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Guest lecture for Compiler Construction, Spring 2015

Verified compilers

k What?

@ Comes with a machine-checked proof that for any program,
which does not generate a compilation error, the source and

target programs behave identically. (Precise statement needs
more details.) *

(Sometimes called certified compilers, but that’s misleading...)



Trusting the compiler

When finding a bug, we go to great lengths to find it in our own
code.

@ Most programmers trust the compiler to generate correct code

@ The most important task of the compiler is to generate correct

code Ve
k Maybe it is worth the cost! )

- _ -
Establishing Compiler Correctness Cost reduction?

Alternatives

@ Proving the correctness of a compiler is prohibitively expensive
(however, see the CompCert project)

@ Testing is the only viable option

/\
( ... but with testing you never know you caught all bugs! )

v




All (unverified) compilers have bugs

“ Every compiler we tested was found to
crash and also to silently generate
wrong code when presented with valid input.”

/
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Finding and Understanding Bugs in C Compilers

John Regehr

Xuejun Yang Yang Chen Eric Eide |

“ [The verified part of] CompCert is the only compiler
we have tested for which Csmith cannot find wrong-code

errors. This is not for lack of trying: we have devoted
about six CPU-years to the task.”
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This lecture:
Verified compilers

What? Proof that compiler produces good code.

Why?  To avoid bugs, to avoid testing.

4 )

restof '~ How? By mathematical proof...

this lecture
\_ Y,




Proving a compiler correct

like first-order logic, or higher-order logic )

P

Ingredients:

* a formal logic for the proofs

o — — . \
accurate models of proofs are only about things
* the source language that live within the logic, i.e.
* the target language we need to represent the
* the compiler algorithm g relevant artefacts in the logic y
Tools: ( a lot of details... (to get wrong) )

* a proof assistant (software)
- . 2
... hecessary to use mechanised proof
assistant (think, ‘Eclipse for logic’) to
avoid mistakes, missing details

/




Accurate model of prog. language

Model of programs:

* syntax — what it looks like

* semantics — how it behaves
A

( e.g. an interpreter for the syntax )

Major styles of (operational, relational) semantics:

* big-step this style for structured source semantics )
* small-step this style for unstructured target semantics )

... hext slides provide examples.




Syntax

Source:

exp = Num num
| Var name
| Plus exp exp

Target ‘machine code’:

inst = Const name num
ﬂ | Move name name
| Add name name name

CTarget program consists of list of 1nst )




Source semantics (big-step)

Big-step semantics as relation 1 defined by rules, e.g.

lookup s in env finds v

(Num n, env) ! n (Var s, env) 1 v

(x1, env) | vl (x2, env) | VvZ

(Add x1 x2, env) 1 vl + v/

|

( called “big-step”: each step ! describes complete evaluation )




Target semantics (small-step)

“small-step”: transitions describe parts of executions

We model the state as a mapping from names to values here.

step (Const s n) state = state[s ~» n]
step (Move sl s2) state = state[sl » state sZ]
step (Add sl sZ2 s3) state = state[sl - state sZ2 + state s3]

steps [] state = state
steps (X::xs) state = steps xs (step x state)



Compiler function

-

~

generated code stores
result in register name (n)
given to compiler

compile (Num k) n = [Const n k 4

[Move n vi——

compile (Var v) n

\_

Relies on variable names in
source to match variables
names in target.

~

J

compile (Plus x1 x2) n =

compile x1 n ++ compile x2 (n+l) ++ [Add n n (n+1)]

|

( Uses names above

n as temporaries. )




Correctness statement

Proved using proof assistant — demo!

For every evaluation in the source ... )

VX env res. for target state and k, such that ... )
(x, env) | res =

vstate k.
(vi env v. (lookup env 1 = SOME v) = (state 1 =v) A1 < k) =

(let state' = steps (compile x k) state 1in A

p
(state’ k = res) A k greater than all var

vi. 1 <k =>ACS’CCI’CG' 1 = state 1)) names and state in sync

with source env ...
\

~

J

4 )
... in that case, the result res will be stored at

location k in the target state after execution
\_ J

C ... and lower part of state left untouched. )




Well, that example was simple enough...

But:

Some people say:

A programming language isn't real until it has a self-hosting
compiler

Bootstrapping for verified compilers? Yes!
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Dimensions of Compiler Veritication

source code

< how far compiler goes )

abstract syntax
intermediate language

bytecode Our verification covers the full
spectrum of both dimensions.

machine code

compiler implementation  implementation machine code as part
algorithm in ML in machine code  of a larger system
/\

( the thing that is verified )




|[dea behind in-logic bootstrapping

C input: verified compiler function )

Trustw V thy code generation:

functions in HOL (shallow embedding)
l proof-producing translation [ICFP’12, JFP’ [ 4]

CakeML program (deep embedding)
l verified compilation of CakeML [POPL 14]

x86-64 machine code (deep embedding)

A

Coutput: verified implementation of compiler function)




The CakeML at a glance

strict impure functional language )

The CakeML langua
= Standard ML without |/O or functors

A

/i.e. with almost everything else: N

Y higher-order functions

mutual recursion and polymorphism
datatypes and (nested) pattern matching
references and (user-defined) exceptions

R

K modules, sighatures, abstract types Y.

The verified machine-code implementation:
parsing, type inference, compilation, garbage collection, bignums etc.

implements a read-eval-print loop (see demo).



The CakeML compiler verification

How?

Mostly standard verification techniques as presented in this lecture,
but scaled up to large examples. (Four people, two years.)

Combpiler:

Do .-

New optimising compiler: ) -
x86-64
S =

.. work in progress (want to join? myreen@chalmers.se)

3- 23 3



mailto:myreen@chalmers.se

Compiler verification summary

Ingredients:

» a formal logic for the proofs
* accurate models of

* the source language
* the target language
* the compiler algorithm

Tools:
* a proof assistant (software)

Method:
* (interactively) prove a simulation relation

Questions? Interested?



