-
dler information. The code for raising an exception rewinds the
stack by simply assigning a stored value to the stack pointer and
jumping to a stored code pointer. Installing exception handlers in-
volves storing information about the previously most current han-
dler onto the stack before making a normal call to a function that
holds the body of the handler expression.

The main verification difficulty in this step is to set up the
appropriate state invariant between the abstract and concrete stacks.
Our technique reconstructs an abstract stack (and local variables)

6 Our implementation and proof of the parallel moves compilation step is a
HOL formalisation of Rideau et al. (2008).
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then similar to that used for the liveness analysis proofs.

Instruction selection in another important pass within WORD-
LANG. It flattens arbitrary depth expression trees down to a se-
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rectness theorem does not need to mention the permutation oracle.
The correctness theorem shows that the sequence of instructions
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The overall aim of STACKLANG, as its name suggests, is to support
a concrete implementation of the stack. The STACKLANG transfor-
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8.1 An array-like stack

The translation from WORDLANG into STACKLANG compiles the
abstract stack of WORDLANG into an array-like stack. Here, we
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WORDLANG names corresponding to stack variables are compiled
into element lookups in stack frames, and those corresponding to
registers are compiled into registers. In addition, we compile the
parallel moves generated within WORDLANG down to single simple
move instructions in STACKLANG.6

Unlike stack frames in WORDLANG, stack frames in STACKLANG
allocate enough space for all of the stack variables that may be used
inside a function body. However, not all of these stack positions will
be live at every call from the body and, in particular, it would be
inefficient to sanitise all of the non-live positions in stack frames
on every function call. Therefore, caller functions always write a
number into the top entry of their stack frames. This is used to
index into a bitmap table to obtain a bitmap that corresponds to the
live positions in each stack frame. When the GC is called, it looks
up and decodes the retrieved bitmap, and then uses it to consider
only the variables that are live in each stack frame.
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bitmap can consist of multiple words. Each word except the last
has its most significant bit set to one; in the last word, the most
significant one bit represents the end of the frame being described.
The payload of the bitmap, consisting of the remaining bits, has
the same length as the length of the stack frame it describes. Each
position in the bitmap tells the GC whether the corresponding index
in the stack frame contains a live variable that the GC needs to
process. Bitmaps are shared between call sites that happen to have
the same bitmap layout.

The following diagram illustrates how the details of bitmaps
are set up. Note that this illustration shows the most significant bit
furthest to the right. The GC walks these bitmaps from left-to-right,
from least-significant bit to most-signifiant bit. This illustration
pretends that words are 8 bits. In reality they are 32 or 64 bits.
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The STACKLANG semantics represents the bitmaps as a state
component separate from the array-like stack which is also separate
from the data heap. The bitmaps are moved into the state’s memory
component by a later transformation (Section 8.3).

In addition to concretising stack variables, the WORD-to-STACK
compiler also concretises the exception mechanisms. Stack frames
with exception-handling information are converted to two stack
frames: one for the variables part and one small frame for the han-
dler information. The code for raising an exception rewinds the
stack by simply assigning a stored value to the stack pointer and
jumping to a stored code pointer. Installing exception handlers in-
volves storing information about the previously most current han-
dler onto the stack before making a normal call to a function that
holds the body of the handler expression.

The main verification difficulty in this step is to set up the
appropriate state invariant between the abstract and concrete stacks.
Our technique reconstructs an abstract stack (and local variables)

6 Our implementation and proof of the parallel moves compilation step is a
HOL formalisation of Rideau et al. (2008).
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Semantics
Each intermediate language has a formal semantics.

We define these using a functional big-step style (ESOP’16)
where the semantics is an evaluation function in logic

evaluate ([ ],env ,s) = (Rval [ ],s)
evaluate (x ::y::xs,env ,s) =
case evaluate ([x ],env ,s) of
(Rval v1,s1) )
(case evaluate (y::xs,env ,s1) of
(Rval vs,s2) ) (Rval (hd v1::vs),s2)

| (Rerr e,s2) ) (Rerr e,s2))
| (Rerr e,s1) ) (Rerr e,s1)

evaluate ([Var n],env ,s) =
if n < len env then (Rval [nth n env ],s)
else (Rerr (Rabort Rtype_error),s)

evaluate ([If x1 x2 x3],env ,s) =
case evaluate ([x1],env ,s) of
(Rval vs,s1) )
if Boolv true = hd vs then evaluate ([x2],env ,s1)
else if Boolv false = hd vs then evaluate ([x3],env ,s1)
else (Rerr (Rabort Rtype_error),s1)

| (Rerr e,s1) ) (Rerr e,s1)
evaluate ([Let xs x2],env ,s) =
case evaluate (xs,env ,s) of
(Rval vs,s1) ) evaluate ([x2],vs @ env ,s1)

| (Rerr e,s1) ) (Rerr e,s1)
evaluate ([Op op xs],env ,s) =
case evaluate (xs,env ,s) of
(Rval vs,s0) )
(case do_app op (rev vs) s0 of

Rval (v ,s0) ) (Rval [v ],s0)
| Rerr err ) (Rerr err ,s0))

| (Rerr e,s0) ) (Rerr e,s0)
evaluate ([Raise x1],env ,s) =
case evaluate ([x1],env ,s) of
(Rval vs,s0) ) (Rerr (Rraise (hd vs)),s0)

| (Rerr e,s0) ) (Rerr e,s0)
evaluate ([Handle x1 x2],env ,s1) =
case evaluate ([x1],env ,s1) of
(Rval v ,s) ) (Rval v ,s)

| (Rerr (Rraise v),s) ) evaluate ([x2],v ::env ,s)
| (Rerr (Rabort e),s) ) (Rerr (Rabort e),s)

evaluate ([Call ticks dest xs],env ,s1) =
case evaluate (xs,env ,s1) of
(Rval vs,s) )
(case find_code dest vs s.code of

None ) (Rerr (Rabort Rtype_error),s)
| Some (args,exp) )

if s.clock < ticks + 1 then

(Rerr (Rabort Rtimeout_error),s with clock := 0)
else evaluate ([exp],args,dec_clock (ticks + 1) s))

| (Rerr e,s) ) (Rerr e,s)
· · ·

do_app (Const i) [ ] s = Rval (Number i ,s)
do_app (Cons tag) xs s = Rval (Block tag xs,s)
· · ·

Figure 2. Extracts of BVL’s semantics

free variables of the closure bodies. The same transformation shifts
the de Bruijn indices to match the updated evaluation environment.

The compilation into BVL needs to implement CLOSLANG’s
function application expression. The semantics of CLOSLANG’s
function application expression is far from simple, since CLOSLANG
allows multi-argument closures and multi-argument function appli-
cations. In particular, the semantics deals with the case where the
argument numbers do not match. Each n-argument function appli-
cation is compiled to code which first evaluates the arguments and
then the closure; it then checks if the closure happens to expect

exactly the right number of arguments; if it does, then the code
calls the code pointer in the closure (or makes a direct jump if
the CLOSLANG function application expression is annotated with a
known jump target, which is the case for known functions). In all
other cases, i.e., if there is any mismatch between the number of
arguments, the code makes a call to a library function (also written
in BVL), which implements CLOSLANG’s mismatch semantics. The
semantics dictates that partial applications result in new closure
values with additional already-provided arguments. Applications
that are given too many arguments — a valid case — are split into
a call to the expected number of arguments, followed by a call for
the remaining arguments. Jump-table-like structures are used to
quickly find the right case amongst all the combinations of possi-
ble cases. The BVL code for these library functions is automatically
generated.

Our support for this kind of multi-argument semantics is similar
to OCaml’s, and relies on the adoption right-to-left evaluation order
for application expressions. Most CakeML programs will be pure
and therefore evaluation order does not matter. This change was
necessary to keep the BVL code that implements multi-argument
function applications short and fast.

5. Going fully stateful

After BVL, the next few passes reduce the language further and
then translate BVL via an intermediate language into an imperative
version of BVL called BVP (bytecode-value program). In BVP,
local variables are held in state as opposed to in an environment.
BVP is then the model of the structured imperative languages that
follow, namely, WORDLANG and STACKLANG.

In BVP’s abstract syntax below, all numbers (of type num) are
variable names with the exception of the second argument to Call

which is an optional target location for the call. As in BVL, None

indicates that a code pointer from the argument list is to be used
as the target. The first argument to Call is a return variable name,
where None indicates that this is a tail call. The last argument to
Call is an optional exception handler. The exception handlers are
fused into Calls so that raising an exception always rewinds the
stack to a well-defined stack frame. The finite sets of numbers (of
type num_set) are cut-sets that keep track of which local variables
need to survive past the command.

prog =
Skip

| Move num num

| Call ((num ⇥ num_set) option) (num option) (num list)
((num ⇥ prog) option)

| Assign num op (num list) (num_set option)
| Seq prog prog

| If num prog prog

| MakeSpace num num_set

| Raise num

| Return num

| Tick

BVP’s semantics uses the same value type as BVL and operates
over a state that is similar to BVL’s. The most significant differ-
ences in the state are: BVP has a stack, raising an exception rewinds
the stack, and there is a notion of available space as described be-
low.

The compiler performs a few optimisations within BVP. In par-
ticular, the compiler combines memory allocations (MakeSpace) in
straight-line code. The semantics of MakeSpace n vs is to increase
the available space by n , while operations such as Cons consume
space by one plus the length of the Block that is produced. Some
operations (e.g. bignum addition) consume a statically unknown
amount of space, which resets the available space to zero. In BVP,
this space measure is an abstract notion since there is no memory.
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The semantics functions return the set of observable FFI-
and terminate/diverge-behaviours a program can exhibit. If the
evaluate function reaches a result for some clock value, then it has
terminating behaviour with the resulting FFI state. If the evaluate

function hits a timeout for all clock values, then the program has
diverging behaviour and returns the least upper bound of the re-
sulting FFI states. We provide only a brief description of the FFI
semantics (in Section 10) since the FFI semantics is not a major
theme of this paper.

2.3 Compiler proofs

The objective of the compiler proofs is to show that the semantics

functions of the source and target produce compatible results. For
most compiler transitions, we can prove that the semantics func-
tions produce identical behaviours. These theorems have the fol-
lowing form:

` compile config prog = new_prog ^
syntactic_condition prog ^
Fail /2 semantics � prog )
semantics � new_prog = semantics � prog

However, for some compiler transformations (e.g., removal of data
abstraction and stack concretisation), the output programs are al-
lowed to bail out with an out-of-memory error. In such cases, we
prove a weaker conclusion of the form:

semantics � new_prog ✓
extend_with_resource_limit (semantics � prog)

These high-level correctness theorems are easy to compose. Through-
out the proofs, we assume that the source semantics does not Fail.
At the top level we prove that a type correct program can never
Fail.

We prove the semantics theorems using simulation theorems
relating the respective evaluate functions. At the level of evaluate

functions, we prove correctness theorems of the following form,
where evaluation in the source IL is assumed and evaluation in the
target IL is proved.

` compile config exp = exp1 ^
evaluate exp state = (new_state,res) ^
state_rel state state1 ^ res 6= Error )
9new_state1 res1.
evaluate exp1 state1 = (new_state1,res1) ^
state_rel new_state new_state1 ^ res_rel res res1

In some proofs, extra fuel needs to be added to the clock in
state1. This extra fuel is usually existentially quantified along with
new_state1 and res1.

The evaluate theorems are proved by induction on the structure
of evaluate for the source intermediate language. These proofs are
said to go in the direction of compilation since the source semantics
is in the antecedent of the implication and the target semantics is
in the consequent. Such proofs follow the intuition of the compiler
writer.

We only prove forward-style theorems when relating the evaluate

level of the semantics and the compiler. They are sufficient2 for
proving the equivalence (or correspondence) of the observational
semantics at the higher level, which includes the proof of diver-
gence preservation. Our divergence preservation proofs follow the
style of Kumar et al. (2014) and Owens et al. (2016).

It should be noted that the entire compiler verification could
be done at the level of evaluate functions, letting us only at the
very end relate the semantics functions for the source and target
semantics. We opted for the approach where we relate semantics

2 Throughout this work, we only work with determinstic ILs; see the exten-
sive discussion in Leroy (2009).

functions for each major step in the compiler since the equations
between semantics functions are easier to compose.

2.4 Removal of abstractions

Removal of abstractions is a theme that can be used to describe
most phases in our compiler. The original CakeML compiler’s pur-
pose was to get from source to target. Our new CakeML compiler
attempts to provide the architecture for making this translation well,
i.e., producing good code in the process. In particular, this goal re-
quires enabling vital optimisations.

Register allocation is a transformation that we found to be one
of the more complicated optimisations to support and we concen-
trate on it in this paper. Register allocation is tricky because it in-
teracts in a subtle way with the copying garbage collector. Briefly
speaking, the complication stems from the fact that the garbage col-
lector is introduced before the layout of the stack has been concre-
tised. The garbage collector depends on the stack, since the stack
is where the collector looks for roots. The order in which it sees
the roots has an effect on how the collector updates memory. The
actual order in which the collector sees the roots is only fixed by
the register allocator when it assigns names (i.e., locations) to the
variables it spills onto the stack.

From a high level, the order of the roots does not affect the
compiler’s correctness. The challenge is how to communicate this
fact through the compiler phases. The irrelevance of the order is a
property that can easily be derived from the invariants within the
proof about the removal of data abstraction, but the verification of
the register allocator is separate (for good reason, because both are
complicated proofs).

Our solution is to include a semantic mechanism, which we call
a permute oracle, allowing us to alter the order in which roots are
passed to the collector implementation. We use the permute oracle
to prove that data abstraction holds for whatever order the register
allocator decided to store the roots on the stack. Importantly, this
semantic mechanism is local to one intermediate language. This
approach is explained Section 7.

2.5 Multiple targets

The compiler can produce code for several target architectures. The
compiler is parameterised by a compiler configuration that carries
around information about the target throughout the entire compiler.
This configuration includes an instruction encoding function for an
abstract syntax of general-purpose machine instructions. Since we
support both 64- and 32-bit architectures, we take care to make the
data abstraction configurable to accommodate the different limits
that these architectures impose.

2.6 Top-level correctness theorem

The top-level correctness theorem is stated in Section 10. Infor-
mally, this theorem can be read as follows:

Any binary produced by a successful evaluation of the com-
piler function will either behave exactly according to the
observable behaviour of the source semantics, or behave the
same as the source up to some point at which it terminates
with an out-of-memory error.
This theorem assumes that the compiler configuration is
well-formed and that the generated program runs in a en-
vironment where the external world only modifies memory
outside CakeML’s memory region and the FFI entry points
adhere to the FFI instance used by the source semantics.

The details of the formal statement are made complicated by our
support for multiple architectures and the interaction with the FFI.
Structure. The rest of the paper gives more details on how the
compiler operates, in particular how it removes abstractions as it
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Proof
Proof styles:
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terminating behaviour with the resulting FFI state. If the evaluate

function hits a timeout for all clock values, then the program has
diverging behaviour and returns the least upper bound of the re-
sulting FFI states. We provide only a brief description of the FFI
semantics (in Section 10) since the FFI semantics is not a major
theme of this paper.

2.3 Compiler proofs

The objective of the compiler proofs is to show that the semantics

functions of the source and target produce compatible results. For
most compiler transitions, we can prove that the semantics func-
tions produce identical behaviours. These theorems have the fol-
lowing form:

` compile config prog = new_prog ^
syntactic_condition prog ^
Fail /2 semantics � prog )
semantics � new_prog = semantics � prog

However, for some compiler transformations (e.g., removal of data
abstraction and stack concretisation), the output programs are al-
lowed to bail out with an out-of-memory error. In such cases, we
prove a weaker conclusion of the form:

semantics � new_prog ✓
extend_with_resource_limit (semantics � prog)

These high-level correctness theorems are easy to compose. Through-
out the proofs, we assume that the source semantics does not Fail.
At the top level we prove that a type correct program can never
Fail.

We prove the semantics theorems using simulation theorems
relating the respective evaluate functions. At the level of evaluate

functions, we prove correctness theorems of the following form,
where evaluation in the source IL is assumed and evaluation in the
target IL is proved.

` compile config exp = exp1 ^
evaluate exp state = (new_state,res) ^
state_rel state state1 ^ res 6= Error )
9new_state1 res1.
evaluate exp1 state1 = (new_state1,res1) ^
state_rel new_state new_state1 ^ res_rel res res1

In some proofs, extra fuel needs to be added to the clock in
state1. This extra fuel is usually existentially quantified along with
new_state1 and res1.

The evaluate theorems are proved by induction on the structure
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We only prove forward-style theorems when relating the evaluate
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proving the equivalence (or correspondence) of the observational
semantics at the higher level, which includes the proof of diver-
gence preservation. Our divergence preservation proofs follow the
style of Kumar et al. (2014) and Owens et al. (2016).

It should be noted that the entire compiler verification could
be done at the level of evaluate functions, letting us only at the
very end relate the semantics functions for the source and target
semantics. We opted for the approach where we relate semantics
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speaking, the complication stems from the fact that the garbage col-
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is where the collector looks for roots. The order in which it sees
the roots has an effect on how the collector updates memory. The
actual order in which the collector sees the roots is only fixed by
the register allocator when it assigns names (i.e., locations) to the
variables it spills onto the stack.

From a high level, the order of the roots does not affect the
compiler’s correctness. The challenge is how to communicate this
fact through the compiler phases. The irrelevance of the order is a
property that can easily be derived from the invariants within the
proof about the removal of data abstraction, but the verification of
the register allocator is separate (for good reason, because both are
complicated proofs).

Our solution is to include a semantic mechanism, which we call
a permute oracle, allowing us to alter the order in which roots are
passed to the collector implementation. We use the permute oracle
to prove that data abstraction holds for whatever order the register
allocator decided to store the roots on the stack. Importantly, this
semantic mechanism is local to one intermediate language. This
approach is explained Section 7.

2.5 Multiple targets

The compiler can produce code for several target architectures. The
compiler is parameterised by a compiler configuration that carries
around information about the target throughout the entire compiler.
This configuration includes an instruction encoding function for an
abstract syntax of general-purpose machine instructions. Since we
support both 64- and 32-bit architectures, we take care to make the
data abstraction configurable to accommodate the different limits
that these architectures impose.

2.6 Top-level correctness theorem

The top-level correctness theorem is stated in Section 10. Infor-
mally, this theorem can be read as follows:

Any binary produced by a successful evaluation of the com-
piler function will either behave exactly according to the
observable behaviour of the source semantics, or behave the
same as the source up to some point at which it terminates
with an out-of-memory error.
This theorem assumes that the compiler configuration is
well-formed and that the generated program runs in a en-
vironment where the external world only modifies memory
outside CakeML’s memory region and the FFI entry points
adhere to the FFI instance used by the source semantics.

The details of the formal statement are made complicated by our
support for multiple architectures and the interaction with the FFI.
Structure. The rest of the paper gives more details on how the
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Combine adjacent
memory allocations

All languages communicate with the external world 
via a byte-array-based foreign-function interface.

Reduce caller-saved vars 

Difficult cases

GC introduced

GC calls concretised

GC and register allocator interaction

Solution: we use a semantics that allows reordering of stack variables.



Size, Effort, Speed

Compiler Size:   6 000 lines of function definitions

Proof Size:   100 000 lines of HOL proof script

(excludes target-specific instruction encoders & config)

Effort:   6 people, 2 years, but not full time

Speed:   next slide…

(Numbers up-to-date as of April 2016)
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Simple Benchmarks
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Why?

Version 1 can compile big programs (in-logic)

Version 2 in-logic evaluation is too slow for large examples

we are working to improve this

why not outside?

Simple Benchmarks



Immediate future work

fun map f [] = []
  | map f (x::xs) = f x :: map f xs;

val list_add1 = map (fn n => n + 1);

Any app of a known function needs to 
be optimised to a fast procedure call.

Inlining should produce a 
copy of map specialised 

for fn n => n+1

unknown



CakeML

This talk: New compiler’s design compatible with optimisations

End-to-end verification, and end-to-end verified applications

Big-picture:

Why?
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Ecosystem around a clean formalised ML language
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