Machine-code verification

Experience of tackling medium-sized case studies
using decompilation into logic

ACL2’14,Vienna

Magnus Myreen

Currently at G5 CAMBRIDGE but soon at {5%) CHALMERS .

Why machine code?

Computer systems:

computer networks
multi-language implementations
source code (Java, Lisp, C etc.)
bytecode or LLVM

machine code

hardware

electric charge

Proofs only target a model of reality.

Why machine code?

Computer systems:

computer networks
multi-language implementations
source code (Java, Lisp, C etc.)
bytecode or LLVM

machine code

hardware

electric charge

Proofs only target a model of reality.
(Tests run on the ‘real thing’, but are not as insightful.)

Why machine code?

Computer systems:

computer networks
multi-language implementations
source code (Java, Lisp, C etc.)
bytecode or LLVM

machine code _— a (mostly) well specified interface
.................... s extensive manuals

hardware . .
» least ambiguous(?), cf. C semantics
electric charge

Proofs only target a model of reality.
(Tests run on the ‘real thing’, but are not as insightful.)

Why machine code?

ification
. . all program Vver!
Computer systems: Ultimately all P “e code.

ought tO reach real machi
computer networks

multi-language implementations

source code (Java, Lisp, C etc.)
bytecode or LLVM

machine code _— a (mostly) well specified interface
.................... s extensive manuals

hardware . .
» least ambiguous(?), cf. C semantics
electric charge

Proofs only target a model of reality.
(Tests run on the ‘real thing’, but are not as insightful.)

Machine code

Machine code,
E1510002 B0422001 C0411002 O1AFFFFFB

Is Impossible to read, write or maintain manually.

Machine code

Machine code,
E1510002 B0422001 C0411002 O1AFFFFFB

Is Impossible to read, write or maintain manually.

However, for theorem-prover-based formal verification:

machine code is clean and tractable!

Machine code

Machine code,
E1510002 B0422001 C0411002 O1AFFFFFB

Is Impossible to read, write or maintain manually.

However, for theorem-prover-based formal verification:
machine code is clean and tractable!

Reason:
» all types are concrete: word32, word8, bool.

» state consists of a few simple components: a few registers, a
memory and some status bits.

» each instruction performs only small well-defined updates.

Challenges of Machine Code

machine code

cote)

Challenges of Machine Code

machine code correctness

[code j {P} code {Q}

Challenges of Machine Code

machine code

cote)

ARM/x86/PowerPC model
(1000...10,000 lines each)

correctness

{P} code {Q}

Challenges of Machine Code

machine code correctness

ARM/x86/PowerPC model
[code j (1000...10,000 lines each) (P} code {Q}

Challenges: » several large, detailed models
» unstructured code
» very low-level and limited resources

This talk

Part 1: my approach (PhD work)
Part 2: verification of existing code

Part 3: construction of correct code

This talk

Part 1: my approach (PhD work)

Part 2: verification of existing code

Part 3: construction of correct code

This talk

Part 1: my approach (PhD work)

» automation: code to spec
» automation: spec to code

Part 2: verification of existing code

Part 3: construction of correct code

This talk

Part 1: my approach (PhD work)

» automation: code to spec
» automation: spec to code

Part 2: verification of existing code

» verification of gcc output for
microkernel (7,000 lines of C)

Part 3: construction of correct code

This talk

Part 1: my approach (PhD work)

» automation: code to spec
» automation: spec to code

Part 2: verification of existing code

» verification of gcc output for
microkernel (7,000 lines of C)

Part 3: construction of correct code

» verified implementation of Lisp
that can run Jared Davis’ Milawa

HOL.: fully-expansive LCF-style prover

The aim is to prove deep functional properties of machine code.

Proofs are performed in HOL4 — a fully expansive theorem prover

HOL4 theorem prover

HOL4 kernel

All proofs expand at runtime

into primitive inferences in
the HOL4 kernel.

The kernel implements the
axioms and inference rules
of higher-order logic.

Infrastructure

During my PhD, | developed the following infrastructure:

func -------- >[compiler } ————— - (code,thm)
code ----- —>[decompiler } ----p (func,thm)
[machine-code Hoare triple]

... each part will be explained Iin the next slides.

Models of machine code

Machine models borrowed from work by others:

ARM model, by Fox [TPHOLs’03]

» covers practically all ARM instructions, for old and new ARMs

» still actively being developed

x86 model, by Sarkar et al. [POPL’09]
» covers all addressing modes in 32-bit mode x86

» includes approximately 30 instructions

PowerPC model, originally from Leroy [POPL’06]

» manual translation (Coq — HOL4) of Leroy's PowerPC model

» instruction decoder added

Hoare triples

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 iIs described by theorem:

| - (ARM_READ_MEM ((31 >< 2) (ARM_READ_REG 15w state)) state =
0xE0800000w) A —state.undefined =
(NEXT_ARM_MMU cp state =
ARM_WRITE_REG 15w (ARM_READ_REG 15w state + 4w)
(ARM_WRITE_REG Ow
(ARM_READ_REG Ow state + ARM_READ_REG Ow state) state))

Hoare triples

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 iIs described by theorem:

| - (ARM_READ_MEM ((31 >< 2) (ARM_READ REG 15w state)) state
O0xE0800000w) A —state.undefined =
(NEXT_ARM_MMU cp state =

ARM_WRITE_REG 15w (ARM_READ REG 15w state + 4w)
(ARM_WRITE_REG Ow

(ARM_READ REG Ow state + ARM_READ REG Ow state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARM_MODEL Informal syntax for this talk:
(aR Ow x * aPC p) {ROx*xPCp}
{(p,0xE0800000w) } p : E0800000

(aR Ow (x+x) * aPC (p+4w)) {RO (x+x) * PC (p+4) }

Definition of Hoare triple

{ptci{qt <= Vsr. (p*xrxcodec)s =
dn. (¢ xr % code ¢) (run n s)

Definition of Hoare triple

(frame

{ptci{qt <= Vsr. (p*xrxcodec)s =
dn. (¢ xr % code ¢) (run n s)

Definition of Hoare triple

(fram\eg Q/code separate)

{ptci{qt <= Vsr. (p*xrxcodec)s =
dn. (¢ xr % code ¢) (run n s)

Definition of Hoare triple

(fram\eg Q/code separate)

{ptci{qt <= Vsr. (p*xrxcodec)s =
dn. (¢ xr % code ¢) (run n s)
A\

(total correctness)

Definition of Hoare triple

(fram\eg Q/code separate)

{ptci{qt <= Vsr. (p*xrxcodec)s =
dn. (¢ xr % code ¢) (run n s)
A\

(total correctness) (machine code sem.)

Definition of Hoare triple

C‘separating conjunction)

(fram\eg Q/code separate)
V

{ptci{qt <= Vsr. (p*xrxcodec)s =
dn. (¢ xr % code ¢) (run n s)
A\

(total correctness) (machine code sem.)

Definition of Hoare triple

C‘separating conjunction)

(framf/) Q/code separate)

V
{ptc{q} <= Vsr. (pxrxcodec)s —

dn. (¢ xr % code ¢) (run n s)
A\

(total correctness) (machine code sem.)

Program logic can be used directly for verification.

Definition of Hoare triple

C‘separating conjunction)

(frams) Q/code separate)

V
{ptc{q} <= Vsr. (pxrxcodec)s —

dn. (¢ xr % code ¢) (run n s)
A\

(total correctness) C machine code sem.)

Program logic can be used directly for verification.
But direct reasoning in this embedded logic is tiresome.

Decompiler

Decompiler automates Hoare triple reasoning.

Decompiler

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

O: E3A00000 mov r0O, #0

4: E3510000 L: cmp r1, #0O

8: 12800001 addne r0, rO, #1
12: 15911000 ldrne r1, [ri1]

16: 1AFFFFFB bne L

Decompiler

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

O: E3A00000 mov r0O, #0

4: E3510000 L: cmp r1, #0O

8: 12800001 addne r0, rO, #1
12: 15911000 ldrne r1, [ri1]
16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f(ro,ri,m) = let o =0in g(rog, n, m)

g(ro,rn,m) = if n =0 then (rg, r1, m) else
let rp = rp+1 in
let 1 = m(ry) in
g(r()v , m)

Decompilation, correct!?

Decompiler automatically proves a certificate theorem:

fpre(rOa rn, m) =

{(RO,R1,M)is (rg,r1,m)«x PCpxS}
p : E3A0O0000 E3510000 12300001 15911000 1AFFFFFB
{(RO,R1,M)is f(rg,ri,m)*x PC(p+20)xS}

which informally reads:

for any initially value (rg, ri, m) in reg 0, reg 1 and memory,
the code terminates with f(rg, ri, m) in reg 0, reg 1 and memory.

Decompilation verification example

To verify code: prove properties of function f,

Vxlam. list(l,a,m) = f(x,a, m)= (length(l),0, m)
Vxlam. list(l,a,m) = fpe(x,a, m)

since properties of f carry over to machine code via the certificate.

Decompilation verification example

To verify code: prove properties of function f,

Vxlam. list(/,a,m) = f(x,a, m)

(length(1),0, m)
Vxlam. list(l,a,m) = fpe(x,a, m)

since properties of f carry over to machine code via the certificate.

Proof reuse: Given similar x86 and PowerPC code:

31C085F67405408B36EBE7
33A000002C140000408200107ES0AO2E38A500014BFFFFFO

which decompiles into " and ", respectively. Manual proofs
above can be reused if f = ' = ",

Decompilation

How to decompile:

e0810000 add r0, ri, ro
elad0@ad® l1lsr r0O, ro, #1
el2fffle bx lr

Decompilation

How to decompile:

0310000 e0810000 add ro0, ril, ro
elad0@ad® l1lsr r0O, ro, #1
el2fffle bx lr

e1la®00ad

el2fffle

Decompilation

| | How to decompile:
{ROi*RIj*PCp}
p+0 : 0810000 e0810000 add ro, ril, ro
{ RO (i+j) * R1 j* PC (p+4) } e1a@00a@ 1sr r®: r®: #1

(RO i * PC (p+4)) el2fffle bx lr

pt4: e1a@00ad . .
{RO (i >> 1) * PC (p+8) } |. derive Hoare triple theorems

using Cambridge ARM model

{ LR Ir * PC (p+8) }
pt8: el2fffle
{LRIr*PCIr}

Decompilation

{ROi*RIj*PCp}
p+0 : 0810000
{ RO (i+j) * RI j* PC (pt+4) }

{ROi*PC (p+4) }
pt4 : e1a000a0
/ {RO (i >> I) * PC (p+8) }

{ LR Ir * PC (p+8) }

/ pt8: el2fffle
{LRIr*PCIr}

{ROi*RIj*LRIr*PCp}
p : 0810000 e1a000ad el2fffle
{RO ((i+))>>1) *RI j* LR Ir * PC Ir }

How to decompile:

e0810000 add r0, ri, ro
ela®00ad® 1sr ro0, ro, #1
el2fffle bx lr

|. derive Hoare triple theorems
using Cambridge ARM model

2. compose Hoare triples

Decompilation

How to decompile:
{ROi*RIj*PCp}

PPJ:(()) : fgilg?e?k o (i e0810000 add r0O, ri, ro

{RO (i+)) *R1 j*PC (p+4) } e1a000a@ 1sr ro, ro, #1

(RO *PC (p+4)) el2fffle bx 1lr

/ {PPJ:(;} (| i“?)@f‘;,@c (0+8)) |. derive Hoare triple theorems
using Cambridge ARM model

{LR Ir * PC (p+8) } 2. compose Hoare triples
p+8: e12fffle |
/ {LR Ir*PC Ir } 3. extract function

(Loops result in recursive functions.)
{ROi*RIj*LRIr*PCp]}
p :e0810000 ela000ad el’2fffle

{RO ((i+))>>1) *RI j* LR Ir * PC Ir } + avg (i) = (i+)>>|

Decompiler implementation

Implementation:
» ML program which fully-automatically performs forward proof,
» no heuristics and no dangling proof obligations,

» loops are handled by a special loop rule which introduces
tail-recursive functions:

tailrec(x) = if G(x) then tailrec(F(x)) else D(x)
with termination and side-conditions H collected as:

pre(x) = (if G(x) then pre(F(x)) else true) A H(x)

Details in Myreen et al. [FMCAD'08].

Comparison of
approaches

e

O N O P> O

: E3A00000
: E3510000
: 12800001
: 15911000
: 1AFFFFFB

mov rO, #O

: cmp rl, #0

addne r0, rO, #1
ldrne r1, [ri1]
bne L

Comparison of o F3510000
8: 12800001
appl‘oaChes 12: 15911000
16: 1AFFFFFB

mov r0, #0O

: cmp rl, #0

addne r0O, r0O, #1
ldrne r1, [ri]
bne L

direct manual proof using definition of instruction set model

Comparison of o F3510000
8: 12800001
approaChes 12: 15911000
16: 1AFFFFFB

mov rO, #O

: cmp rl, #0

addne r0, rO, #1
ldrne r1, [r1]
bne L

direct manual proof using definition of instruction set model

» tedious and proofs complete tied to model

: E3A00000
: E3510000

Comparison of
. 12800001
aPPrOaChes 12: 15911000

16: 1AFFFFFB

o & O

mov rO, #O

: cmp rl, #0

addne r0, rO, #1
ldrne r1, [ri1]
bne L

direct manual proof using definition of instruction set model

» tedious and proofs complete tied to model

symbolic simulation

: E3A00000
: E3510000

Comparison of
. 12800001
approaCheS 12: 15911000

16: 1AFFFFFB

o & O

mov rO, #O

: cmp rl, #0

addne r0, rO, #1
ldrne r1, [ri]
bne L

direct manual proof using definition of instruction set model

» tedious and proofs complete tied to model

symbolic simulation

» automatic except at looping points, proofs tied to model

: E3A00000
: E3510000

Comparison of
. 12800001
approaCheS 12: 15911000

16: 1AFFFFFB

o & O

mov rO, #O

: cmp rl, #0

addne r0, rO, #1
ldrne r1, [ri]
bne L

direct manual proof using definition of instruction set model

» tedious and proofs complete tied to model

symbolic simulation

» automatic except at looping points, proofs tied to model

proof using program logic

: E3A00000
: E3510000

Comparison of
. 12800001
approaCheS 12: 15911000

16: 1AFFFFFB

o & O

mov rO, #O

: cmp rl, #0

addne r0, rO, #1
ldrne r1, [ri]
bne L

direct manual proof using definition of instruction set model

» tedious and proofs complete tied to model

symbolic simulation

» automatic except at looping points, proofs tied to model

proof using program logic
» some reusable proofs, but tedious

: E3A00000
: E3510000

Comparison of
. 12800001
approaCheS 12: 15911000

16: 1AFFFFFB

o & O

mov rO, #O

: cmp rl, #0

addne r0, rO, #1
ldrne r1, [ri]
bne L

direct manual proof using definition of instruction set model

» tedious and proofs complete tied to model

symbolic simulation

» automatic except at looping points, proofs tied to model

proof using program logic
» some reusable proofs, but tedious

verification condition generation

: E3A00000
: E3510000

Comparison of
. 12800001
approaCheS 12: 15911000

16: 1AFFFFFB

o & O

mov rO, #O

: cmp rl, #0

addne r0, rO, #1
ldrne r1, [ri]
bne L

direct manual proof using definition of instruction set model

» tedious and proofs complete tied to model

symbolic simulation

» automatic except at looping points, proofs tied to model

proof using program logic
» some reusable proofs, but tedious

verification condition generation

» largely automatic, but requires annotating the machine code(!)

: E3A00000
: E3510000

Comparison of
. 12800001
approaChes 12: 15911000

16: 1AFFFFFB

o & O

mov rO, #O

: cmp rl, #0

addne r0, rO, #1
ldrne r1, [ri]
bne L

direct manual proof using definition of instruction set model

» tedious and proofs complete tied to model

symbolic simulation

» automatic except at looping points, proofs tied to model

proof using program logic
» some reusable proofs, but tedious

verification condition generation

» largely automatic, but requires annotating the machine code(!)

decompilation into logic

: E3A00000
: E3510000

Comparison of
. 12800001
approaChes 12: 15911000

16: 1AFFFFFB

o & O

mov rO, #O

: cmp rl, #0

addne r0, rO, #1
ldrne r1, [ri]
bne L

direct manual proof using definition of instruction set model

» tedious and proofs complete tied to model

symbolic simulation

» automatic except at looping points, proofs tied to model

proof using program logic
» some reusable proofs, but tedious

verification condition generation

» largely automatic, but requires annotating the machine code(!)

decompilation into logic

» model-specific part is automatic, does not req. annotations

: E3A00000
: E3510000

Comparison of
. 12800001
approaChes 12: 15911000

16: 1AFFFFFB

o & O

mov rO, #O

: cmp rl, #0

addne r0, rO, #1
ldrne r1, [ri]
bne L

direct manual proof using definition of instruction set model

» tedious and proofs complete tied to model

symbolic simulation

» automatic except at looping points, proofs tied to model

proof using program logic
» some reusable proofs, but tedious

verification condition generation

» largely automatic, but requires annotating the machine code(!)

decompilation into logic

» model-specific part is automatic, does not req. annotations
» can implement proof-producing compilation (next slide)

. O: E3A00000 mov rQ, #O
COmPaI"ISOI"] Of 4: E3510000 L: cmp rl, #O
8: 12800001 addne r0, rO, #1
aPPrOaCheS 12: 15911000 ldrne r1, [ri]
16: 1AFFFFFB bne L

direct manual proof using definition of instruction set model
» tedious and proofs complete tied to model

symbolic simulation

’ - u -A-AMAA-:A P - - S IAA-:“- -A:-AA- AAAAA IA A—:A‘l b MA’IAI

pro decompilation into logic
) =

veri Symbolic simulation + support for loops (tail-rec.),

» done over a program logic (not machine model) de(!)

decompilatiGA TAto Togic

» model-specific part is automatic, does not req. annotations
» can implement proof-producing compilation (next slide)

Proof-producing compilation

Synthesis often more practical. Given function f,
f(r1) = if 1 <10 then rp elselet 1 =r —10in f(n)

our compiler generates ARM machine code:

E351000A L: cmp rl,#10
2241100A subcs r1,r1,#10
2AFFFFFC bcs L

and automatically proves a certificate HOL theorem:

F {R1n*PCpx*xs}
p : E351000A 2241100A 2AFFFFFC
{R1f(r)*PC(p+12)*xs}

Compilation, example cont.

One can prove properties of f since it lives inside HOL:

= Vx. f(x) = x mod 10

Properties proved of f translate to properties of the machine code:

= {R1r xPCp=xs}
p : E351000A 2241100A 2AFFFFFC
{R1 (r; mod 10) x PC (p+12) * s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let 1 = 1 mod 10 in _

Implementation

To compile function f:
1. generate, without proof, code from input f;
2. decompile, with proof, a function f’ from generated code;

3. prove f = f’.

Features:
» code generation completely separate from proof

» supports many light-weight optimisations without any
additional proof burden: instruction reordering, conditional

execution, dead-code elimination, duplicate-tail elimination, ...

» allows for significant user-defined extensions

Infrastructure (again)

func -------- >[compiler } ————— - (code,thm)
code ----- —>[decompiler } ----p (func,thm)
[machine-code Hoare triple]

This talk

Part 2: verification of existing code

» verification of gcc output for
microkernel (7,000 lines of C)

L4.verified

selL4 = a formally verified general-
purpose microkernel

(Work by Gerwin Klein’s team at NICTA, Australia)

L4.verified

selL4 = a formally verified general-
purpose microkernel

about 7,000 lines of C code and assembly

(Work by Gerwin Klein’s team at NICTA, Australia)

L4.verified

selL4 = a formally verified general-
purpose microkernel

about 7,000 lines of C code and assembly
200,000 lines of Isabelle/HOL proofs

(Work by Gerwin Klein’s team at NICTA, Australia)

Assumptions

L4.verified project assumes correctness of:

» C compiler (gcc)

» inline assembly

» hardware

» hardware management
» boot code

» virtual memory

Assumptions

L4.verified project assumes correctness of:

— b Ccompiler(gcc)
» inline assembly
» hardware
» hardware management
» boot code

» virtual memory

The aim of this work is to remove the first assumption.

Assumptions

L4.verified project assumes correctness of:

— b Ccompiler(gcc)
» inline assembly
» hardware
» hardware management
» boot code

» virtual memory
» Cambridge ARM model

The aim of this work is to remove the first assumption.

Assumptions

L4.verified project assumes correctness of:

— b Ccompiler(gcc)
» inline assembly (?)
» hardware
» hardware management
» boot code (?)
» virtual memory

» Cambridge ARM model

The aim of this work is to remove the first assumption.

existing L4.verified work

Aim: extend downwards

high-level design

I

low-level design > SUECLLEELRREL Haskell prototype

I trusted
detailed model of C code | «<—— real C code

Aim: extend downwards

=

2 high-level design

k5

g 1

S low-level design | <reeeeeeee Haskell prototype
E !

g trusted

‘:‘_j detailed model of C code | «— real C code

()

{

Aim: remove need to trust C compiler and C semantics

Aim: extend downwards

<

2 high-level design

k5

g I

S low-level design | <reeeeeeee Haskell prototype
E |

z

g detailed model of C code | <= real C code

)

{

Aim: remove need to trust C compiler and C semantics

existing L4.verified work

Using Cambridge ARM model

high-level design

I

|

low-level design <

detailed model of C code

Cambridge ARM model

Haskell prototype

real C code

Using Cambridge ARM model

=

2 high-level design

ks

g !

S low-level design | <reeeeeeeeee: Haskell prototype
- |

E"

g detailed model of C code | <+ real C code

)

gcc (not trusted)

Cambridge ARM model

Using Cambridge ARM model

g

2 high-level design

ks

3 !

S low-level design | <reeeeeeeeee: Haskell prototype
- !

=

‘:‘_j detailed model of C code | <= real C code

)

gcc (not trusted)

seL4 machine code | €--uiieeaeee
Cambridge ARM mode

existing L4.verified work

Using Cambridge ARM model

high-level design
low-level design n SEREELLELLLE Haskell prototype
detailed model of C code | <:--- real C code

machine code as functions

gcc (not trusted)

seL4 machine code | €--uiieeaeee
Cambridge ARM mode

existing L4.verified work

Using Cambridge ARM model

high-level design
low-level design n SEREELLELLLE Haskell prototype
detailed model of C code | <:--- real C code

machine code as functions

1 decompilation " gee (not trusted)

seL4 machine code | €--uiieeaeee
Cambridge ARM mode

existing L4.verified work

Using Cambridge ARM model

high-level design
low-level design n SEREELLELLLE Haskell prototype
detailed model of C code | <:--- real C code

I refinement proof

machine code as functions

1 decompilation " gee (not trusted)

seL4 machine code | €--uiieeaeee
Cambridge ARM mode

Approach

1 refinement proof

machine code as functions

I decompilation

seL.4 machine code
Cambridge ARM mode

® decompilation by me

® refinement proof by Thomas Sewell (NICTA)

Stage |: decompilation

machine code as functions

I decompilation

seL.4 machine code
Cambridge ARM mode

Decompilation

Sample C code:

uint avg (uint i, uint j) {
return (i +j)/ 2;

J

Decompilation

Sample C code: machine code:
uint avg (uint i, uint j) { gcc e0810000 add r@, ri, ro
return (i +j) / 2; (not trusted)’ ela@00a@® 1sr r0, ro, #1

} el2fffle bx 1r

Decompilation

Sample C code: machine code:
uint avg (uint i, uint j) { gcc c0810000 add r0, rl, ro
return (i +j) / 2; (not trusted)’ ela@00a@® 1sr r0, ro, #1
} el2fffle bx 1r
Acompilation via ARM model
\

Resulting function:

avg (ro,rl)=letrO=rl + rOin
let rO=r0>> 1| in
r0

Decompilation

Sample C code: machine code:
uint avg (uint i, uint j) { gcc e0810000 add r@, ri, ro
return (i +j) / 2; (not trusted)’ ela@00ad 1sr r@, ro, #1
} el2fffle bx 1l1r
Acompilation via ARM model
N
Resulting function: HOL4 certificate theorem:
avg(rO,rI)=IetrO=rI+rOi!1 (ROI*RIj*LRIr*PCp}
let rO =r0 >> | in > : 0810000 e1a000a0 el2fffle
r0 {RO (avg(i,j)) *RI _*LR _*PCIr}
J

Decompilation

Sample C code: machine code:
uint avg (uint i, uint j) { gcc e0810000 add r@, ri, ro
return (i +j) / 2; (not trusted)’ ela@00ad 1sr r@, ro, #1
} el2fffle bx lr
Acompilation | return instruction)
N
N
Resulting function: HOL4 certificate theorem:
avg(rO,rI)=IetrO=rI+rOi!1 (ROG*RIj*LR Ir * PC p)
let r0 =r0 >> | in p : 0810000 e1a000a0 el12fffle
r0 {RO (avg(i,j)) *Rl _*LR _*PCIr}
J

Decompilation

Sample C code: machine code:
uint avg (uint i, uint j) { gcc e0810000 add r@, ri, ro
return (i +j) / 2; (not trusted)’ ela@00a@® 1sr r0, ro, #1
} el2fffle bx 1r
Acompilation | return instruction)
bit-string arithmetic
N
Resulting function: HOL4 certificate theorem:
avg(rO,rI)=IetrO=rI+rOi!1 (ROI*RIj*LRIr*PCp}
let rO =r0 >> | in > : 0810000 e1a000a0 el2fffle
r0 {RO (avg(i,j)) *RI _*LR _*PCIr}
- J

Decompilation

Sample C code: machine code:
uint avg (uint i, uint j) { gcc e0810000 add r@, ri, ro
return (i +j) / 2; (not trusted)’ ela@00ad 1sr r@, ro, #1
} el2fffle bx lr
Acompilation | return instruction)
bit-string arithmetic
N
Resulting function: HOL4 certificate theorem:
avg(rO,rI)=IetrO=rI+rOi!1 (ROG*RIj*LR Ir * PC p)
let r0 =r0 >> | in p : 0810000 e1a000a0 el12fffle
r0 /\ {RO (avg(i,j)) *RI _*LR _*PCIr}

- 1[bit-string right-shift ' y

Decompilation

Sample C code: machine code:
uint avg (uint i, uint j) { gcc e0810000 add r@, ri, ro
return (i +j) / 2; (not trusted)’ ela@00ad 1sr r@, ro, #1
} el2fffle bx lr
Acompilation | return instruction)
bit-string arithmetic
N
Resulting function: HOL4 certificate theorem:
avg(rO,rI)=IetrO=rI+rOi!1 (ROG*RIj*LR Ir * PC p)
let r0 =r0 >> | in p : 0810000 e1a000a0 el12fffle
r0 /\ {RO (avg(i,j)) *RI _*LR _*PCIr}

A
- 1[bit-string right-shift ’ 4 : -
| separation logic: ’

Decompiling selL4:
Challenges

® sel4is ~12,000 lines of machine code

® compiled using gcc -O?2

® must be compatible with L4.verified proof

Decompiling selL4:
Challenges

® sel4is ~12,000 lines of machine code
v’ decompilation is compositional

® compiled using gcc -O?2

® must be compatible with L4.verified proof

Decompiling selL4:
Challenges

® sel4is ~12,000 lines of machine code
v’ decompilation is compositional

® compiled using gcc -O?2
V' gcc implements ARM/C calling convention

® must be compatible with L4.verified proof

Decompiling selL4:
Challenges

® sel4is ~12,000 lines of machine code
v’ decompilation is compositional

® compiled using gcc -O?2
V' gcc implements ARM/C calling convention

® must be compatible with L4.verified proof

= stack requires special treatment

Stack visible in m. code

C code:

uint avg8 (uint x0, x1, x2, x3, x4, x5, x6, x7) {
return (x0+x|+x2+x3+x4+x5+x6+x7) / 8;

}

Stack visible in m. code

C code:

uint avg8 (uint x0, x1, x2, x3, x4, x5, x6, x7) {
return (x0+x|+x2+x3+x4+x5+x6+x7) / 8;

}

Some arguments are passed on the stack,

Stack visible in m. code

C code:

uint avg8 (uint x0, x1, x2, x3, x4, x5, x6, x7) {
return (x0+x|+x2+x3+x4+x5+x6+x7) / 8;

}

Some arguments are passed on the stack,

add rl,rl, r0
add rl,rl,r2
gcc Idr r2, [sp]

add rl,rl,r3
add rO,rl,r2
ldmib sp, {r2, r3}
add rO, rO, r2
add r0, rO0, r3
Idr r3, [sp, #12]
add r0,rO, r3
Isr rO, rO, #3
bx Ir

Stack visible in m. code

C code:

uint avg8 (uint x0, x1, x2, x3, x4, x5, x6, x7) {
return (X0+x | +x2+x3+x4+x5+x6+x7) / 8;

}

Some arguments are passed on the stack,

add rl,rl,r0 and cause memory ops in machine code
add rl,rl,r2
gcc Idr r2, [sp]

add rl,rl,r3 \

add rO,rl,r2

|ldmib sp, {r2,r3} <
add rO, rO, r2

add r0, rO, r3

ldr 3, [sp, #12] ... that are not
add r0,r0, r3 present in C semantics.
Isr rO, rO, #3
bx Ir

Solution

Use separation-logic inspired approach

' stack pointer: sp
B sO(sl|s2|s3|s4| ss

) S

3 slots of unused but
required stack space

rest of stack

Solution

Use separation-logic inspired approach

' stack pointer: sp

B sO(sl|s2|s3|s4| ss

) S

3 slots of unused but

. rest of stack
required stack space

Solution

Use separation-logic inspired approach

' stack pointer: sp

B sO(sl|s2|s3|s4| ss

) S

3 slots of unused but

. rest of stack
required stack space

stack sp 3 (sO::sl::s2::53::54::s5)

Solution

Use separation-logic inspired approach

' stack pointer: sp

sO|sl|s2|s3|s4| ss m

) S

3 slots of unused but

. rest of stack
required stack space

stack sp 3 (sO::sl::s2::53::54::s5) * memory m

Solution

Use separation-logic inspired approach

' stack pointer: sp

sO

S |

s2

s3

s4

SS m

S

3 slots of unused but

required stack space

S

rest of stack

| separation logic: * ’

stack sp 3 (sO::sl::s2::53::54::s5) * memory m

Solution

Use separation-logic inspired approach

. . disjoint due to *
' stack pointer: sp

sO|sl|s2|s3|s4| ss m

) S

3 slots of unused but
required stack space

rest of stack

| separation logic: * ’

stack sp 3 (sO::sl::s2::53::54::s5) * memory m

Solution (cont.)

add rl, rl, rO
add rl,rl, r2
Idr r2, [sp]
addrl,rl,r3
add rO, rl, r2
ldmib sp, {r2, r3}
add r0, rO, r2
add rO, rO, r3
Idr r3, [sp, #12]
add r0, rO, r3
Isr rO, r0O, #3

bx Ir

Method:

static analysis to find
stack operations,

derive stack-specific
Hoare triples,

. then run decompiler as

before.

!

!

Solution (cont.)

add rl, rl, rO
add rl,rl, r2
Idr r2, [sp]
addrl,rl,r3
add rO, rl, r2
ldmib sp, {r2, r3}
add r0, rO, r2
add rO, rO, r3
Idr r3, [sp, #12]
add r0, rO, r3
Isr rO, r0O, #3

bx Ir

Method:

|. static analysis to find
stack operations,

2. derive stack-specific
Hoare triples,

3. then run decompiler as
before.

Result

Stack load/stores become straightforward assignments.

avg8(r0,rl,r2,r3,s0,sl,s2,s3) =

add rl,rl, rO etrl =rl +r0in
add rl,rl,r2 etrl =rl +r2in
Idr r2, [sp] —> letr2=s0in
addrl,rl,r3 etrl =rl +r3in
add rO, rl, r2 etrO=rl +r3in
Idmib sp, {r2,r3} —— let (r2,r3) = (sl,s2) in
add rO, rO, r2 etrO=r0+r2in
add r0, rO, r3 etrO=r0+r3in
Idr r3,[sp,#|2] —— letr3 =s3in

add r0, rO, r3 etrO=r0+ r3in
Isr rO, r0O, #3 etrO=r0>>3in

bx Ir rO

Result

Stack load/stores become straightforward assignments.

Additional benefit:
automatically proved certificate theorem
states explicitly stack shape/usage:

{ stack sp n (sO:sl:s2::s3::5) * .. * PC p }
p : code
{ stack sp n (sO:sl:s2::s3::s) * ... * PC Ir }

Result

Stack load/stores become straightforward assignments.

Additional benefit:
automatically proved certificate theorem

states explicitly s{ four arguments passed on stack

{ stack sp n (sO:sl:s2:s3::s) * .. * PC p }
p : code
{ stack sp n (sO:sl:s2::s3::s) * ... * PC Ir }

LS 'y 1T 'y I'l'w IO 1TV TV ~ ° w 111

bx Ir rO

Result

Stack load/stores become straightforward assignments.

Additional benefit: 1

automati(does not require temp space, works for “any n”

states explici

{ stack sp n (sO:sl:s2::s3::s) * .. * PC p }
p : code
{ stack sp n (sO:sl:s2::s3::s) * ... * PC Ir }

LS 'y 1T 'y I'l'w IO 1TV TV ~ ° w 111

bx Ir rO

Result

Stack load/stores become straightforward assignments.

Additional benefit: 1

automati(does not require temp space, works for “any n”

four arguments passed on stack

{ stack sp n (sO:sl:s2::s3::s) * .. * PC p }

p : code

{ stack sp n (sO:sl:s2::s3::s) * ... * PC Ir }
A

oo (promises to leave stack unchanged

states explici

bx Ir

Other C-specifics

® struct as return value
» case of passing pointer of stack location
p stack assertion strong enough
® switch statements
» position dependent
» must decompile elf-files, not object files
® infinite loops in C
» make gcc go weird

» must be pruned from control-flow graph

Moving on to stage 2

detailed model of C code

1 refinement proof

machine code as functions

I automatic translation

seL.4 machine code

Moving on to stage 2

detailed model of C code

1 refinement proof

machine code as functions

1 automatic translation

seL.4 machine code

Refinement proof

(Work by Thomas Sewell, NICTA)

detailed model of C code

I proof by rewriting

C code as graph
L ‘guided SMT proof’

machine code as graph

1 translation (unproved)

machine code as functions

Graph language

machine code as graph

I translation (unproved)

machine code as functions

1 automatic decompilation

seL.4 machine code

Graph language

machine code as graph

1 automatic decompilation

seL.4 machine code

Graph language

Node types:

» state update
» test-and-branch
» call

machine code as graph

1 automatic decompilation

seL.4 machine code

Graph language

Node types: Next pointers:
» state update » node address
» test-and-branch » return (from call)
» call > error

machine code as graph

1 automatic decompilation

seL.4 machine code

Graph language

Node types: Next pointers:
» state update » node address
» test-and-branch » return (from call)
» call > error

Theorem: any exec in graph, can be done in machine code

machine code as graph

1 automatic decompilation

seL.4 machine code

Graph language

Node types: Next pointers:
» state update » node address
» test-and-branch » return (from call)
» call > error

Theorem: any exec in graph, can be done in machine code

machine code as graph

1 automatic decompilation

seL.4 machine code

Potential to suit other applications better, e.g. safety analysis.

existing L4.verified work

Connecting provers

high-level design

I

low-level design

I

detailed model of C code

I

machine code as functions

I

seL.4 machine code

In general, hard.
Easy in this case.

in Isabelle/HOL

in HOL4

existing L4.verified work

Connecting provers

high-level design

I

low-level design

I

detailed model of C code

I

machine code as functions

I

seL.4 machine code

In general, hard.
Easy in this case.

in Isabelle/HOL

in HOL4

existing L4.verified work

Connecting provers

high-level design

I

low-level design

I

detailed model of C code

|

machine code as functions

machine code as functions

1

seL.4 machine code

In general, hard.
Easy in this case.

automatic translation of definitions
from HOL4 to Isabelle/HOL

Looking back

Success: gcc output for -O1 and -O2 on selL4 decompiles.

Looking back

Success: gcc output for -O1 and -O2 on selL4 decompiles.

However:
stack analysis brittle and requires expert user to debug,

latest version avoids stack analysis,
latest version produces graphs (instead of functions)

Looking back

Success: gcc output for -O1 and -O2 on selL4 decompiles.

However:
stack analysis brittle and requires expert user to debug,

latest version avoids stack analysis,
latest version produces graphs (instead of functions)

A one-fits-all decompilation target?
graph — good for automatic analysis/proofs
functions — readable, good for interactive proofs

Looking back

Success: gcc output for -O1 and -O2 on selL4 decompiles.

However:
stack analysis brittle and requires expert user to debug,

latest version avoids stack analysis,
latest version produces graphs (instead of functions)

A one-fits-all decompilation target?
graph — good for automatic analysis/proofs
functions — readable, good for interactive proofs

Should decompilation be over program logic or machine model?

This talk

Part 3: construction of correct code

» verified implementation of Lisp
that can run Jared Davis’ Milawa

INSbirati .
piration: Lisp interpreter

TPHOLs’09

ct. This paper

Abstra
ce formal

first to produ

on top of
~ollection. Al pr

A verified Lisp interpreter

ldea: create LISP implementations via compilation.

verified code for LISP primitives car, cdr, cons, etc.

v
HOL4 functions for . __x ARM, x86, PowerPC code
LISP parse, eval, print ’[compiler } > and certificate theorems
[decompiler J
[machine-code Hoare triple]

[ARM [x86] PowerPC]

Lisp formalised

LISP s-expressions defined as data-type SExp:

Num : N — SExp
Sym : string — SExp
Dot : SExp — SExp — SExp

LISP primitives were defined, e.g.

cons x y = Dotxy
car (Dot x y) = x
Num (m + n)

plus (Num m) (Num n)

The semantics of LISP evaluation was taken to be Gordon’s
formalisation of ‘LISP 1.5'-like evaluation

Extending the compiler

We define heap assertion ‘lisp (v1, v2, v3, va, V5, V6, /)" and prove
implementations for primitive operations, e.g.

Is_pair vi =

{ ||Sp (V17 V2, V3, V4, V5, Ve, /) *pCcp }
p : E5934000

{ lisp (vq,car vi,va, vg, v5,vg, /) xpc (p+4) }

size vi + size vo + size v3 + size v4 + size v +size v < | =

{ ||Sp (V17 V2, V3, V4, V5, Ve, /) * pCp }
p : EBOA3018 E50A4014 E50A5010 E50A600C ...

{ ||Sp (COﬂS Vi V2, V2, V3, V4, V5, Ve, /) * pC (p T 332) }

with these the compiler understands:

let vo = car vy in ...
let vi = cons vi v in ...

Reminder

How to decompile:
{ROi*RIj*PCp}

+0 : e0810000
{PRO (+) * R i * PC (phd)) e0810000 add ro, ri, ro
ela®00ad® 1sr ro0, ro, #1
{ROi*PC (p+4)) el2fffle bx Lr
p+4: e1a000a0 _ .
/ {RO (i >> I) * PC (p+8) } |. derive Hoare triple theorems
using Cambridge ARM model

{LR Ir * PC (p+8) } 2. compose Hoare triples
p+8: el2fffle
/ {LR Ir*PC Ir } 3. extract function

(Loops result in recursive functions.)
{ROi*RIj*LRIr*PCp]}
p :e0810000 ela000ad el’2fffle

{RO ((i+))>>1) *RI j* LR Ir * PC Ir } + avg (i) = (i+)>>|

Reminder

How to decompile:
{ROi*RIj*PCp}

p+0 : e0810000
/ {RO (i+)) * RI | * PC (p+4))
{RO i * PC (p+4) }

p+4: e1a000a0 _ .
/ {RO (i >> 1) * PC (p+8) } |. derive Hoare triple theorems
using Cambridge ARM model

We change these triples to be about j

lisp heap. Result: more abstraction.
ClLl 11T 1C DX LI

{LR Ir * PC (p+8) } 2. compose Hoare triples
p+8: el2fffle
/ {LR Ir*PC Ir } 3. extract function

(Loops result in recursive functions.)
{ROi*RIj*LRIr*PCp]}
p :e0810000 ela000ad el’2fffle
(RO ((+)>>1) *RIj*IRIr*PCIr} — M) —> ave (ij) = (i+)>>!

Running the Lisp interpreter

Nintendo DS lite (ARM) MacBook (x86) old MacMini (PowerPC)

(pascal-triangle ’((1)) ’6)

returns:

((1 6 15 20 15 6 1)
(1510 10 5 1)
(146 41)

(1 331)

(12 1)

Can we do better than a simple Lisp interpreter?

Iwo projects meet

Jared Davis

A self-verifying
theorem prover

JL
)
QM

Mllawa

Magnus Myreen

Verified Lisp
implementations

verified LISP on
ARM, x86, PowerPC

Iwo projects meet

[‘My theorem prover is written in Lisp. j

Can | try your verified Lisp?

|

Jared Davis Magnus Myreen

A self-verifying Verified Lisp

theorem prover implementations
WO 72 A

K

“_/;\1&_) verified LISP on

Milawa ARM, x86, PowerPC

Iwo projects meet

EM)’ theorem prover is written in Lisp.

Can | try your verified Lisp? j (Sure, try it.)

| |

Jared Davis Magnus Myreen
A self-verifying Verified Lisp
theorem prover implementations
A M

"_?«’E_) verified LISP on

Milawa ARM, x86, PowerPC

Iwo projects meet

LM)’ theorem prover is written in Lisp.

Can | try your verified Lisp?

j (Sure, try it.)

|

Jared Davis

A self-verifying
theorem prover

Milawa

|
Magnus Myreen

Verified Lisp
implementations

verified LISP on
ARM, x86, PowerPC

Iwo projects meet

LM)’ theorem prover is written in Lisp.

Can | try your verified Lisp? j (Sure, try it.)

| |
i Does your Lisp support ..., ... and .../) C No, but it could)

|

Jared Davis Magnus Myreen
A self-verifying Verified Lisp
theorem prover implementations
K

V_?«’E_) verified LISP on

Milawa ARM, x86, PowerPC

Running Milawa

verified LISP on
ARM, x86, PowerPC

(TPHOLs 2009)

Running Milawa

verified LISP on
ARM, x86, PowerPC

(TPHOLs 2009)

Milawa’s bootstrap proof:

Running Milawa

verified LISP on
ARM, x86, PowerPC

(TPHOLs 2009)

Milawa’s bootstrap proof:

» 4 gigabyte proof file:
>500 million unique conses

Running Milawa

Milawa’s bootstrap proof:

"_/;\iL » 4 gigabyte proof file:
Milawa >500 million unique conses
» takes |16 hours to run on a
state-of-the-art runtime (CCL)

verified LISP on
ARM, x86, PowerPC

(TPHOLs 2009)

Running Milawa

verified LISP on
ARM, x86, PowerPC

(TPHOLs 2009)

Milawa’s bootstrap proof:

» 4 gigabyte proof file:
>500 million unique conses

p takes 16 hours to run on a
state-of-the-art runtime (CCL)

&— hopelessly “toy”

Running Milawa

P
o A

Milawa’s bootstrap proof:

e
(‘7_{\%_) » 4 gigabyte proof file:
Milawa >500 million unique conses
» takes |16 hours to run on a
state-of-the-art runtime (CCL)

Jitawa: verified LISP Contribution:

with JIT compiler) 3 new verified Lisp which is able
to host the Milawa thm prover

work by Jared Davis

A short introdution to
o Milawa

® Milawa is styled after theorem provers
such as NQTHM and ACL2,

® has a small trusted logical kernel similar
to LCF-style provers,

® .. but does not suffer the performance
hit of LCF’s fully expansive approach.

work by Jared Davis

Comparison with LCF approach

LCF-style approach

e all proofs pass through the
core’s primitive inferences
* extensions steer the core

work by Jared Davis

Comparison with LCF approach

custom tools

SAT/SMT
FOL provers

simplifier

decision
procedures rewriter

LCF-style approach

e all proofs pass through the
core’s primitive inferences
* extensions steer the core

work by Jared Davis

Comparison with LCF approach

custom tools

SAT/SMT
FOL provers

simplifier

decision
procedures rewriter

LCF-style approach

e all proofs pass through the
core’s primitive inferences
* extensions steer the core

the Milawa approach

* all proofs must pass the core
* the core proof checker can be
replaced at runtime

work by Jared Davis

Comparison with LCF approach

custom tools

SAT/SMT
FOL provers

simplifier

decision
procedures rewriter

LCF-style approach

e all proofs pass through the
core’s primitive inferences
* extensions steer the core

core derived rules

the Milawa approach

* all proofs must pass the core
* the core proof checker can be
replaced at runtime

work by Jared Davis

Comparison with LCF approach

custom tools

SAT/SMT
FOL provers

simplifier

decision
procedures rewriter

LCF-style approach

e all proofs pass through the
core’s primitive inferences
* extensions steer the core

rewriting

case splitting

core derived rules

the Milawa approach

* all proofs must pass the core
* the core proof checker can be
replaced at runtime

work by Jared Davis

Requirements on runtime

Milawa uses a subset of Common Lisp which

is for most part first-order pure functions over
natural numbers, symbols and conses,

uses primitives: cons car cdr consp natp symbolp
equal + - < symbol-< 1f

Macros: or and list let let* cond
first second third fourth fifth

and a simple form of lambda-applications.

(Lisp subset defined on later slide.)

work by Jared Davis

Requirements on runtime

...but Milawa also

uses destructive updates, hash tables
prints status messages, timing data
uses Common Lisp’s checkpoints
forces function compilation

makes dynamic function calls

can produce runtime errors

(Lisp subset defined on later slide.)

work by Jared Davis

Requirements on runtime

...but Milawa also

® forces function compilation

® makes dynamic function calls

® can produce runtime errors

(Lisp subset defined on later slide.)

work by Jared Davis

Requirements on runtime

...but Milawa also

not
necessary
® forces function compilation .
| | runtime
® makes dynamic function calls must support

® can produce runtime errors

(Lisp subset defined on later slide.)

Runtime must scale

Designed to scale:

Runtime must scale

Designed to scale:

® just-in-time compilation for speed

» functions compile to native code

Runtime must scale

Designed to scale:

® just-in-time compilation for speed

» functions compile to native code

® target 64-bit x86 for heap capacity
» space for 23! (2 billion) cons cells (16 GB)

Runtime must scale

Designed to scale:

® just-in-time compilation for speed

» functions compile to native code

® target 64-bit x86 for heap capacity
» space for 23! (2 billion) cons cells (16 GB)

® efficient scannerless parsing + abbreviations

» must cope with 4 gigabyte input

Runtime must scale

Designed to scale:

® just-in-time compilation for speed

» functions compile to native code

® target 64-bit x86 for heap capacity
» space for 23! (2 billion) cons cells (16 GB)

® efficient scannerless parsing + abbreviations
» must cope with 4 gigabyte input
® graceful exits in all circumstances

» allowed to run out of space, but must report it

Workflow

. specified input language: syntax & semantics

. verified necessary algorithms, e.g.

® compilation from source to bytecode
® parsing and printing of s-expressions
® copying garbage collection

. proved refinements from algorithms to x86 code

. plugged together to form read-eval-print loop

Workflow e |

O_A- SCV.\

40,000 ines o 1

. specified input language: syntax & semantics

. verified necessary algorithms, e.g.

® compilation from source to bytecode
® parsing and printing of s-expressions
® copying garbage collection

. proved refinements from algorithms to x86 code

. plugged together to form read-eval-print loop

AST of input language

term e

func

primaitive

Const sexp sexp
Var string

App func (term list)

If term term term

LambdaApp (string list) term (term list)
Or (term list)

And (term list)

List (term list)

Let ((string X term) list) term

LetStar ((string X term) list) term

Cond ((term x term) list)

First term | Second term | Third term
Fourth term | Fifth term

Define | Print | Error | Funcall
PrimitiveFun primitive | Fun string

Equal | Symbolp | SymbolLess
Consp | Cons | Car | Cdr |
Natp | Add | Sub | Less

Val num
Sym string
Dot sexp sexp

compile: AST — bytecode list

bytecode

Pop

PopN num
PushVal num
PushSym string
LookupConst num
Load num

Store num
DataOp primitive
Jump num
JumplfNil num
DynamicJump
Call num
DynamicCall
Return

Fail

Print

Compile

pop one stack element

pop n stack elements

push a constant number

push a constant symbol

push the nth constant from system state
push the nth stack element
overwrite the nth stack element
add, subtract, car, cons, ...

jump to program point n
conditionally jump to n

jump to location given by stack top
static function call (faster)
dynamic function call (slower)
return to calling function

signal a runtime error

print an object to stdout

compile a function definition

How do we get just-in-time compilation!?

We have verified compilation algorithm:

compile: AST — bytecode list

but compiler must produce real x86 code....

How do we get just-in-time compilation!?

We have verified compilation algorithm:

compile: AST — bytecode list

but compiler must produce real x86 code....

Solution:

® bytecode is represented by numbers in
memory that are x86 machine code

® we prove that jumping to the memory
location of the bytecode executes it

How do we get just-in-time compilation!?

Treating code as data:

Vpecqg. {p}c{ql = {p=codecl) {qx*codec}

Solution:

® bytecode is represented by numbers in
memory that are x86 machine code

® we prove that jumping to the memory
location of the bytecode executes it

How do we get just-in-time compilation!?

Treating code as data:

Vpecqg. {p}c{ql = {p=codecl) {qx*codec}

Definition of Hoare triple:

{p}c{q} = Vsr. (pxrxcodec)s —
dn. (q *r x code ¢) (run n s)

/O and efficient parsing

Jitawa implements a read-eval-print loop:

Use of external C routines adds assumptions to proof:

® reading next string from stdin

® printing null-terminated string to stdout

Read-eval-print loop

® Result of reading lazily, writing eagerly
® Eval = compile then jump-to-compiled-code

® Specification: read-eval-print until end of input

—is_empty (get_input i0) A

next_sexp (get_input i0)) = (s, rest) A

(sexp2term s, [|, k, set_input rest i0) %Y (ans, k', i0") A
is_empty (get_input 70) (k', append_to_output (sexp2string ans) io’) &S io”

(k, 10) Z55 10 (k, i0) &5 io”

Correctness theorem

Top-level correctness theorem:

{ init_state 70 * pc p * (terminates_for io) }

p : code_for_entire_jitawa_implementation

{ error_message V Jio’. {([], i0) &5 i0") * final_state i0" }

Correctness theorem

-

-

N
There must be enough

memory and /O

assumptions must hoId.Jness theorem:

\4

{ init_state 70 * pc p * (terminates_for io) }

p : code_for_entire_jitawa_implementation

{ error_message Vv Jio’. (([], i0)

exec

—

i0") x final_state 0" }

Correctness theorem

4)
There must be enough

memory and /O

assumptions must hold.Jness theorem:
Vv
{ init_state 70 * pc p * (terminates_for io) }

-

p : code_for_entire_jitawa_implementation

{ error_message V Jio’. {([], i0) &5 i0") * final_state i0" }

/\
4)

Each execution is
allowed to fail with

an error message.
- J

Correctness theorem

4)
There must be enough

memory and /O

assumptions must hold.Jness theorem:
Vv
{ init_state 70 * pc p * (terminates_for io) }

-

p : code_for_entire_jitawa_implementation
{ error_message V Jio’. {([], i0) &5 i0") * final_state i0" }

/\ /\

4) 4)
Each execution is If there is no error message,
allowed to fail with then the result is described by
an error message. the high-level op. semantics.

- J - J

Correctness theorem

4 N\)
There must be enough This machine-code Hoare
memory and I/O triple holds only for
assumptions must hold. terminating executions.
_sssumptions must hold. g g executions.

{ init_state 70 * pc p * (terminates_for io) }
p : code_for_entire_jitawa_implementation
{ error_message V Jio’. {([], i0) &5 i0") * final_state i0" }

/\ /\

4) 4)
Each execution is If there is no error message,
allowed to fail with then the result is described by
an error message. the high-level op. semantics.

- J - J

Correctness theorem

4 N\)
There must be enough This machine-code Hoare
memory and I/O triple holds only for
assumptions must hold. terminating executions.
_sssumptions must hold. g g executions.

{ init_state 70 * pc p * (terminates_for io) }

p : code_for_entire_jitawa_implementation < list of numbers)
{ error_message V Jio’. {([], i0) &5 i0’) * final_state 70" }

/\ /\

4) 4)
Each execution is If there is no error message,
allowed to fail with then the result is described by
an error message. the high-level op. semantics.

- J - J

Verified code

$ cat verified_code.s

/*
/*

Machine code automatically extracted from a HOL4 theorem.
The code consists of 7423 instructions (31840 bytes).

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

0x48,
0x4C,
0x48,
0x48,
0x48,
0x48,
0x4C,
0x4C,
0x4C,
0x48,
oxC7,
0x48,
oxC7,
0x48,

Ox8B,
0Ox8B,
Ox8B,
Ox8B,
0Ox8B,
0Ox8B,
Ox8B,
Ox8B,
Ox8B,
0x01,
0x00,
0x83,
0x00,
0x83,

Ox5F,
Ox7F,
0x47,
Ox4F,
0x57,
Ox37

0x47,
Ox4F,
Ox57,
oxC1

0x04,
0xCOo,
0x02,
0xCo,

0x18
0x10
0x20
0x28
0x08

0x60
0x68
Ox58

Ox4E, 0x49, 0x4C
0x04
0x54, 0x06, 0x51
0x04

*/
*/

Running Milawa on Jitawa

Running Milawa’s 4-gigabyte booststrap process:

CCL | 6 hours
SBCL 22 hours

Jitawa 128 hours (8x slower than CCL)

Running Milawa on Jitawa

Running Milawa’s 4-gigabyte booststrap process:

CCL 16 hours Jitawa’s compiler performs
SBCL 22 hours almost no optimisations.

Jitawa 128 hours (8x slower than CCL)

Running Milawa on Jitawa

Running Milawa’s 4-gigabyte booststrap process:

CCL 16 hours Jitawa’s compiler performs
SBCL 22 hours almost no optimisations.

Jitawa 128 hours (8x slower than CCL)

Parsing the 4 gigabyte input:

CCL 716 seconds (9x slower than Jitawa)
Jitawa /9 seconds

Looking back...

The x86 for the compile function was produced as follows:

verified compiler —— [compiler]—> verified x86
as function in logic

[decompiler]

(machine-code Hoare triple]

Very cumbersome....

Looking back...

The x86 for the compile function was produced as follows:

verified compiler —— [compiler]—> verified x86
as function in logic

[decompiler]

[machine-code Hoare triple]

Very cumbersome....

...should have compiled the verified compiler using itself!

Bootstrapping the compiler

Instead: we bootstrap the verified compile function,
we evaluate the compiler on a deep embedding
of itself within the logic:

EVAL compile COMPILE™

derives a theorem:

compile COMPILE = compiler-as-machine-code

The first(?) bootstrapping of a formally verified compiler.

Bootstrapping the compiler

Instead: we bootstrap the verified compile function,
we evaluate the compiler on a deep embedding
of itself within the logic:

EVAL compile COMPILE Y
cOmP‘\e»

e
. \‘(comP!
derives a theorem: in LISP v (

compile COMPILE = compiler-as-machine-code

The first(?) bootstrapping of a formally verified compiler.

1l ‘i\ Bl

. . Magnus Myreen Michael Norrish Scott Owens
(Uni. Cambridge) " Cambridge) ~ (NICTA, ANU) (Uni. Kent)

Ramana Kumar

s-‘ u 1 \\
(Unl Camb . - ‘
' ridge Magnus M .
) (Uni, Ca yreen Michael Norri
mbridge) (NICTA ANrLIJS)h Scott Owens
’ (Unl Kent)

POPL’I14

Ramana Kumar

d Imp\ementation of ML

CakeML: A Verifie

gcott Owens 3

Ramana Kumar Magnus 0. Myreen* 1 Michael Norrish 2
1 Ccomputer Laboratory University of Cambridge, UK
2 Canberra Research Lab, NICTA, Australia
3 gchool © Computing University of Kent, UK
Abstract 1 Introduction
We have Jeveloped and mechanicaﬂy yerified an ML system called The last decade has seen a strong interest 10 verified compilation;
CakeML, which supports 2 substantial subset of gtandard : and there have been signiﬁcant, high—proﬁle results, ANy based
CakeML 18 1mplemented s an interactive read-eva\-pr'mt loop on the CompCert compiler 10f [, 14, 16, 291. This interest is
AMPRT e code. Our correctness theorem ensures easy 10 justify: in the conteX of program erification, an unverifie
JUL A aee results permitte compiler forms a 1arge and complex pa of the truste computing
U base. Howeve o our knowledge none of the existing work on
T saee fOr general—purpose languages has addressed all
T aons. one, the compilation
Y et of

This talk

Part 1: my approach (PhD work)

» automation: code to spec
» automation: spec to code

Part 2: verification of existing code

» verification of gcc output for
microkernel (7,000 lines of C)

Part 3: construction of correct code

» verified implementation of Lisp
that can run Jared Davis’ Milawa

Summary

Techniques from my PhD
» automation: code to spec
» automation: spec to code
worked for two non-trivial case studies:

» verification of gcc output for
microkernel (7,000 lines of C)

» verified implementation of Lisp
that can run Jared Davis’ Milawa

Summary

Techniques from my PhD
» automation: code to spec
» automation: spec to code
worked for two non-trivial case studies:

» verification of gcc output for
microkernel (7,000 lines of C)

» verified implementation of Lisp
that can run Jared Davis’ Milawa

Lessons were learnt:

Summary

Techniques from my PhD
» automation: code to spec
» automation: spec to code
worked for two non-trivial case studies:

» verification of gcc output for
microkernel (7,000 lines of C)

» verified implementation of Lisp
that can run Jared Davis’ Milawa

Lessons were learnt:
» decompiler shouldn’t try to be smart (stack)

Summary

Techniques from my PhD
» automation: code to spec
» automation: spec to code
worked for two non-trivial case studies:

» verification of gcc output for
microkernel (7,000 lines of C)

» verified implementation of Lisp
that can run Jared Davis’ Milawa

Lessons were learnt:
» decompiler shouldn’t try to be smart (stack)
» compile the verified compiler with itself!

Summa ry Questions?

Techniques from my PhD
» automation: code to spec
» automation: spec to code
worked for two non-trivial case studies:

» verification of gcc output for
microkernel (7,000 lines of C)

» verified implementation of Lisp
that can run Jared Davis’ Milawa

Lessons were learnt:
» decompiler shouldn’t try to be smart (stack)
» compile the verified compiler with itself!

