Guest lecture for Compiler Construction, Spring 2015

Verified compilers

Magnus Myréen

Mentions joint work with Ramana Kumar, Michael Norrish, Scott Owens and many more

Guest lecture for Compiler Construction, Spring 2015

Verified compilers

k What?

@ Comes with a machine-checked proof that for any program,
which does not generate a compilation error, the source and

target programs behave identically. (Precise statement needs
more details.) *

(Sometimes called certified compilers, but that’s misleading...)

Trusting the compiler

When finding a bug, we go to great lengths to find it in our own
code.

@ Most programmers trust the compiler to generate correct code

@ The most important task of the compiler is to generate correct

code Ve
k Maybe it is worth the cost!)

- _ -
Establishing Compiler Correctness Cost reduction?

Alternatives

@ Proving the correctness of a compiler is prohibitively expensive
(however, see the CompCert project)

@ Testing is the only viable option

/\
(... but with testing you never know you caught all bugs!)

v

All (unverified) compilers have bugs

“ Every compiler we tested was found to
crash and also to silently generate
wrong code when presented with valid input.”

/

PLDI'11

Finding and Understanding Bugs in C Compilers

John Regehr

Xuejun Yang Yang Chen Eric Eide |

“ [The verified part of] CompCert is the only compiler
we have tested for which Csmith cannot find wrong-code

errors. This is not for lack of trying: we have devoted
about six CPU-years to the task.”

o hunti . Our first contributio O dUVARE=T ily patched; the base VEISIOITUTS
of our bug—hun?ngosrt::dﬁ,er testing. Unlike previous tools, Csmlth was heavily p
state of the art 1m thaIt) cover a large subset of C while avoiding the

: Bt . . - nerator that sup-
generates programs that BUE= = <= T o would destroy its ability W crontod Csmith, a randomized test-case g€l

e emith ocen-

This lecture:
Verified compilers

What? Proof that compiler produces good code.

Why? To avoid bugs, to avoid testing.

4)

restof '~ How? By mathematical proof...

this lecture
_ Y,

Proving a compiler correct

like first-order logic, or higher-order logic)

P

Ingredients:

* a formal logic for the proofs

o — — . \
accurate models of proofs are only about things
* the source language that live within the logic, i.e.
* the target language we need to represent the
* the compiler algorithm g relevant artefacts in the logic y
Tools: (a lot of details... (to get wrong))

* a proof assistant (software)
- . 2
... hecessary to use mechanised proof
assistant (think, ‘Eclipse for logic’) to
avoid mistakes, missing details

/

Accurate model of prog. language

Model of programs:

* syntax — what it looks like

* semantics — how it behaves
A

(e.g. an interpreter for the syntax)

Major styles of (operational, relational) semantics:

* big-step this style for structured source semantics)
* small-step this style for unstructured target semantics)

... hext slides provide examples.

Syntax

Source:

exp = Num num
| Var name
| Plus exp exp

Target ‘machine code’:

inst = Const name num
ﬂ | Move name name
| Add name name name

CTarget program consists of list of 1nst)

Source semantics (big-step)

Big-step semantics as relation 1 defined by rules, e.g.

lookup s in env finds v

(Num n, env) ! n (Var s, env) 1 v

(x1, env) | vl (x2, env) | VvZ

(Add x1 x2, env) 1 vl + v/

|

(called “big-step”: each step ! describes complete evaluation)

Target semantics (small-step)

“small-step”: transitions describe parts of executions

We model the state as a mapping from names to values here.

step (Const s n) state = state[s ~» n]
step (Move sl s2) state = state[sl » state sZ]
step (Add sl sZ2 s3) state = state[sl - state sZ2 + state s3]

steps [] state = state
steps (X::xs) state = steps xs (step x state)

Compiler function

-

~

generated code stores
result in register name (n)
given to compiler

compile (Num k) n = [Const n k 4

[Move n vi——

compile (Var v) n

_

Relies on variable names in
source to match variables
names in target.

~

J

compile (Plus x1 x2) n =

compile x1 n ++ compile x2 (n+l) ++ [Add n n (n+1)]

|

(Uses names above

n as temporaries.)

Correctness statement

Proved using proof assistant — demo!

For every evaluation in the source ...)

VX env res. for target state and k, such that ...)
(x, env) | res =

vstate k.
(vi env v. (lookup env 1 = SOME v) = (state 1 =v) A1 < k) =

(let state' = steps (compile x k) state 1in A

p
(state’ k = res) A k greater than all var

vi. 1 <k =>ACS’CCI’CG' 1 = state 1)) names and state in sync

with source env ...
\

~

J

4)
... in that case, the result res will be stored at

location k in the target state after execution
_ J

C ... and lower part of state left untouched.)

Well, that example was simple enough...

But:

Some people say:

A programming language isn't real until it has a self-hosting
compiler

Bootstrapping for verified compilers? Yes!

SCaIing U
POPL 2014 D...

A Verified Tmpl

i & Michael No

CakeML:

O. Myreen rrish 2
University of Cambridge UK

2 Canberra Researc ab, NICTA, Austra\ia
.o University of Kent,

Ramana Kumar * 1 Magnus

ified compilers for

by the semantics of Ca
s including lexing, parsing, type checking, 11
collection, arbitrary- f ~¢ o compiler alon
cam from a sour
~11t1010 Of that

cremental ilation, &
" etic, and compiies pootstrapping: ~=== Fi
- 3 1 1“ U I
for;:t bootstrapping of a
ally verified compiler.

and dynamic comp

iputions are wotold.
-end verified, demonstrating that each
be compose

that is end-t0
ification effort can in practice
o one of the pieces rely on any
P, qvel ap- PracTIo™==
e akeML, and 1LIS &30 = 0
I @ and OCaml. BY 17
mi. DI 7L code along-

ing a system
o e eh a ver

Dimensions of Compiler Veritication

source code

< how far compiler goes)

abstract syntax
intermediate language

bytecode Our verification covers the full
spectrum of both dimensions.

machine code

compiler implementation implementation machine code as part
algorithm in ML in machine code of a larger system
/\

(the thing that is verified)

|[dea behind in-logic bootstrapping

C input: verified compiler function)

Trustw V thy code generation:

functions in HOL (shallow embedding)
l proof-producing translation [ICFP’12, JFP’ [4]

CakeML program (deep embedding)
l verified compilation of CakeML [POPL 14]

x86-64 machine code (deep embedding)

A

Coutput: verified implementation of compiler function)

The CakeML at a glance

strict impure functional language)

The CakeML langua
= Standard ML without |/O or functors

A

/i.e. with almost everything else: N

Y higher-order functions

mutual recursion and polymorphism
datatypes and (nested) pattern matching
references and (user-defined) exceptions

R

K modules, sighatures, abstract types Y.

The verified machine-code implementation:
parsing, type inference, compilation, garbage collection, bignums etc.

implements a read-eval-print loop (see demo).

The CakeML compiler verification

How?

Mostly standard verification techniques as presented in this lecture,
but scaled up to large examples. (Four people, two years.)

Combpiler:

Do .-

New optimising compiler:) -
x86-64
S =

.. work in progress (want to join? myreen@chalmers.se)

3- 23 3

mailto:myreen@chalmers.se

Compiler verification summary

Ingredients:

» a formal logic for the proofs
* accurate models of

* the source language
* the target language
* the compiler algorithm

Tools:
* a proof assistant (software)

Method:
* (interactively) prove a simulation relation

Questions? Interested?

