
CakeML
A verified implementation of ML

Magnus Myreen

Chalmers University of Technology & University of Cambridge

Joint work with Ramana Kumar, Michael Norrish, Scott Owens and many more

LFCS seminar, Edinburgh, May 2015

CakeML
A verified implementation of ML

Motivation

Why?

We wanted to know
whether it’s possible.

functional correctness Background
From my PhD (2009):

Verified Lisp interpreter
in ARM, x86 and PowerPC machine code

Collaboration with Jared Davis (2011):
Verified Lisp read-eval-print loop
in 64-bit x86 machine code, with dynamic compilation
(plus verification of an ACL2-like theorem prover)

Can we do the same for ML?
A verified implementation of ML
(plus verification of a HOL-like theorem prover?)

Other HOL4 hackers also have relevant interests…

People involved

Ramana Kumar
(Uni. Cambridge)

Michael Norrish
(NICTA, ANU)

Scott Owens
(Uni. Kent)

Magnus Myreen
(Chalmers)

verified compilation from
CakeML to bytecode

operational semantics

verified type inferencer

verified parsing (syntax is
compatible with SML)

verified x86 implementations

proof-producing code
generation from HOL

Proofs in HOL4

HOL4 is a fully expansive theorem prover:

HOL4 theorem prover

HOL4 kernel

All proofs expand at runtime
into primitive inferences in
the HOL4 kernel.

The kernel implements the
axioms and inference rules
of higher-order logic.

Overall aim

proof-producing translation [ICFP’12, JFP’14]

functions in HOL (shallow embedding)

CakeML program (deep embedding)

verified compilation of CakeML [POPL’14]

x86-64 machine code (deep embedding)

to make proof assistants into trustworthy and
practical program development platforms

Trustworthy code extraction:

This talk

Part 1: verified implementation of CakeML

Part 2: current status, HOL light, future

Part 1: verified implementation of CakeML

CakeML: A Verified Implementation of ML

Ramana Kumar ⇤ 1 Magnus O. Myreen † 1 Michael Norrish 2 Scott Owens 3

1 Computer Laboratory, University of Cambridge, UK

2 Canberra Research Lab, NICTA, Australia‡

3 School of Computing, University of Kent, UK

Abstract

We have developed and mechanically verified an ML system called

CakeML, which supports a substantial subset of Standard ML.

CakeML is implemented as an interactive read-eval-print loop

(REPL) in x86-64 machine code. Our correctness theorem ensures

that this REPL implementation prints only those results permitted

by the semantics of CakeML. Our verification effort touches on

a breadth of topics including lexing, parsing, type checking, in-

cremental and dynamic compilation, garbage collection, arbitrary-

precision arithmetic, and compiler bootstrapping.

Our contributions are twofold. The first is simply in build-

ing a system that is end-to-end verified, demonstrating that each

piece of such a verification effort can in practice be composed

with the others, and ensuring that none of the pieces rely on any

over-simplifying assumptions. The second is developing novel ap-

proaches to some of the more challenging aspects of the veri-

fication. In particular, our formally verified compiler can boot-

strap itself: we apply the verified compiler to itself to produce a

verified machine-code implementation of the compiler. Addition-

ally, our compiler proof handles diverging input programs with a

lightweight approach based on logical timeout exceptions. The en-

tire development was carried out in the HOL4 theorem prover.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification—Correctness proofs, Formal

methods; F.3.1 [Logics and meanings of programs]: Specifying

and Verifying and Reasoning about Programs—Mechanical veri-

fication, Specification techniques, Invariants

Keywords Compiler verification; compiler bootstrapping; ML;

machine code verification; read-eval-print loop; verified parsing;

verified type checking; verified garbage collection.

⇤ supported by the Gates Cambridge Trust

† supported by the Royal Society, UK

‡ NICTA is funded by the Australian Government through the Department

of Communications and the Australian Research Council through the ICT

Centre of Excellence Program.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

POPL ’14, January 22–24, 2014, San Diego, CA, USA..

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2544-8/14/01. . . $15.00.

http://dx.doi.org/10.1145/2535838.2535841

1. Introduction

The last decade has seen a strong interest in verified compilation;

and there have been significant, high-profile results, many based

on the CompCert compiler for C [1, 14, 16, 29]. This interest is

easy to justify: in the context of program verification, an unverified

compiler forms a large and complex part of the trusted computing

base. However, to our knowledge, none of the existing work on

verified compilers for general-purpose languages has addressed all

aspects of a compiler along two dimensions: one, the compilation

algorithm for converting a program from a source string to a list of

numbers representing machine code, and two, the execution of that

algorithm as implemented in machine code.

Our purpose in this paper is to explain how we have verified

a compiler along the full scope of both of these dimensions for a

practical, general-purpose programming language. Our language is

called CakeML, and it is a strongly typed, impure, strict functional

language based on Standard ML and OCaml. By verified, we mean

that the CakeML system is ultimately x86-64 machine code along-

side a mechanically checked theorem in higher-order logic saying

that running that machine code causes an input program to yield

output or diverge as specified by the semantics of CakeML.

We did not write the CakeML compiler and platform directly in

machine code. Instead we write it in higher-order logic and synthe-

sise CakeML from that using our previous technique [22], which

puts the compiler on equal footing with other CakeML programs.

We then apply the compiler to itself, i.e., we bootstrap it. This

avoids a tedious manual refinement proof relating the compilation

algorithm to its implementation, as well as providing a moderately

large example program. More specifically,

• we write, and can run, the compiler as a function in the logic,

and we synthesise a CakeML implementation of the compiler

inside the logic;

• we bootstrap the compiler to get a machine-code implementa-

tion inside the logic; and

• the compiler correctness theorem thereby applies to the

machine-code implementation of the compiler.

Another consequence of bootstrapping is that we can include the

compiler implementation as part of the runtime system to form an

interactive read-eval-print loop (REPL). A verified REPL enables

high-assurance applications that provide interactivity, an important

feature for interactive theorem provers in the LCF tradition, which

were the original motivation for ML.

Contributions
• Semantics that are carefully designed to be simultaneously suit-

able for proving meta-theoretic language properties and for sup-

porting a verified implementation. (Section 3)

• An extension of a proof-producing synthesis pathway [22] orig-

inally from logic to ML, now to machine code (via verified

compilation). (Sections 4–6, 10)

POPL’14

Dimensions of Compiler Verification

source code

abstract syntax

intermediate language

bytecode

machine code

how far compiler goes

compiler
algorithm

implementation
in ML

implementation
in machine code

interactive call in read-
eval-print loop runtime

the thing that is verified

Our verification covers the full
spectrum of both dimensions.

The CakeML language

“The CakeML language is designed to be both easy
to program in and easy to reason about formally”

was originally

i.e. with almost everything else:
✓ higher-order functions
✓ mutual recursion and polymorphism
✓ datatypes and (nested) pattern matching
✓ references and (user-defined) exceptions
✓ modules, signatures, abstract types

CakeML, the language
= Standard ML without I/O or functors

Reality:

Design:

It is still clean, but not always simple.

light-weight approach to
divergence preservation

with big-step op. sem.

Contributions of POPL’14 paper

use verified compiler to
produce verified

implementation of the compiler

Artefacts Proof techniques

Specifications

Verified Algorithms

Divergence Preservation

Bootstrapping

Proof development where everything fits together.

Approach

Proof by refinement:

Step 1: specification of CakeML language

Step 2: functional implementation in logic

Step 3: production of verified x86-64 machine code

‣ big-step and small-step operational semantics

‣ read-eval-print-loop as verified function in logic

‣ produced mostly by bootstrapping the compiler

Operational semantics

‣ big-step evaluation relation
‣ environment semantics (cf. substitution sem.)
‣ produces TypeError for badly typed evaluations (e.g. 1+nil)
‣ stuck = divergence

Big-step semantics:

Equivalent small-step semantics:

‣ used for type-soundness proof and definition of divergence

Read-eval-print-loop semantics.

Semantics written in Lem, see Mulligan et al. [ICFP’14]

Approach

Proof by refinement:

Step 1: specification of CakeML language

Step 2: functional implementation in logic

Step 3: production of verified x86-64 machine code

‣ big-step and small-step operational semantics

‣ read-eval-print-loop as verified function in logic

‣ produced mostly by bootstrapping the compiler

Functional implementation

lexing, parsing

type inference

compilation

re
ad

-e
va

l-p
rin

t-l
oo

p

bytecode execution

Read-eval-print loop defined as rec. function in the logic:

lexing, parsing

Specification:

Context-free grammar (CFG) for significant subset of SML

Implementation:
Parsing-Expression-Grammar (PEG) Parser

Executable lexer.

‣ inductive evaluation relation
‣ executable interpreter for PEGs

Correctness:
Soundness and completeness

‣ induction on length of token list/parse tree and
non-terminal rank

type inference

Specification:

Implementation:

Correctness:

Declarative type system.

Based on Milner’s Algorithm W
Purely functional (uses state-exception monad)

Proved sound and complete w.r.t. declarative type system
Re-use of previous work on verified unification

new since last month!

compilation

Purpose:

Translates (typechecked) CakeML into CakeML Bytecode.

Implementation:

Translation via one intermediate language (IL).

‣ de Bruijn indices
‣ big-step operational semantics

CakeML to IL: makes language more uniform
IL to IL: removes pattern-matching, lightweight opt.
IL to Bytecode: closure conversion, data refinement, tail-call opt.

bytecode executionSemantics of

bc inst ::= Stack bc stack op | PushExc | PopExc
| Return | CallPtr | Call loc
| PushPtr loc | Jump loc | JumpIf loc

| Ref | Deref | Update | Print | PrintC char

| Label n | Tick | Stop
bc stack op ::= Pop | Pops n | Shift n n | PushInt int

| Cons n n | El n | TagEq n | IsBlock n

| Load n | Store n | LoadRev n
| Equal | Less | Add | Sub | Mult | Div | Mod

loc ::= Lab n | Addr n
n = num

bc value ::= Number int | RefPtr n | Block n bc value

⇤

| CodePtr n | StackPtr n
bc state ::= { stack : bc value

⇤; refs : n 7! bc value;
code : bc inst

⇤; pc : n; handler : n;
output : string; names : n 7! string;
clock : n? }

Figure 2. CakeML Bytecode syntax, values, and machine state

6.3 CakeML Bytecode
The target language of the compiler is CakeML Bytecode (Fig-
ure 2), a low-level assembly language for a virtual machine with
a single random-access4 stack.

CakeML Bytecode was designed with three separate goals: to
be (i) conveniently abstract as a target for the compiler and its
proofs, and (ii) easy to map into reasonably efficient machine code
that is (iii) possible to reason about and verify w.r.t. an operational
semantics for x86-64 machine code. To support (i), the bytecode
has no notion of pointers to the heap, and provides structured
data (Cons packs multiple bytecode values into a Block) on the
stack instead. Also, the bytecode Number values are mathematical
integers; the x86-64 implementation includes a bignum library
to implement the arithmetic instructions. For (ii), we ensure that
most bytecode instructions map to one or two x86-64 machine
instructions; and for (iii), the bytecode essentially only operates
over a single ‘stack’, the x86-64 stack which we access using
the normal stack and base pointers, rsp and rbp registers. (See
Section 10 for the implementation of the bytecode in x86-64.)

The bytecode semantics is a deterministic state transition sys-
tem: the relation bs1 ! bs2 fetches from code the instruction
indicated by pc and executes it to produce the next machine state.
We give some example clauses in Figure 3.

Our data refinement relation l, r,Cv |= bv says bv is a byte-
code value representing the IL value Cv . It is parameterised by two
functions: l to translate labels to bytecode addresses, and r provid-
ing extra information about code pointers for closures.

The refinement of closures is most interesting. There are two
components to a closure: its body expression, and its environment
which may refer to other closures in mutual recursion. We use a
correspondence of labels to link a code pointer to an annotated
IL body, and for the environment, we assume the IL annotations
correctly specify the closure environment. In the IL, a closure
looks like CRecClos env defs n, where env is the enclosing5

environment, and the body is the nth element of the bundle of
recursive definitions defs . We say

l, r,CRecClos env defs n |= Block c [CodePtr a;Block e bvs]

holds (c and e are tags indicating closure and environment Blocks)
when:

4 Most operations work on the top of the stack, but Load n and Store n

read/write the cell n places below the top, and LoadRev takes an index
from the bottom.
5 Annotations on defs[n] build the closure environment from env .

fetch(bs) = Stack (Cons t n) bs.stack = vs @ xs |vs| = n

bs ! (bump bs){stack = Block t (rev vs) :: xs}

fetch(bs) = Return bs.stack = x :: CodePtr ptr :: xs

bs ! bs{stack = x :: xs; pc = ptr}

fetch(bs) = CallPtr bs.stack = x :: CodePtr ptr :: xs

bs ! bs{stack = x :: CodePtr (bump bs).pc :: xs; pc = ptr}

fetch(bs) = PushExc bs.stack = xs bs

0 = bump bs

bs ! bs

0{stack = StackPtr (bs.handler) :: xs; handler = |xs|}

fetch(bs) = PopExc bs.handler = |ys|
bs.stack = x :: xs @StackPtr h :: ys

bs ! (bump bs){stack = x :: ys; handler = h}

Figure 3. CakeML Bytecode semantics (selection). The helper
function fetch calculates the next instruction using the pc and code,
and bump updates the pc to the next instruction.

•
defs[n] has label lab and annotations ann , l(lab) = a, and
|ann| = |bvs|;

• for every variable x with an env annotation in ann , the corre-
sponding bytecode value bv in bvs satisfies l, r, env(x) |= bv ;
and,

• for every variable with a rec i annotation in ann , the corre-
sponding bytecode value in bvs is RefPtr p, for some p, and
there are env

0, defs 0, and j such that r(p) = (env 0, defs 0, j)
and CRecClos env defs i ⇡ CRecClos env

0
defs

0 j.
Thus, for a function in mutual recursion we assume it is behind
the indirection of a RefPtr; the function r acts as an oracle in-
dicating the closure that should be pointed to. To tie the knot,
the inductive hypothesis in our compilation proof says whenever
r(p) = (env 0, defs 0, j) the bytecode machine refs binds p to a
value bv satisfying l, r,CRecClos env defs j |= bv .

6.4 Translation to Bytecode
The main compilation algorithm takes an IL expression as input and
produces bytecode instructions. Additional context for the compiler
includes an environment binding IL variables to stack offsets, and
a return context indicating the number of variables that need to be
discarded before a jump if the expression is in tail position.

The correctness theorem for this phase is similar to Theorem 8
(whose proof uses this one as a lemma), assuming evaluation in
the IL semantics rather than the source semantics. In particular, we
have a relation called IL inv that captures an invariant between the
IL environment and store, the compiler state, the bytecode machine
state, and proof information like the l and r functions. This relation
is used in the definition of compiler inv, which crosses the three
languages (CakeML, IL, Bytecode). The theorem below depends
only on the IL and the bytecode.

Theorem 12. If the IL semantics says Cexp evaluates in environ-
ment Cenv and store Cs to a new store Cs 0 and result Cres , and all
the values in the context are fully annotated, then for all bytecode
machine states bs satisfying IL inv with Cenv and Cs (and proof
information including l and r), then
• If Cres is a value, Cv , then

Running bs with code from compiling Cexp in non-tail
position leads the bytecode machine to terminate in a new
state bs

0 such that IL inv holds of Cenv , Cs 0, and bs

0, and
bs

0.stack = bv :: bs.stack with l, r0,Cv |= bv ; and,

bc inst ::= Stack bc stack op | PushExc | PopExc
| Return | CallPtr | Call loc
| PushPtr loc | Jump loc | JumpIf loc

| Ref | Deref | Update | Print | PrintC char

| Label n | Tick | Stop
bc stack op ::= Pop | Pops n | Shift n n | PushInt int

| Cons n n | El n | TagEq n | IsBlock n

| Load n | Store n | LoadRev n
| Equal | Less | Add | Sub | Mult | Div | Mod

loc ::= Lab n | Addr n
n = num

bc value ::= Number int | RefPtr n | Block n bc value

⇤

| CodePtr n | StackPtr n
bc state ::= { stack : bc value

⇤; refs : n 7! bc value;
code : bc inst

⇤; pc : n; handler : n;
output : string; names : n 7! string;
clock : n? }

Figure 2. CakeML Bytecode syntax, values, and machine state

6.3 CakeML Bytecode
The target language of the compiler is CakeML Bytecode (Fig-
ure 2), a low-level assembly language for a virtual machine with
a single random-access4 stack.

CakeML Bytecode was designed with three separate goals: to
be (i) conveniently abstract as a target for the compiler and its
proofs, and (ii) easy to map into reasonably efficient machine code
that is (iii) possible to reason about and verify w.r.t. an operational
semantics for x86-64 machine code. To support (i), the bytecode
has no notion of pointers to the heap, and provides structured
data (Cons packs multiple bytecode values into a Block) on the
stack instead. Also, the bytecode Number values are mathematical
integers; the x86-64 implementation includes a bignum library
to implement the arithmetic instructions. For (ii), we ensure that
most bytecode instructions map to one or two x86-64 machine
instructions; and for (iii), the bytecode essentially only operates
over a single ‘stack’, the x86-64 stack which we access using
the normal stack and base pointers, rsp and rbp registers. (See
Section 10 for the implementation of the bytecode in x86-64.)

The bytecode semantics is a deterministic state transition sys-
tem: the relation bs1 ! bs2 fetches from code the instruction
indicated by pc and executes it to produce the next machine state.
We give some example clauses in Figure 3.

Our data refinement relation l, r,Cv |= bv says bv is a byte-
code value representing the IL value Cv . It is parameterised by two
functions: l to translate labels to bytecode addresses, and r provid-
ing extra information about code pointers for closures.

The refinement of closures is most interesting. There are two
components to a closure: its body expression, and its environment
which may refer to other closures in mutual recursion. We use a
correspondence of labels to link a code pointer to an annotated
IL body, and for the environment, we assume the IL annotations
correctly specify the closure environment. In the IL, a closure
looks like CRecClos env defs n, where env is the enclosing5

environment, and the body is the nth element of the bundle of
recursive definitions defs . We say

l, r,CRecClos env defs n |= Block c [CodePtr a;Block e bvs]

holds (c and e are tags indicating closure and environment Blocks)
when:

4 Most operations work on the top of the stack, but Load n and Store n

read/write the cell n places below the top, and LoadRev takes an index
from the bottom.
5 Annotations on defs[n] build the closure environment from env .

fetch(bs) = Stack (Cons t n) bs.stack = vs @ xs |vs| = n

bs ! (bump bs){stack = Block t (rev vs) :: xs}

fetch(bs) = Return bs.stack = x :: CodePtr ptr :: xs

bs ! bs{stack = x :: xs; pc = ptr}

fetch(bs) = CallPtr bs.stack = x :: CodePtr ptr :: xs

bs ! bs{stack = x :: CodePtr (bump bs).pc :: xs; pc = ptr}

fetch(bs) = PushExc bs.stack = xs bs

0 = bump bs

bs ! bs

0{stack = StackPtr (bs.handler) :: xs; handler = |xs|}

fetch(bs) = PopExc bs.handler = |ys|
bs.stack = x :: xs @StackPtr h :: ys

bs ! (bump bs){stack = x :: ys; handler = h}

Figure 3. CakeML Bytecode semantics (selection). The helper
function fetch calculates the next instruction using the pc and code,
and bump updates the pc to the next instruction.

•
defs[n] has label lab and annotations ann , l(lab) = a, and
|ann| = |bvs|;

• for every variable x with an env annotation in ann , the corre-
sponding bytecode value bv in bvs satisfies l, r, env(x) |= bv ;
and,

• for every variable with a rec i annotation in ann , the corre-
sponding bytecode value in bvs is RefPtr p, for some p, and
there are env

0, defs 0, and j such that r(p) = (env 0, defs 0, j)
and CRecClos env defs i ⇡ CRecClos env

0
defs

0 j.
Thus, for a function in mutual recursion we assume it is behind
the indirection of a RefPtr; the function r acts as an oracle in-
dicating the closure that should be pointed to. To tie the knot,
the inductive hypothesis in our compilation proof says whenever
r(p) = (env 0, defs 0, j) the bytecode machine refs binds p to a
value bv satisfying l, r,CRecClos env defs j |= bv .

6.4 Translation to Bytecode
The main compilation algorithm takes an IL expression as input and
produces bytecode instructions. Additional context for the compiler
includes an environment binding IL variables to stack offsets, and
a return context indicating the number of variables that need to be
discarded before a jump if the expression is in tail position.

The correctness theorem for this phase is similar to Theorem 8
(whose proof uses this one as a lemma), assuming evaluation in
the IL semantics rather than the source semantics. In particular, we
have a relation called IL inv that captures an invariant between the
IL environment and store, the compiler state, the bytecode machine
state, and proof information like the l and r functions. This relation
is used in the definition of compiler inv, which crosses the three
languages (CakeML, IL, Bytecode). The theorem below depends
only on the IL and the bytecode.

Theorem 12. If the IL semantics says Cexp evaluates in environ-
ment Cenv and store Cs to a new store Cs 0 and result Cres , and all
the values in the context are fully annotated, then for all bytecode
machine states bs satisfying IL inv with Cenv and Cs (and proof
information including l and r), then
• If Cres is a value, Cv , then

Running bs with code from compiling Cexp in non-tail
position leads the bytecode machine to terminate in a new
state bs

0 such that IL inv holds of Cenv , Cs 0, and bs

0, and
bs

0.stack = bv :: bs.stack with l, r0,Cv |= bv ; and,

Instructions:

Small-step semantics; values and state:

bytecode executionSemantics of

Sample rules:

bc inst ::= Stack bc stack op | PushExc | PopExc
| Return | CallPtr | Call loc
| PushPtr loc | Jump loc | JumpIf loc

| Ref | Deref | Update | Print | PrintC char

| Label n | Tick | Stop
bc stack op ::= Pop | Pops n | Shift n n | PushInt int

| Cons n n | El n | TagEq n | IsBlock n

| Load n | Store n | LoadRev n
| Equal | Less | Add | Sub | Mult | Div | Mod

loc ::= Lab n | Addr n
n = num

bc value ::= Number int | RefPtr n | Block n bc value

⇤

| CodePtr n | StackPtr n
bc state ::= { stack : bc value

⇤; refs : n 7! bc value;
code : bc inst

⇤; pc : n; handler : n;
output : string; names : n 7! string;
clock : n? }

Figure 2. CakeML Bytecode syntax, values, and machine state

6.3 CakeML Bytecode
The target language of the compiler is CakeML Bytecode (Fig-
ure 2), a low-level assembly language for a virtual machine with
a single random-access4 stack.

CakeML Bytecode was designed with three separate goals: to
be (i) conveniently abstract as a target for the compiler and its
proofs, and (ii) easy to map into reasonably efficient machine code
that is (iii) possible to reason about and verify w.r.t. an operational
semantics for x86-64 machine code. To support (i), the bytecode
has no notion of pointers to the heap, and provides structured
data (Cons packs multiple bytecode values into a Block) on the
stack instead. Also, the bytecode Number values are mathematical
integers; the x86-64 implementation includes a bignum library
to implement the arithmetic instructions. For (ii), we ensure that
most bytecode instructions map to one or two x86-64 machine
instructions; and for (iii), the bytecode essentially only operates
over a single ‘stack’, the x86-64 stack which we access using
the normal stack and base pointers, rsp and rbp registers. (See
Section 10 for the implementation of the bytecode in x86-64.)

The bytecode semantics is a deterministic state transition sys-
tem: the relation bs1 ! bs2 fetches from code the instruction
indicated by pc and executes it to produce the next machine state.
We give some example clauses in Figure 3.

Our data refinement relation l, r,Cv |= bv says bv is a byte-
code value representing the IL value Cv . It is parameterised by two
functions: l to translate labels to bytecode addresses, and r provid-
ing extra information about code pointers for closures.

The refinement of closures is most interesting. There are two
components to a closure: its body expression, and its environment
which may refer to other closures in mutual recursion. We use a
correspondence of labels to link a code pointer to an annotated
IL body, and for the environment, we assume the IL annotations
correctly specify the closure environment. In the IL, a closure
looks like CRecClos env defs n, where env is the enclosing5

environment, and the body is the nth element of the bundle of
recursive definitions defs . We say

l, r,CRecClos env defs n |= Block c [CodePtr a;Block e bvs]

holds (c and e are tags indicating closure and environment Blocks)
when:

4 Most operations work on the top of the stack, but Load n and Store n

read/write the cell n places below the top, and LoadRev takes an index
from the bottom.
5 Annotations on defs[n] build the closure environment from env .

fetch(bs) = Stack (Cons t n) bs.stack = vs @ xs |vs| = n

bs ! (bump bs){stack = Block t (rev vs) :: xs}

fetch(bs) = Return bs.stack = x :: CodePtr ptr :: xs

bs ! bs{stack = x :: xs; pc = ptr}

fetch(bs) = CallPtr bs.stack = x :: CodePtr ptr :: xs

bs ! bs{stack = x :: CodePtr (bump bs).pc :: xs; pc = ptr}

fetch(bs) = PushExc bs.stack = xs bs

0 = bump bs

bs ! bs

0{stack = StackPtr (bs.handler) :: xs; handler = |xs|}

fetch(bs) = PopExc bs.handler = |ys|
bs.stack = x :: xs @StackPtr h :: ys

bs ! (bump bs){stack = x :: ys; handler = h}

Figure 3. CakeML Bytecode semantics (selection). The helper
function fetch calculates the next instruction using the pc and code,
and bump updates the pc to the next instruction.

•
defs[n] has label lab and annotations ann , l(lab) = a, and
|ann| = |bvs|;

• for every variable x with an env annotation in ann , the corre-
sponding bytecode value bv in bvs satisfies l, r, env(x) |= bv ;
and,

• for every variable with a rec i annotation in ann , the corre-
sponding bytecode value in bvs is RefPtr p, for some p, and
there are env

0, defs 0, and j such that r(p) = (env 0, defs 0, j)
and CRecClos env defs i ⇡ CRecClos env

0
defs

0 j.
Thus, for a function in mutual recursion we assume it is behind
the indirection of a RefPtr; the function r acts as an oracle in-
dicating the closure that should be pointed to. To tie the knot,
the inductive hypothesis in our compilation proof says whenever
r(p) = (env 0, defs 0, j) the bytecode machine refs binds p to a
value bv satisfying l, r,CRecClos env defs j |= bv .

6.4 Translation to Bytecode
The main compilation algorithm takes an IL expression as input and
produces bytecode instructions. Additional context for the compiler
includes an environment binding IL variables to stack offsets, and
a return context indicating the number of variables that need to be
discarded before a jump if the expression is in tail position.

The correctness theorem for this phase is similar to Theorem 8
(whose proof uses this one as a lemma), assuming evaluation in
the IL semantics rather than the source semantics. In particular, we
have a relation called IL inv that captures an invariant between the
IL environment and store, the compiler state, the bytecode machine
state, and proof information like the l and r functions. This relation
is used in the definition of compiler inv, which crosses the three
languages (CakeML, IL, Bytecode). The theorem below depends
only on the IL and the bytecode.

Theorem 12. If the IL semantics says Cexp evaluates in environ-
ment Cenv and store Cs to a new store Cs 0 and result Cres , and all
the values in the context are fully annotated, then for all bytecode
machine states bs satisfying IL inv with Cenv and Cs (and proof
information including l and r), then
• If Cres is a value, Cv , then

Running bs with code from compiling Cexp in non-tail
position leads the bytecode machine to terminate in a new
state bs

0 such that IL inv holds of Cenv , Cs 0, and bs

0, and
bs

0.stack = bv :: bs.stack with l, r0,Cv |= bv ; and,

compilation

Correctness:

(exp, env) +ev val =)
“the code for exp is installed in bs etc.” =)
9bs 0. bs !⇤

bs

0 ^ “bs

0
contains val”

Shape of correctness theorem:

Proved in the direction of compilation.

Bytecode semantics step relation

What about divergence?
We want: generated code diverges

if and only if source code diverges

Big-step semantics:
• has an optional clock component
• clock ‘ticks’ decrements every time a function is applied
• once clock hits zero, execution stops with a TimeOut

Why do this?

• because now big-step semantics describes both
terminating and non-terminating evaluations

8exp env clock . 9res. (exp, env , Some clock) +ev res

for every exp env clock there is some result

produced by the semantics

either: Result
or TimeOut

Idea: add logical clock

Evaluation diverges if

8clock . (exp, env , Some clock) +ev TimeOut

TimeOut happensfor all clock values

Divergence

(exp, env) +ev val =)
“the code for exp is installed in bs etc.” =)
9bs 0. bs !⇤

bs

0 ^ “bs

0
contains val”

Compiler correctness proved in conventional forward direction:

Bytecode has clock … that stays in sync with CakeML clock

Theorem: bytecode diverges if and only if CakeML eval diverges

Approach

Proof by refinement:

Step 1: specification of CakeML language

Step 2: functional implementation in logic

Step 3: production of verified x86-64 machine code

‣ big-step and small-step operational semantics

‣ read-eval-print-loop as verified function in logic

‣ produced mostly by bootstrapping the compiler

Verified x86-64 machine code

Real executable also has
30-line unverified C wrapper.

parsing

type inference

compilation

re
ad

-e
va

l-p
rin

t-l
oo

p

bytecode execution

garbage collector

bignum library

lexer

hand-crafted verified
machine code based
on previous work.

verified x86-64 code
generated using
bootstrapping of the
verified compiler.

JIT: translates Bytecode to
machine code; jumps to

generated machine code.

Machine-code Hoare logic &
proof-producing decompilation

Compiling Bytecode into x86-64 mc

• the rest of the bytecode stack is kept in the x86-64 stack, i.e., all
values in the x86-64 stack are roots for the garbage collector,

• the stack is accessed through the normal stack and base point-
ers, registers rsp and rbp;

• other registers and state keep track of temporary values, the
state of the allocator and system configuration.

• output is produced via calls to a special code pointer, for which
we have an assumption that each call to this code pointer puts a
character onto some external stream (in practice we link to C’s
putc routine). Input is handled similarly (using getc).

• memory contains code for supporting routines: the verified
garbage collector, arbitrary-precision arithmetic library etc.

The garbage collector updates the heap and the stack (i.e., the roots
for the heap), both of which can contain code pointers and stack
pointers. In order for the garbage collector to distinguish between
data pointers and code/stack pointers all code/stack pointers must
have zero as the least significant bit (i.e., appear to be small inte-
gers). We ensure that all code pointers end with zero as the least
significant bit by making sure that each bytecode instruction is
mapped into x86-64 machine code that is of even length.

Implementation of CakeML Bytecode Having formalised the
representation of bytecode states, we define a function that maps
CakeML Bytecode instructions into concrete x86-64 machine in-
structions (i.e. lists of bytes). Here i is the index of the instruction
that is to be translated (i is used for the translation of branch in-
structions, such as Jump).

x64 i (Stack Pop) = [0x48, 0x58]
x64 i (Stack Add) = [0x48, . . .]

...

Entire bytecode programs are translated by x64 code:
x64 code i [] = []

x64 code i (x :: xs) = let c = x64 i x in

c @ x64 code (i+ length c) xs

We prove a few key lemmas about the execution of the gener-
ated x86-64 machine code.

Theorem 21 (x64 code Implements Bytecode Steps). The code
generated by x64 code is faithful to the execution of each of
the CakeML Bytecode instructions. Each instruction executes
at least one x86-64 instruction (hence later). Note that exe-
cution must either reach the target state or resort to an error
(out of memory error).

bs ! bs

0 =)
temporal {(base, x64 code 0 bs.code)}
(now (bc heap bs (base, aux)))

later (now (bc heap bs

0 (base, aux))
_ now (out of memory error aux)))

Proof sketch. For simple cases of the bytecode step relation
(!), the proof was manual using the programming logic from
Myreen [19]. More complex instruction snippets (such as the sup-
porting routines) were produced using a combination of manual
proof and proof-producing synthesis (e.g. [20]).

Theorem 22 (x64 code Implements Terminating Bytecode Execu-
tions). Same as the theorem above, but with +

bc

instead of !.

Proof sketch. Induction on the number of steps.

Theorem 23 (x86-64 Implementation of REPL
i

step). Executing
the x64 code-generated code for the result of the bootstrapping (i.e.
bytecode) and the bytecode snippet that calls repl step has the
desired effect w.r.t. bc heap.

Proof sketch. Follows from theorems 18, 19 and 22.

The only source of possible divergence in our x86-64 imple-
mentation of REPL

i

is the execution performed by bc eval. When
the logic function bc eval returns None, we want to know that the
underlying machine gets stuck in an infinite loop and that the output
stays the same. (Only the top-level loop is able to print output.)

repl diverged out aux =
⇤⌃(now (9bs. bc heap bs aux ⇤ (bs.output = out)))

Theorem 24 (x86-64 Divergence). For any bs , such that
bc eval bs = None, we have:

(8bs 0. bs !⇤
bs

0 =) bs.output = bs

0
.output) =)

temporal {(base, x64 code 0 bs.code)}
(now (bc heap bs (base, aux)))

later (repl diverged bs.output aux)
_ now (out of memory error aux)))

Proof sketch. Theorem 21 and temporal logic.

Top-level Correctness Theorem The top-level theorem for the
entire x86-64 implementation is stated as follows.

Theorem 25 (x86-64 Implementation of REPL
s

). If the state starts
from a good initial state (init), then execution behaves according to
REPL

s

l for some list l of type inference failures.

temporal entire machine code implementation

(now (init inp aux))
later ((9l res. repl returns (out res) aux ^

(REPL
s

l inp res ^ terminates res))
_
(9l res. repl diverged (out res) aux ^

(REPL
s

l inp res ^ ¬terminates res))
_
now (out of memory error aux)))

Here repl returns states that control is returned to the return pointer
of aux , and out and terminates are defined as follows.

out Terminate = ""

out Diverge = ""

out (Result str rest) = str @ out rest

terminates Terminate = true

terminates Diverge = false

terminates (Result str rest) = terminates rest

Proof sketch. The execution of bytecode is verified as sketched
above. The other parts of the x86-64 implementation (the setup
code, the lexer and the code that ties together the top-level loop)
was verified, again, using a combination of manual Hoare logic
reasoning and proof-producing synthesis. Theorem 14 was used to
replace REPL

i

by the top-level specification REPL

s

.

11. Small Benchmarks
To run the verified x86-64 machine code, we inline the code into a
30-line C program, which essentially just allocates memory (with
execute permissions enabled) then runs it (passing in function
pointers for getc and putc).

The result of running a few benchmarks is shown below. Exe-
cution times are compared with interpreted OCaml: CakeML runs
the Fibonacci example 2.2 times faster than interpreted OCaml.

compiled OCaml Poly/ML CakeML
Fibonacci 7.9 4.6 2.2
Quicksort 3.1 10.0 0.6
Batched queue 2.0 12.9 0.4
Binary tree 4.3 5.6 0.6

The Fibonacci benchmark computes the 31st Fibonacci number

Correctness:

Each Bytecode instruction is correctly executed by
generated x86-64 code.

heap invariant / memory abstraction

Extract of definition:

x64 i Pop = [0x48, 0x58]

x64_code i (x::xs) = x64 i x ++ x64_code (i + len(x64 i x)) xs

each bytecode inst. maps to some x86

Bootstrapping the verified compiler

proof-producing translation [ICFP’12, JFP’14]

functions in HOL (shallow embedding)

CakeML program (deep embedding)

verified compilation of CakeML [POPL’14]

x86-64 machine code (deep embedding)

Idea for in-logic bootstrapping

output: verified implementation of compiler function

Trustworthy code extraction:

input: verified compiler function

CakeML program (COMPILE) such that:
⊢ COMPILE implements compile

by proof-producing synthesis [ICFP’12]

parsing

type inference

compilation

function in logic: compile

Compiling the compiler in logic

⊢ compile-to-x64 COMPILE = x64-code
Proof by evaluation inside the logic:

Combination of theorems:
⊢ x64-code implements compile

⊢ ∀prog. compile-to-x64 prog implements prog
Compiler correctness theorem:

Details (build up)

4 Ramana Kumar et al.

2.1 Evaluation in the Logic

Let us begin with an example of the kind of proof task we mean to be solved by evaluation.
Given input map length [[1; 1]; [2]; []], we wish to produce the theorem

` map length [[1; 1]; [2]; []]= [2; 1; 0]

by evaluation using the definitions of map and length. The key characteristic is that the right-
hand side of the theorem contains no more reducible expressions: it is a normal form in the
rewriting system consisting of the function definitions and beta-conversion. The theorem
should be produced automatically and efficiently.

The solution, introduced to HOL4 by Barras [3], is to interpret the equations character-
ising functions like map (shown below) as they would be by an interpreter for a functional
programming language.

map f []= []
map f (h::t)= f h::map f t

The semantics of equality, and the support for beta-conversion, make it possible for the
reduction steps performed by such an interpreter to each be justified by a (derived) rule
of inference that can be replayed in the inference kernel. Logically speaking, evaluation
is no more sophisticated than rewriting (or simplification) as described, for example, by
Paulson [20]. The difference is in the order in which rewrite rules are applied (bottom-up
versus top-down) and in the book-keeping done to make the process more efficient. Although
Barras’s evaluation supports variables, for our purposes we need only consider evaluation
problems, like the one above, where the input term has no free variables.

It is important to note that the equations characterising map above have the same status
(proven theorems) as the theorem produced by evaluation. In particular, the fact that they
can be viewed as defining equations does not distinguish them, in HOL, from any other
equations. This is in contrast to logical systems based on type theory, such as the logic
implemented by Coq [4], in which there is a non-trivial notion of definitional (as opposed
to propositional) equality. When definitional equality includes beta- and eta-conversion (as
well as the defining equations of defined functions), the theorems we wish to prove by
evaluation are simply instances of the reflexivity rule, with a normal form on the right-hand
side. Evaluation, in our sense, is thus “built-in” to Coq; however, care is required to ensure
reasonable efficiency TODO: cite?.

An alternative approach to solving evaluation problems, as described for example by
Aehlig et. al. [1], is to compile them to the metalanguage of the theorem prover, do evalua-
tion there, and re-interpret the result in the logic. This approach is known as normalisation
by evaluation. Aehlig et. al. say that if the compiler and runtime used for evaluation is the
same as the one running the theorem prover itself, there is no addition to the trusted comput-
ing base; but normalisation by evaluation does require us to trust that the semantics of the
logic has been correctly captured in the translation to and from the metalanguage. Indeed,
normalisation by evaluation cannot be implemented without extending the theorem prover’s
kernel with a rule whose purpose is to assert that equality in the logic is correctly modelled
by evaluation in the metalanguage2. By contrast, Barras’s evaluation (using derived rules for
rewriting) requires no additional primitive inference rules, although it is less efficient (not
compiled).

2 To be fair, an equivalent assertion is also made in Coq whose trusted kernel checks definitional equality
using normalisation by evaluation; in Coq this is considered a core part of the kernel rather than an extension.

Function in logic:
4 Ramana Kumar et al.

2.1 Evaluation in the Logic

Let us begin with an example of the kind of proof task we mean to be solved by evaluation.
Given input map length [[1; 1]; [2]; []], we wish to produce the theorem

` map length [[1; 1]; [2]; []]= [2; 1; 0]

by evaluation using the definitions of map and length. The key characteristic is that the right-
hand side of the theorem contains no more reducible expressions: it is a normal form in the
rewriting system consisting of the function definitions and beta-conversion. The theorem
should be produced automatically and efficiently.

The solution, introduced to HOL4 by Barras [3], is to interpret the equations character-
ising functions like map (shown below) as they would be by an interpreter for a functional
programming language.

map f []= []
map f (h::t)= f h::map f t

The semantics of equality, and the support for beta-conversion, make it possible for the
reduction steps performed by such an interpreter to each be justified by a (derived) rule
of inference that can be replayed in the inference kernel. Logically speaking, evaluation
is no more sophisticated than rewriting (or simplification) as described, for example, by
Paulson [20]. The difference is in the order in which rewrite rules are applied (bottom-up
versus top-down) and in the book-keeping done to make the process more efficient. Although
Barras’s evaluation supports variables, for our purposes we need only consider evaluation
problems, like the one above, where the input term has no free variables.

It is important to note that the equations characterising map above have the same status
(proven theorems) as the theorem produced by evaluation. In particular, the fact that they
can be viewed as defining equations does not distinguish them, in HOL, from any other
equations. This is in contrast to logical systems based on type theory, such as the logic
implemented by Coq [4], in which there is a non-trivial notion of definitional (as opposed
to propositional) equality. When definitional equality includes beta- and eta-conversion (as
well as the defining equations of defined functions), the theorems we wish to prove by
evaluation are simply instances of the reflexivity rule, with a normal form on the right-hand
side. Evaluation, in our sense, is thus “built-in” to Coq; however, care is required to ensure
reasonable efficiency TODO: cite?.

An alternative approach to solving evaluation problems, as described for example by
Aehlig et. al. [1], is to compile them to the metalanguage of the theorem prover, do evalua-
tion there, and re-interpret the result in the logic. This approach is known as normalisation
by evaluation. Aehlig et. al. say that if the compiler and runtime used for evaluation is the
same as the one running the theorem prover itself, there is no addition to the trusted comput-
ing base; but normalisation by evaluation does require us to trust that the semantics of the
logic has been correctly captured in the translation to and from the metalanguage. Indeed,
normalisation by evaluation cannot be implemented without extending the theorem prover’s
kernel with a rule whose purpose is to assert that equality in the logic is correctly modelled
by evaluation in the metalanguage2. By contrast, Barras’s evaluation (using derived rules for
rewriting) requires no additional primitive inference rules, although it is less efficient (not
compiled).

2 To be fair, an equivalent assertion is also made in Coq whose trusted kernel checks definitional equality
using normalisation by evaluation; in Coq this is considered a core part of the kernel rather than an extension.

Evaluation in logic:

6 Ramana Kumar et al.

Consider the following definition of the syntax for the map function (this is CakeML
abstract syntax; it is pretty-printed underneath):

map dec =
Letrec
[("map","v3",
Fun "v4"
(Mat (Var "v4")
[(Pcon "nil" [],Con "nil" []);
(Pcon "::" [Pvar "v2"; Pvar "v1"],
Con "::"
[App [Var "v3"; Var "v2"]; App [App [Var "map"; Var "v3"]; Var "v1"]])]))]

The syntax is more readable as pretty-printed concrete syntax:

fun map v3 v4 =

case v4

of [] => []

| v2::v1 => v3 v2::(map v3 v1)

The type of map dec in HOL is dec (a CakeML declaration). Thus, it is not a HOL function
and does not get its functional semantics that way. Rather, the semantics is given explicitly
by an evaluation relation EvalDec env1 dec env2 that relates a declaration dec and an initial
environment env1 (e.g., containing the datatype declaration for lists) to a resulting environ-
ment env2. The resulting environment for the map dec declaration will include a binding of
a new variable, called "map", to a function value (i.e., a closure).

If we want to prove something about map, working directly with the syntax and eval-
uation relation (operational semantics) is much more cumbersome than using the defining
equations of the shallow embedding directly. However the extra machinery of the deep em-
bedding (e.g., the environment and the explicit evaluation steps) make it a more realistic
formalisation of map as a functional program. Fortunately, we can do our reasoning on the
shallow embedding and carry any results over to the more realistic deep embedding auto-
matically using a technique developed by Myreen and Owens [19], which we call (proof-
producing) translation.

Translation synthesises a deep embedding following the structure of the shallow em-
bedding’s equations and simultaneously proves a certificate theorem about the synthesised
implementation. Synthesis happens in a bottom-up manner, using the certificate theorems
for previously translated code as required. The certificate theorem is proved automatically,
using the shallow embedding’s induction theorem (typically proved automatically when the
shallow embedding is defined) and relates the behaviour of the synthesised implementation
to its shallow counterpart. To explain certificate theorems, let us work through understanding
the following one for map by taking it apart.

Example 1 (Certificate theorem for map)

` 9env c.
EvalDec InitEnv map dec env ^ Lookup "map" env = Some c ^
((a �! b)�! ListTy a �! ListTy b)map c

There are two important concepts contained in such a certificate theorem: refinement in-
variants (e.g., ListTy a) and the operational semantics (EvalDec). A refinement invariant
specifies the relationship between between a shallowly-embedded value (a HOL term) and a

Translation into CakeML produces:

6 Ramana Kumar et al.

Consider the following definition of the syntax for the map function (this is CakeML
abstract syntax; it is pretty-printed underneath):

map dec =
Letrec
[("map","v3",
Fun "v4"
(Mat (Var "v4")
[(Pcon "nil" [],Con "nil" []);
(Pcon "::" [Pvar "v2"; Pvar "v1"],
Con "::"
[App [Var "v3"; Var "v2"]; App [App [Var "map"; Var "v3"]; Var "v1"]])]))]

The syntax is more readable as pretty-printed concrete syntax:

fun map v3 v4 =

case v4

of [] => []

| v2::v1 => v3 v2::(map v3 v1)

The type of map dec in HOL is dec (a CakeML declaration). Thus, it is not a HOL function
and does not get its functional semantics that way. Rather, the semantics is given explicitly
by an evaluation relation EvalDec env1 dec env2 that relates a declaration dec and an initial
environment env1 (e.g., containing the datatype declaration for lists) to a resulting environ-
ment env2. The resulting environment for the map dec declaration will include a binding of
a new variable, called "map", to a function value (i.e., a closure).

If we want to prove something about map, working directly with the syntax and eval-
uation relation (operational semantics) is much more cumbersome than using the defining
equations of the shallow embedding directly. However the extra machinery of the deep em-
bedding (e.g., the environment and the explicit evaluation steps) make it a more realistic
formalisation of map as a functional program. Fortunately, we can do our reasoning on the
shallow embedding and carry any results over to the more realistic deep embedding auto-
matically using a technique developed by Myreen and Owens [19], which we call (proof-
producing) translation.

Translation synthesises a deep embedding following the structure of the shallow em-
bedding’s equations and simultaneously proves a certificate theorem about the synthesised
implementation. Synthesis happens in a bottom-up manner, using the certificate theorems
for previously translated code as required. The certificate theorem is proved automatically,
using the shallow embedding’s induction theorem (typically proved automatically when the
shallow embedding is defined) and relates the behaviour of the synthesised implementation
to its shallow counterpart. To explain certificate theorems, let us work through understanding
the following one for map by taking it apart.

Example 1 (Certificate theorem for map)

` 9env c.
EvalDec InitEnv map dec env ^ Lookup "map" env = Some c ^
((a �! b)�! ListTy a �! ListTy b)map c

There are two important concepts contained in such a certificate theorem: refinement in-
variants (e.g., ListTy a) and the operational semantics (EvalDec). A refinement invariant
specifies the relationship between between a shallowly-embedded value (a HOL term) and a

Translation into CakeML, actual output:

Details (build up)

6 Ramana Kumar et al.

Consider the following definition of the syntax for the map function (this is CakeML
abstract syntax; it is pretty-printed underneath):

map dec =
Letrec
[("map","v3",
Fun "v4"
(Mat (Var "v4")
[(Pcon "nil" [],Con "nil" []);
(Pcon "::" [Pvar "v2"; Pvar "v1"],
Con "::"
[App [Var "v3"; Var "v2"]; App [App [Var "map"; Var "v3"]; Var "v1"]])]))]

The syntax is more readable as pretty-printed concrete syntax:

fun map v3 v4 =

case v4

of [] => []

| v2::v1 => v3 v2::(map v3 v1)

The type of map dec in HOL is dec (a CakeML declaration). Thus, it is not a HOL function
and does not get its functional semantics that way. Rather, the semantics is given explicitly
by an evaluation relation EvalDec env1 dec env2 that relates a declaration dec and an initial
environment env1 (e.g., containing the datatype declaration for lists) to a resulting environ-
ment env2. The resulting environment for the map dec declaration will include a binding of
a new variable, called "map", to a function value (i.e., a closure).

If we want to prove something about map, working directly with the syntax and eval-
uation relation (operational semantics) is much more cumbersome than using the defining
equations of the shallow embedding directly. However the extra machinery of the deep em-
bedding (e.g., the environment and the explicit evaluation steps) make it a more realistic
formalisation of map as a functional program. Fortunately, we can do our reasoning on the
shallow embedding and carry any results over to the more realistic deep embedding auto-
matically using a technique developed by Myreen and Owens [19], which we call (proof-
producing) translation.

Translation synthesises a deep embedding following the structure of the shallow em-
bedding’s equations and simultaneously proves a certificate theorem about the synthesised
implementation. Synthesis happens in a bottom-up manner, using the certificate theorems
for previously translated code as required. The certificate theorem is proved automatically,
using the shallow embedding’s induction theorem (typically proved automatically when the
shallow embedding is defined) and relates the behaviour of the synthesised implementation
to its shallow counterpart. To explain certificate theorems, let us work through understanding
the following one for map by taking it apart.

Example 1 (Certificate theorem for map)

` 9env c.
EvalDec InitEnv map dec env ^ Lookup "map" env = Some c ^
((a �! b)�! ListTy a �! ListTy b)map c

There are two important concepts contained in such a certificate theorem: refinement in-
variants (e.g., ListTy a) and the operational semantics (EvalDec). A refinement invariant
specifies the relationship between between a shallowly-embedded value (a HOL term) and a

Produced proof (called a certificate theorem):

Translation into CakeML, actual output:

6 Ramana Kumar et al.

Consider the following definition of the syntax for the map function (this is CakeML
abstract syntax; it is pretty-printed underneath):

map dec =
Letrec
[("map","v3",
Fun "v4"
(Mat (Var "v4")
[(Pcon "nil" [],Con "nil" []);
(Pcon "::" [Pvar "v2"; Pvar "v1"],
Con "::"
[App [Var "v3"; Var "v2"]; App [App [Var "map"; Var "v3"]; Var "v1"]])]))]

The syntax is more readable as pretty-printed concrete syntax:

fun map v3 v4 =

case v4

of [] => []

| v2::v1 => v3 v2::(map v3 v1)

The type of map dec in HOL is dec (a CakeML declaration). Thus, it is not a HOL function
and does not get its functional semantics that way. Rather, the semantics is given explicitly
by an evaluation relation EvalDec env1 dec env2 that relates a declaration dec and an initial
environment env1 (e.g., containing the datatype declaration for lists) to a resulting environ-
ment env2. The resulting environment for the map dec declaration will include a binding of
a new variable, called "map", to a function value (i.e., a closure).

If we want to prove something about map, working directly with the syntax and eval-
uation relation (operational semantics) is much more cumbersome than using the defining
equations of the shallow embedding directly. However the extra machinery of the deep em-
bedding (e.g., the environment and the explicit evaluation steps) make it a more realistic
formalisation of map as a functional program. Fortunately, we can do our reasoning on the
shallow embedding and carry any results over to the more realistic deep embedding auto-
matically using a technique developed by Myreen and Owens [19], which we call (proof-
producing) translation.

Translation synthesises a deep embedding following the structure of the shallow em-
bedding’s equations and simultaneously proves a certificate theorem about the synthesised
implementation. Synthesis happens in a bottom-up manner, using the certificate theorems
for previously translated code as required. The certificate theorem is proved automatically,
using the shallow embedding’s induction theorem (typically proved automatically when the
shallow embedding is defined) and relates the behaviour of the synthesised implementation
to its shallow counterpart. To explain certificate theorems, let us work through understanding
the following one for map by taking it apart.

Example 1 (Certificate theorem for map)

` 9env c.
EvalDec InitEnv map dec env ^ Lookup "map" env = Some c ^
((a �! b)�! ListTy a �! ListTy b)map c

There are two important concepts contained in such a certificate theorem: refinement in-
variants (e.g., ListTy a) and the operational semantics (EvalDec). A refinement invariant
specifies the relationship between between a shallowly-embedded value (a HOL term) and a

Evaluation of compilation (in logic)
Proof-Grounded Bootstrapping of a Verified Compiler 9

Example 2 (Compilation by evaluation of map)

` CompileDec InitCS map dec =
(MapCS,
[Jump (Lab 12); Label 10; Stack (PushInt 0); Stack (PushInt 1); Ref;
PushPtr (Lab 11); Stack (Load 0); Stack (Load 5); Stack (PushInt 1);
Stack (Cons 0); Stack (... ...); ; ... ; ...])

Thus we can see that evaluation results in a theorem that produces a concrete list of bytecode
for map dec, to which the conclusion of the general correctness theorem for CompileDec
(Lemma 1) applies.

In addition to evaluating the compiler as a function in the logic, we can also use trans-
lation to produce an implementation of the compiler as a deep embedding. In other words,
just as we produced map dec plus its certificate theorem from the map algorithm, we can
produce syntax and a certificate theorem for the compiler from the shallow embedding of
CompileDec. Since the compiler is a rather more involved algorithm than map TODO: MG:
give size data?, it is split into many auxiliary function and datatype definitions, so this time
we use translation not to produce a single declaration (like map dec) but a CakeML module
(called "C" below) containing multiple declarations (called CompileDec decs below). Just as
for map, the certificate theorem for CompileDec shows that the generated CakeML code runs
successfully in the initial environment to produce an environment, abbreviated as CompEnv,
containing a closure that implements CompileDec.

Lemma 2 (Certificate Theorem for CompileDec)

` 9c.
EvalDec InitEnv (Struct "C" CompileDec decs) CompEnv ^
LookupMod "C" "compiledec" CompEnv = Some c ^
(CompStateTy�! DecTy�! PairTy CompStateTy (ListTy BCInstTy)) CompileDec c

The result of translating CompileDec includes CakeML syntax for the compiler, namely
CompileDec decs. A natural question is what happens if we use evaluation of CompileDec
on the syntax for CompileDec produced by translation. What can we conclude about the
resulting bytecode? This question is the idea behind proof-grounded bootstrapping, to which
we now turn.

3 Proof-Grounded Bootstrapping

The aim of bootstrapping is to obtain a verified low-level implementation of a compiler
directly from the verified compilation algorithm, and to thereby remove the need to trust
the process by which the verified compilation algorithm gets compiled. Let us see how we
obtain this verified low-level implementation automatically through a combination of the
proof-producing-translation and evaluation-by-rewriting proof automation techniques.

Via translation we have obtained CakeML syntax for the compiler (CompileDec decs).
Now, we use evaluation to calculate the application of the compiler to its syntax. This is
analogous to Example 2 but instead of using map dec as input, we use the module declaring
the compiler. The result of this evaluation is what we call the bootstrapping theorem.

Lemma 3 (Bootstrapping Theorem for CompileDec)

` CompileDec InitCS (Struct "C" CompileDec decs)=
(CompCS,CompileDec bytecode)

8 Ramana Kumar et al.

compilation from CakeML abstract syntax (as seen in map dec in the previous section)
to CakeML Bytecode (Section 6), an assembly-like language that operates over structured
data and is our main stepping stone on the way to real machine code. When we package
the compiler in a read-eval-print loop (REPL), we will add verified parsing from CakeML
concrete syntax (i.e., a string), and further verified compilation to x86-64 machine code (i.e.,
numbers).

A compiler is a program for translating code from a high-level language to a low-level
language, and the property usually considered to constitute its correctness is semantics-
preservation. We define the CakeML compiler as a function in the logic, since that is the
natural place for carrying out verification; the compilation algorithm is defined as a shallow
embedding like map in the previous section. Such a shallow embedding, together with a
correctness theorem, is what is typically meant by a “verified compiler”, for example the
Compcert verified compiler [10] is a verified algorithm in our terminology. Compcert is run
by being extracted to OCaml (which is unverified). Using bootstrapping we eventually verify
a much more concrete implementation of the CakeML compiler.

To verify the compiler, we need semantics for both the high-level- and low-level lan-
guages. We have seen examples of the semantics for CakeML in the previous section, in
particular EvalDec env1 dec env2 which specifies the evaluation of a declaration. The seman-
tics of CakeML Bytecode is given as a state-transition system, bs1 !⇤ bs2, which means
bytecode-machine state bs1 transitions to state bs2 in zero or more steps. The bytecode-
machine states (explained more thoroughly in Section 6) contain code and a program counter,
as well as the current state of the memory.

A call to the compiler looks like this: CompileDec cs1 dec = (cs2,bc), where cs1 and cs2
are the compiler’s internal state and bc is the generated bytecode. Because we eventually
want to call the compiler multiple times in succession (for the REPL), we prove preservation
not just of semantics of the input program but of an invariant, Inv env cs bs, between the en-
vironment env in the CakeML semantics, the compiler’s state cs, and the bytecode-machine
state bs. This is an example of forward simulation. The compiler correctness theorem says
that if the invariant holds for an environment env1, and the semantics of dec in that environ-
ment produces env2, then the compiled code for dec will run to completion and the invariant
will hold again in env2. TODO: MG: show a commuting diagram? Formally,
Lemma 1 (Correctness of CompileDec for Successful Declarations)

` Inv env1 cs1 bs1 ^ EvalDec env1 dec env2 ^ CompileDec cs1 dec = (cs2,bc))
9bs2. (AddCode bs1 bc)!⇤ bs2 ^ Halted bs2 ^ Inv env2 cs2 bs2

This form of compiler correctness theorem is only suitable for source programs that termi-
nate successfully. For bootstrapping, that is the important case, since we know compilation
of the compiler will terminate successfully. The CakeML compiler is, however, also verified
for the cases of diverging and failing input programs; we will reason about these cases when
we want to run the verified compiler at runtime in a read-eval-print loop (REPL, Section 4).
We will not go further into the details of the invariant, except to say that it embodies data
refinement from CakeML source values to CakeML Bytecode values with more than enough
fidelity for verified printing.

Now we have seen the compiler, CompileDec, as a verified algorithm. Let us look
at some examples of applying our verified algorithm techniques, evaluation and transla-
tion, to the compiler. Firstly, we can evaluate applications of the compiler to CakeML
programs in the logic, for example to map dec. Applying evaluation to the input term
CompileDec InitCS map dec, we obtain the following theorem, where MapCS stands for
the concrete compiler state that results:

Compiler correctness (specialised to terminating case):

(Some of the) actual details

Proof-Grounded Bootstrapping of a Verified Compiler 9

Example 2 (Compilation by evaluation of map)

` CompileDec InitCS map dec =
(MapCS,
[Jump (Lab 12); Label 10; Stack (PushInt 0); Stack (PushInt 1); Ref;
PushPtr (Lab 11); Stack (Load 0); Stack (Load 5); Stack (PushInt 1);
Stack (Cons 0); Stack (... ...); ; ... ; ...])

Thus we can see that evaluation results in a theorem that produces a concrete list of bytecode
for map dec, to which the conclusion of the general correctness theorem for CompileDec
(Lemma 1) applies.

In addition to evaluating the compiler as a function in the logic, we can also use trans-
lation to produce an implementation of the compiler as a deep embedding. In other words,
just as we produced map dec plus its certificate theorem from the map algorithm, we can
produce syntax and a certificate theorem for the compiler from the shallow embedding of
CompileDec. Since the compiler is a rather more involved algorithm than map TODO: MG:
give size data?, it is split into many auxiliary function and datatype definitions, so this time
we use translation not to produce a single declaration (like map dec) but a CakeML module
(called "C" below) containing multiple declarations (called CompileDec decs below). Just as
for map, the certificate theorem for CompileDec shows that the generated CakeML code runs
successfully in the initial environment to produce an environment, abbreviated as CompEnv,
containing a closure that implements CompileDec.

Lemma 2 (Certificate Theorem for CompileDec)

` 9c.
EvalDec InitEnv (Struct "C" CompileDec decs) CompEnv ^
LookupMod "C" "compiledec" CompEnv = Some c ^
(CompStateTy�! DecTy�! PairTy CompStateTy (ListTy BCInstTy)) CompileDec c

The result of translating CompileDec includes CakeML syntax for the compiler, namely
CompileDec decs. A natural question is what happens if we use evaluation of CompileDec
on the syntax for CompileDec produced by translation. What can we conclude about the
resulting bytecode? This question is the idea behind proof-grounded bootstrapping, to which
we now turn.

3 Proof-Grounded Bootstrapping

The aim of bootstrapping is to obtain a verified low-level implementation of a compiler
directly from the verified compilation algorithm, and to thereby remove the need to trust
the process by which the verified compilation algorithm gets compiled. Let us see how we
obtain this verified low-level implementation automatically through a combination of the
proof-producing-translation and evaluation-by-rewriting proof automation techniques.

Via translation we have obtained CakeML syntax for the compiler (CompileDec decs).
Now, we use evaluation to calculate the application of the compiler to its syntax. This is
analogous to Example 2 but instead of using map dec as input, we use the module declaring
the compiler. The result of this evaluation is what we call the bootstrapping theorem.

Lemma 3 (Bootstrapping Theorem for CompileDec)

` CompileDec InitCS (Struct "C" CompileDec decs)=
(CompCS,CompileDec bytecode)

Translation of compiler into CakeML

Proof-Grounded Bootstrapping of a Verified Compiler 9

Example 2 (Compilation by evaluation of map)

` CompileDec InitCS map dec =
(MapCS,
[Jump (Lab 12); Label 10; Stack (PushInt 0); Stack (PushInt 1); Ref;
PushPtr (Lab 11); Stack (Load 0); Stack (Load 5); Stack (PushInt 1);
Stack (Cons 0); Stack (... ...); ; ... ; ...])

Thus we can see that evaluation results in a theorem that produces a concrete list of bytecode
for map dec, to which the conclusion of the general correctness theorem for CompileDec
(Lemma 1) applies.

In addition to evaluating the compiler as a function in the logic, we can also use trans-
lation to produce an implementation of the compiler as a deep embedding. In other words,
just as we produced map dec plus its certificate theorem from the map algorithm, we can
produce syntax and a certificate theorem for the compiler from the shallow embedding of
CompileDec. Since the compiler is a rather more involved algorithm than map TODO: MG:
give size data?, it is split into many auxiliary function and datatype definitions, so this time
we use translation not to produce a single declaration (like map dec) but a CakeML module
(called "C" below) containing multiple declarations (called CompileDec decs below). Just as
for map, the certificate theorem for CompileDec shows that the generated CakeML code runs
successfully in the initial environment to produce an environment, abbreviated as CompEnv,
containing a closure that implements CompileDec.

Lemma 2 (Certificate Theorem for CompileDec)

` 9c.
EvalDec InitEnv (Struct "C" CompileDec decs) CompEnv ^
LookupMod "C" "compiledec" CompEnv = Some c ^
(CompStateTy�! DecTy�! PairTy CompStateTy (ListTy BCInstTy)) CompileDec c

The result of translating CompileDec includes CakeML syntax for the compiler, namely
CompileDec decs. A natural question is what happens if we use evaluation of CompileDec
on the syntax for CompileDec produced by translation. What can we conclude about the
resulting bytecode? This question is the idea behind proof-grounded bootstrapping, to which
we now turn.

3 Proof-Grounded Bootstrapping

The aim of bootstrapping is to obtain a verified low-level implementation of a compiler
directly from the verified compilation algorithm, and to thereby remove the need to trust
the process by which the verified compilation algorithm gets compiled. Let us see how we
obtain this verified low-level implementation automatically through a combination of the
proof-producing-translation and evaluation-by-rewriting proof automation techniques.

Via translation we have obtained CakeML syntax for the compiler (CompileDec decs).
Now, we use evaluation to calculate the application of the compiler to its syntax. This is
analogous to Example 2 but instead of using map dec as input, we use the module declaring
the compiler. The result of this evaluation is what we call the bootstrapping theorem.

Lemma 3 (Bootstrapping Theorem for CompileDec)

` CompileDec InitCS (Struct "C" CompileDec decs)=
(CompCS,CompileDec bytecode)

Evaluating the compiler on itself

10 Ramana Kumar et al.

The bootstrapping theorem contains a concrete list of bytecode instructions that is the code
generated by the compiler for the CompileDec decs module, which we have abbreviated as
CompileDec bytecode. In total length CompileDec bytecode= TODO, and the bootstrapping
theorem takes TODO: xxx minutes to be proved on modern hardware. TODO: stats/time/inferences
taken to produce translation theorem too?

Three theorems come together to create proof-grounded bootstrapping. Each corre-
sponds to a different level of concreteness for the compiler, namely, the algorithm, the high-
level implementation in CakeML, and the low-level implementation in bytecode. They can
be described as follows:

– Correctness Theorem: The output of the compiler implements the input, for all inputs.
This theorem is about the compilation algorithm (shallow embedding), and corresponds
to Lemma 1.

– Certificate Theorem: The syntax for the compiler (CompileDec decs) implements the
compiler. This theorem is about the high-level implementation of the compiler produced
by translation, and corresponds to Lemma 2.

– Bootstrapping Theorem: The output of the compiler when given its syntax as input
is low-level code for the compiler (CompileDec bytecode). This theorem contains the
low-level implementation of the compiler produced by evaluation, and corresponds to
Lemma 3.

Instantiating the Correctness Theorem with the Bootstrapping Theorem, then composing it
with the Certificate Theorem, we obtain the desired result that the low-level code for the
compiler implements the compiler. That is the method behind proof-grounded bootstrap-
ping.

TODO: This works even if you replace CompileDecs_decs with some other random
declarations (for which you have a certificate theorem) even if they don’t include the
compiler. So, do we need a name for the technique other than “bootstrapping”? In any
case, we should mention here that CompileDecs_decs can be replaced in the Certificate
and Bootstrapping theorems to obtain a low-level implementation of whatever.

In the sketch above, we used the word “implements” loosely. Let us look now at pre-
cisely what we obtain by following the bootstrapping method, and what assumptions remain
undischarged. The compiler correctness theorem, repeated below, has three antecedents: the
invariant, evaluation of the semantics, and an application of the compiler.

Lemma 1 (Correctness of CompileDec for Successful Declarations)

` Inv env1 cs1 bs1 ^ EvalDec env1 dec env2 ^ CompileDec cs1 dec = (cs2,bc))
9bs2. (AddCode bs1 bc)!⇤ bs2 ^ Halted bs2 ^ Inv env2 cs2 bs2

Following the bootstrapping method, we instantiate Lemma 1 so that the application
of the compiler matches the bootstrapping theorem (Lemma 3). Evaluation of the semantics
come from the certificate theorem (Lemma 2). To establish the initial invariant we can easily
construct a bytecode machine state, InitBS, that only contains the primitives and satisfies the
invariant:

Lemma 4 (Initial Invariant)

` Inv InitEnv InitCS InitBS

After instantiating the correctness theorem and proving its hypotheses as just described, we
are left with a conclusion that says that CompileDec bytecode runs to completion and the
resulting bytecode state satisfies the invariant at CompEnv, the environment containing the
compiler:

10 Ramana Kumar et al.

The bootstrapping theorem contains a concrete list of bytecode instructions that is the code
generated by the compiler for the CompileDec decs module, which we have abbreviated as
CompileDec bytecode. In total length CompileDec bytecode= TODO, and the bootstrapping
theorem takes TODO: xxx minutes to be proved on modern hardware. TODO: stats/time/inferences
taken to produce translation theorem too?

Three theorems come together to create proof-grounded bootstrapping. Each corre-
sponds to a different level of concreteness for the compiler, namely, the algorithm, the high-
level implementation in CakeML, and the low-level implementation in bytecode. They can
be described as follows:

– Correctness Theorem: The output of the compiler implements the input, for all inputs.
This theorem is about the compilation algorithm (shallow embedding), and corresponds
to Lemma 1.

– Certificate Theorem: The syntax for the compiler (CompileDec decs) implements the
compiler. This theorem is about the high-level implementation of the compiler produced
by translation, and corresponds to Lemma 2.

– Bootstrapping Theorem: The output of the compiler when given its syntax as input
is low-level code for the compiler (CompileDec bytecode). This theorem contains the
low-level implementation of the compiler produced by evaluation, and corresponds to
Lemma 3.

Instantiating the Correctness Theorem with the Bootstrapping Theorem, then composing it
with the Certificate Theorem, we obtain the desired result that the low-level code for the
compiler implements the compiler. That is the method behind proof-grounded bootstrap-
ping.

TODO: This works even if you replace CompileDecs_decs with some other random
declarations (for which you have a certificate theorem) even if they don’t include the
compiler. So, do we need a name for the technique other than “bootstrapping”? In any
case, we should mention here that CompileDecs_decs can be replaced in the Certificate
and Bootstrapping theorems to obtain a low-level implementation of whatever.

In the sketch above, we used the word “implements” loosely. Let us look now at pre-
cisely what we obtain by following the bootstrapping method, and what assumptions remain
undischarged. The compiler correctness theorem, repeated below, has three antecedents: the
invariant, evaluation of the semantics, and an application of the compiler.

Lemma 1 (Correctness of CompileDec for Successful Declarations)

` Inv env1 cs1 bs1 ^ EvalDec env1 dec env2 ^ CompileDec cs1 dec = (cs2,bc))
9bs2. (AddCode bs1 bc)!⇤ bs2 ^ Halted bs2 ^ Inv env2 cs2 bs2

Following the bootstrapping method, we instantiate Lemma 1 so that the application
of the compiler matches the bootstrapping theorem (Lemma 3). Evaluation of the semantics
come from the certificate theorem (Lemma 2). To establish the initial invariant we can easily
construct a bytecode machine state, InitBS, that only contains the primitives and satisfies the
invariant:

Lemma 4 (Initial Invariant)

` Inv InitEnv InitCS InitBS

After instantiating the correctness theorem and proving its hypotheses as just described, we
are left with a conclusion that says that CompileDec bytecode runs to completion and the
resulting bytecode state satisfies the invariant at CompEnv, the environment containing the
compiler:

Compiler correctness theorem:

NB: For a read-eval-print-loop, the details are a bit more involved…

Top-level correctness theorem

Top-level correctness theorem
Top-level specification:

string

initial program, the basis library

Correctness theorem:

• Holds p is satisfied by s if p is true. (p does not depend on the machine

state).

• ⌃ A is satisfied by s if A is satisfied by � n. s (n + k) for some k .

• ⇤ A is satisfied by s if A is satisfied by � n. s (n + k) for all k .

• A ^ B is satisfied by s if A is satisfied by s and B is satisfied by s . Similarly

for A _ B , A) B , and 9 x . A x .

The final correctness theorem we obtain is about a single machine-code pro-

gram (a list of bytes), which I abbreviate as ReplX64, and is phrased as a temporal

assertion about running that program. It states that if at some time the machine

state is appropriately initialised, then either it will eventually run out of memory,

or it will eventually diverge or terminate with output according to the CakeML

REPL semantics.

Theorem 9 (Correctness of REPL implementation in x86-64).

` TemporalX64 ReplX64

(Now (InitialisedX64 ms))

⌃ Now (OutOfMemX64 ms) _

9 output .

Holds (ReplSem Basis ms .input output) ^

if Diverges output then ⇤ ⌃ Now (RunningX64 output ms)

else ⌃ Now (TerminatedX64 output ms))

The helper function Diverges repl_result tests whether repl_result ends in ter-

mination or divergence (the repl result type is described in Section 2.3.1). There

are four predicates on machine states ms that encode our invariants and conven-

tions concerning the x86-64 machine as it simulates a bytecode machine.

• InitialisedX64 ms states that the machine is initialised. The heap invariant

is satisfied, there is a return pointer on the stack, and the machine’s output

stream is empty.

• OutOfMemX64 ms states that the machine has aborted execution and is

out of memory.

66

ReplSem Basis input output

string ending in either
Terminate or Diverge

large due to bootstrapping, naive compiler

Numbers
Performance:

Slow: interpreted OCaml is 1x faster (… future work!)

Effort:
~100k lines of proof script in HOL4

Size:
875,812 instructions of verified x86-64 machine code

< 5 man-years, but builds on a lot of previous work

implementation generates
more instructions at runtime

This talk

Part 1: verified implementation of CakeML

Part 2: current status, HOL light, future

Current status

Current compiler:

string tokens AST IL bytecode x86

huge step huge step

Bytecode simplified proofs of
read-eval-print loop, but made

optimisation impossible.

Current work / future plans
Refactored compiler:

string tokens AST IL-1

IL-2

IL-N

…

ASM

split into more conventional compiler phases

ARM

x86-64

MIPS-64

asm.jsAnthony Fox joins project and helps with final phases

closure compilation

removal of memory abstraction

register allocation

module compilation

pattern-match compilation

… as separate phases.

Verified examples on CakeML

Verification infrastructure:

for developing interesting verified examples.

• have: synthesis tool that maps HOL into CakeML [ICFP’12, JFP’14]
• future: integration with Arthur Charguéraud’s characteristic

formulae technology [ICFP’10, ICFP’11]

Big example: verified HOL light

ML was originally developed to host theorem provers.

Aim: verified HOL theorem prover.

We have [ITP’13, ITP’14]:
• syntax, semantics and soundness of HOL (stateful, stateless)
• verified implementation of the HOL light kernel in CakeML

(produced through synthesis)

Still to do:
• soundness of kernel ⇒ soundness of entire HOL light

• run HOL light standard library on top of CakeML

Freek Wiedijk is translating HOL light sources to CakeML

First bootstrapping of a formally verified compiler.

Summary

Contributions so far:

New lightweight method for divergence preservation.

Questions? Suggestions?

Long-term aim:
An ecosystem of tools and proofs around CakeML lang.

Current work:

Verified I/O (foreign-function interface). seL4.
Formally verified implementation of HOL light.

Compiler improvements (new ILs, opt, targets).

