LFCS seminar, Edinburgh, May 2015

CakeML

A verified implementation of ML

Magnus Myreen

Joint work with Ramana Kumar, Michael Norrish, Scott Owens and many more

Motivation

CakeML

A vern“ed implementation of ML

- Why?

We wanted to know
whether it’s possible.

[functional correctness) BaC kg rou nd

From #y PhD (2009):

Verified Lisp interpreter
in ARM, x86 and PowerPC machine code

Collaboration with Jared Davis (2011):

Verified Lisp read-eval-print loop
in 64-bit x86 machine code, with dynamic compilation

(plus verification of an ACL2-like theorem prover)

Can we do the same for ML?
A verified implementation of ML
(plus verification of a HOL-like theorem prover?)

Other HOL4 hackers also have relevant interests...

People Involved

-
operational semantics E

4 R
~ verified compilation from

CakeML to bytecode
- J

Ramana umar 4 : : 7 Scott O
fied co wens
(Uni. Cambridge) - verified €ype inferencer (Uni. Kent)

N
verified parsing (syntax is

compatible with SML)

J
4 . . .
9 verified X86 implementations

4 . '\ /
Michael Norrish proof-producing code ~ M -
IChae orris .
eneration from HOL agnus Myreen
(NICTAANU) 8 Chalmers)

Proofs in HOL4

HOL4 is a fully expansive theorem prover:

HOL4 theorem prover

HOL4 kernel

All proofs expand at runtime

into primitive inferences in
the HOL4 kernel.

The kernel implements the
axioms and inference rules
of higher-order logic.

Overall am

to make proof assistants into trustworthy and
practical program development platforms

Trustworthy code extraction:

functions in HOL (shallow embedding)
l proof-producing translation [ICFP’ |2, JFP’ | 4]
CakeML program (deep embedding)

l verified compilation of CakeML [POPL’ 14]

x86-64 machine code (deep embedding)

This talk

Part 1: verified implementation of CakeML

Part 2: current status, HOL light, future

Part 1: verified |
erified implementation of CakeML

POPL’I14

Ramana Kumar * Magnus O Myreen
1 Computer Laboratorys University of Cambridges UK
2 Canberra Research Lab, NICTA, Austrahax
3 gchool © Computing University of Kent, U
Abstract 1. Introduction
We have Jeveloped and mechanical\y yerified an ML system called The last decade has seen a strong interest 10 verified compilation
CakeML, which suppo ts a gubstantia subset of gtandard ML. and there have been signiﬁcant, hig _profile results, many base
mented as an interactive read—eva\—pﬁnt loop on the CompCert compiler for C 1, 14, 16, 2 1. This interest 18
correctness theorem ensures easy 10 just fy: in the context of program yerification, unverine
compiler forms a 1arge and complex part £ the truste computing
r, to our knowledge none of the existing WOr on
ge languages has addressed all
the compilation

CakeML 18 imple
T achine COde' O\lr
JUL =1 (ee results perm'ltte
S base. HOWEV
U g for general—p\lfpo
o ions: one,
YT it of

Dimensions of Compiler Veritication

source code

< how far compiler goes)

abstract syntax
intermediate language

bytecode Our verification covers the full
spectrum of both dimensions.

machine code

compiler implementation implementation interactive call in read-
algorithm in ML in machine code eval-print loop runtime
A\

(the thing that is verified)

The CakeML language

was originally
Design: “The CakeML language # designed to be both easy
to program in and easy to reason about formally”
It is still clean, but not always simple.

Reality: CakeML, the language
= Standard ML without I/O or functors

A
4)

i.e. with almost everything else:

higher-order functions

mutual recursion and polymorphism
datatypes and (nested) pattern matching
references and (user-defined) exceptions

T Y

modules, sighatures, abstract types

Contributions of POPL'14 paper

Artefacts

Specifications

Verified Algorithms

(

-

light-weight approach to
divergence preservation
with big-step op. sem.

J

Proof techniques

Divergence Preservation

Bootstrapping

\

\-

use verified compiler to
produce verified
implementation of the compiler

J

Proof development where everything fits together.

Approach

Proof by refinement:

Step 1: specification of CakeML language

» big-step and small-step operational semantics

Step 2: functional implementation in logic

» read-eval-print-loop as verified function in logic

Step 3: production of verified x86-64 machine code

» produced mostly by bootstrapping the compiler

Operational semantics

Big-step semantics:

» big-step evaluation relation

» environment semantics (cf. substitution sem.)

» produces TypeError for badly typed evaluations (e.g. 1+nil)
» stuck = divergence

Equivalent small-step semantics:

» used for type-soundness proof and definition of divergence

Read-eval-print-loop semantics.

Semantics written in Lem, see Mulligan et al. [ICFP’14]

Approach

Proof by refinement:

Step 1: specification of CakeML language

» big-step and small-step operational semantics

Step 2: functional implementation in logic

» read-eval-print-loop as verified function in logic

Step 3: production of verified x86-64 machine code

» produced mostly by bootstrapping the compiler

Functional implementation

Read-eval-print loop defined as rec. function in the logic:

lexing, parsing
type inference
compilation

bytecode execution

read-eval-print-loop

lexing, parsing

Specification:

Context-free grammar (CFQG) for significant subset of SML
Executable lexer.

Implementation:
Parsing-Expression-Grammar (PEG) Parser

» Inductive evaluation relation
» executable interpreter for PEGs
Correctness:
Soundness and completeness

» induction on length of token list/parse tree and
non-terminal rank

type inference

Specification:

Declarative type system.

Implementation:

Based on Milner’s Algorithm W
Purely functional (uses state-exception monad)

(new since last month!)
Correctness: \/

Proved sound and complete w.r.t. declarative type system
Re-use of previous work on verified unification

compilation

Purpose:

Translates (typechecked) CakeML into CakeML Bytecode.

Implementation:

Translation via one intermediate language (IL).

» de Bruijn indices
» big-step operational semantics

CakeML to IL: makes language more uniform
IL to IL: removes pattern-matching, lightweight opt.
IL to Bytecode: closure conversion, data refinement, tail-call opt.

Semantics of

Instructions:

bc_inst ::= Stack bc_stack_op | PushExc | PopExc
Return | CallPtr | Call loc

PushPtr loc | Jump loc | Jumplf loc

Ref | Deref | Update | Print | PrintC char
Label n | Tick | Stop

bc_stack_op ::= Pop | Pops n | Shift n n | Pushlnt int
Consnn | Eln | TagEqn | IsBlock n
Load n | Store n | LoadRev n

Equal | Less | Add | Sub | Mult | Div | Mod
loc := Labn|Addrn

Small-step semantics; values and state:

bc_value = Numberint | RefPtr n | Block n bc_value*
| CodePtr n | StackPtr n
bc_state = { stack: bc_value™;refs : n — bc_value;

code : bc_inst™; pc : n; handler : n;
output : string; names : n > string;
clock : n’ '}

Semantics of

Sample rules:

fetch(bs) = Stack (Constn) bs.stack =vs@uxzs |vs|=mn
bs — (bump bs){stack = Block t (rev vs) :: zs}

fetch(bs) = Return bs.stack = x :: CodePtr ptr :: xs

bs — bs{stack = x :: xs; pc = pir}

fetch(bs) = CallPtr bs.stack = x :: CodePtr ptr :: xs

bs — bs{stack = x :: CodePtr (bump bs).pc :: zs; pc = pir}

compilation

Correctness:

Proved in the direction of compilation.

Shape of correctness theorem:

(exp, env) Yoy val =
“the code for ezxp is installed in bs etc.” —
3bs’. bs —* bs’ A “bs’ contains val”

A

[Bytecode semantics step relation j

What about divergence”

We want: generated code diverges
If and only if source code diverges

|dea: add logical clock

Big-step semantics:
* has an optional clock component
* clock ‘ticks” decrements every time a function is applied
* once clock hits zero, execution stops with a TimeOut

Why do this!?

* because now big-step semantics describes both
terminating and non-terminating evaluations

either: Result

(for every exp env clock) g/ there is some result) or TimeOut

\

Vexp env clock. dres. (exp, env,Some clock) ey 1€S
A

(produced by the semantics)

Divergence

Evaluation diverges if

Vclock. (exp, env, Some clock) ey TimeOut

C for all clock values) (TimeOut happens)

Compiler correctness proved in conventional forward direction:

(exp, env) ey val =
“the code for exp is installed in bs etc.” —
bs’. bs —* bs’ A “bs’ contains val”

A A

(Bytecode has clock) (... that stays in sync with CakeML cIock)

Theorem: bytecode diverges if and only if CakeML eval diverges

Approach

Proof by refinement:

Step 1: specification of CakeML language

» big-step and small-step operational semantics

Step 2: functional implementation in logic

» read-eval-print-loop as verified function in logic

Step 3: production of verified x86-64 machine code

» produced mostly by bootstrapping the compiler

Verifled x86-64 machine code

o
9 m verified x86-64 code
- generated using
= type inference bootstrapping of the
g — verified compiler.
:
>
@ : JIT: translates Bytecode to
S bytecode execution machine code; jumps to
- generated machine code. y
garbage collector
bignum |ibrary hand'crafted Verified
machine code based
on previous w?\rk.
Real executable also has | |
30-line unverified C wrapper. Machine-code Hoare logic &
proof-producing decompilation

Compiling Bytecode into x86-64 mc

Extract Ofw each bytecode inst. maps to some x86>

x64 | Pop = [0x48, 0x58]

X64_code i (Xx::Xs) = x64 i X ++ x64_code (i + len(x64 i X)) xs

Correctness:

Each Bytecode instruction is correctly executed by
generated x86-64 code.

bs — bs' —
temporal {(base, x64_code 0 bs.code)}
(now (bc_heap bs (base, auz)) =
later (now (bc_heap bs’ (base, aux))
V now (ou/\of_memory_error auz)))

C heap invariant / memory abstraction)

Bootstrapping the veritied compiler

|[dea for in-logic bootstrapping

C input: verified compiler function)

Trustw V thy code extraction:

functions in HOL (shallow embedding)
l proof-producing translation [ICFP’12, JFP’ [4]

CakeML program (deep embedding)
l verified compilation of CakeML [POPL 14]

x86-64 machine code (deep embedding)

A

Coutput: verified implementation of compiler function)

Compiling the compiler in logic

m function in logic: compile

by proof-producing synthesis [ICFP’12]

type inference

CakeML program (COMPILE) such that:
— COMPILE implements compile

Proof by evaluation inside the logic:
— compile-to-x64 COMPILE = x64-code

Compiler correctness theorem:
— vprog. compile-to-x64 prog implements prog

Combination of theorems:
— x64-code implements compile

Details (build up)

Function in logic: Translation into CakeML produces:
f 3 vd =
map [~ S
map f (h::t) =f h:map f't 1 o> [
Evaluation in logic: | v2::vl => v3 v2::(map v3 vl)

= map length [[1; 1]; [2]; []] = [2; 1; O]

Translation into CakeML, actual output:

map_dec =
Letrec
[("map","v3",
Fun "v4"
(Mat (Var "v4")
[((Pcon "nil" [],Con "nil" []);
(Pcon "::" [Pvar "v2"; Pvar "v1"],
Con"::"
[App [Var "v3"; Var "v2"|; App |App [Var "map"; Var "v3"|; Var "v1"]])]))]

Details (build up)

Produced proof (called a certificate theorem):

— denv c.
EvalDec InitEnv map_dec env A\ Lookup "map" env = Some ¢ A
((a — b) —> ListTy a — ListTy b) map ¢

Translation into CakeML, actual output:

map_dec =
Letrec
[("map","v3",
Fun "v4"
(Mat (Var "v4")
[((Pcon "nil" [],Con "nil" []);
(Pcon "::" [Pvar "v2"; Pvar "v1"],
Con"::"
[App [Var "v3"; Var "v2"|; App |App [Var "map"; Var "v3"|; Var "v1"]])]))]

Evaluation of compilation (in logic)

Example 2 (Compilation by evaluation of map)

-~ CompileDec InitCS map_dec =
(MapCS,
[Jump (Lab 12); Label 10; Stack (PushiInt 0); Stack (Pushint 1); Ref;
PushPtr (Lab 11); Stack (Load 0); Stack (Load 5); Stack (Pushint 1);
Stack (Cons 0); Stack (... ...)5 ee e s en])

Compiler correctness (specialised to terminating case):

= Inv envy csy bs; A EvalDec envy dec envy, A\ CompileDec c¢s dec = (¢s3,bc) =
Ibs,. (AddCode bs bc) —* bsy A Halted bsy A Inv envy csy bs)

(Some of the) actual details

Translation of compiler into CakeML

~ dc.
EvalDec InitEnv (Struct "C" CompileDec_decs) CompEnv A
LookupMod "C" "compiledec" CompEnv = Somec A
(CompStateTy — DecTy — PairTy CompStateTy (ListTy BClnstTy)) CompileDec ¢

Evaluating the compiler on itself

= CompileDec InitCS (Struct "C" CompileDec_decs) =
(CompCS,CompileDec_bytecode)

Compiler correctness theorem:

= Inv InitEnv InitCS InitBS

= Inv envy csy bs; A EvalDec envy dec envy A CompileDec cs| dec = (cs2,bc) =
dbs,. (AddCode bs| bc) —* bsy A Halted bsy A Inv envy cso bs)

NB: For a read-eval-print-loop, the details are a bit more involved...

Top-level correctness theorem

Top-level correctness theorem

Top-level spe% initial program, the basis Iibrary)

ReplSem Basis input output

A
(string D\' A

string ending in either
Terminate or Diverge

Correctness theorem:

— TemporalX64 ReplX64
(Now (InitialisedX64 ms) =
O Now (OutOfMemX64 ms) V
3 output.
Holds (ReplSem Basis ms.input output) A

if Diverges output then [1) Now (RunningX64 output ms)
else ¢ Now (TerminatedX64 output ms))

Numbers

Performance:

Slow: interpreted OCaml is 1x faster (... future work!)

Effort:

~100k lines of proof script in HOL4
< 5 man-years, but builds on a lot of previous work

Size:
875,812 instructions of verified x86-64 machine code

\

a8 .)
implementation generates

more instructions at runtime
1

C large due to bootstrapping, naive compiler)

This talk

Part 1: verified implementation of CakeML

Part 2: current status, HOL light, future

Current status

Current compiler:

n-C5-0-0- 230

[huge step J[huge step J

Bytecode simplified proofs of
read-eval-print loop, but made
optimisation impossible.

Current work / future plans

Refactored compiler: split into more conventional compiler phases

tokens Emad AST EBm o
module com |Iat|on
: P \

closure compilation
\

[pattern-match compllatlon

[removal of memory abstraction) -
IL-N

[register allocation

.. as separate phases. -

[Anthony Fox joins project and helps with final phases(

x86-64

Verified examples on CakeML

Verification infrastructure:

* have: synthesis tool that maps HOL into CakeML [ICFP’12, JFP’14]

* future:integration with Arthur Chargueraud’s characteristic
formulae technology [ICFP’ 10, ICFP’| I]

for developing interesting verified examples.

Big example: verified HOL light

ML was originally developed to host theorem provers.

Aim: verified HOL theorem prover.

We have [ITP’ |3, TP’ 14]:
* syntax, semantics and soundness of HOL (stateful, stateless)
* verified implementation of the HOL light kernel in CakeML

(produced through synthesis)
Still to do:
* soundness of kernel = soundness of entire HOL light

/0\ run HOL light standard library on top of CakeML

(Freek Wiedijk is translating HOL light sources to CakeML)

Summary

Contributions so far:

First bootstrapping of a formally verified compiler.
New lightweight method for divergence preservation.

Current work:
Formally verified implementation of HOL light.
Verified I/O (foreign-function interface). selL4.

Compiler improvements (new ILs, opt, targets).

Long-term aim:
An ecosystem of tools and proofs around CakeML lang.

Questions? Suggestions?

