
Currently at but soon at .

Ramana Kumar, Magnus Myreen, Michael Norrish, Scott Owens

CakeML Logo: Trần Tiến Dũng

ACL2’14, Vienna	

!
Magnus Myreen

Machine-code verification	

!

Experience of tackling medium-sized case studies 	

using decompilation into logic

Why machine code?
Computer systems:

source code (Java, Lisp, C etc.)
bytecode or LLVM

multi-language implementations

machine code
hardware
electric charge

computer networks

Proofs only target a model of reality.

Why machine code?
Computer systems:

source code (Java, Lisp, C etc.)
bytecode or LLVM

multi-language implementations

machine code
hardware
electric charge

computer networks

Proofs only target a model of reality.
(Tests run on the ‘real thing’, but are not as insightful.)

Why machine code?
Computer systems:

source code (Java, Lisp, C etc.)
bytecode or LLVM

multi-language implementations

machine code
hardware
electric charge

computer networks

Proofs only target a model of reality.
(Tests run on the ‘real thing’, but are not as insightful.)

a (mostly) well specified interface	

‣ extensive manuals	

‣ least ambiguous(?), cf. C semantics

Why machine code?
Computer systems:

source code (Java, Lisp, C etc.)
bytecode or LLVM

multi-language implementations

machine code
hardware
electric charge

computer networks

Proofs only target a model of reality.
(Tests run on the ‘real thing’, but are not as insightful.)

a (mostly) well specified interface	

‣ extensive manuals	

‣ least ambiguous(?), cf. C semantics

Ultimately all program verification

ought to reach real machine code.

Machine codeMachine code is neat

Machine code,

E1510002 B0422001 C0411002 01AFFFFFB

is impossible to read, write or maintain manually.

However, for theorem-prover-based formal verification:

machine code is clean and tractable!

Reason:

I all types are concrete: word32, word8, bool.

I state consists of a few simple components: a few registers, a
memory and some status bits.

I each instruction performs only small well-defined updates.

Machine codeMachine code is neat

Machine code,

E1510002 B0422001 C0411002 01AFFFFFB

is impossible to read, write or maintain manually.

However, for theorem-prover-based formal verification:

machine code is clean and tractable!

Reason:

I all types are concrete: word32, word8, bool.

I state consists of a few simple components: a few registers, a
memory and some status bits.

I each instruction performs only small well-defined updates.

Machine codeMachine code is neat

Machine code,

E1510002 B0422001 C0411002 01AFFFFFB

is impossible to read, write or maintain manually.

However, for theorem-prover-based formal verification:

machine code is clean and tractable!

Reason:

I all types are concrete: word32, word8, bool.

I state consists of a few simple components: a few registers, a
memory and some status bits.

I each instruction performs only small well-defined updates.

Challenges of Machine Code

machine code

code

Challenges of Machine Code

machine code correctness

{P} code {Q}code

Challenges of Machine Code

ARM/x86/PowerPC model
(1000...10,000 lines each)

machine code correctness

{P} code {Q}code

Challenges of Machine Code

ARM/x86/PowerPC model
(1000...10,000 lines each)

machine code correctness

{P} code {Q}code

Challenges: ‣ several large, detailed models	

‣ unstructured code	

‣ very low-level and limited resources

This talk

Part 1: my approach (PhD work)

Part 2: verification of existing code

Part 3: construction of correct code

This talk

Part 1: my approach (PhD work)

Part 2: verification of existing code

Part 3: construction of correct code

This talk

Part 1: my approach (PhD work)

Part 2: verification of existing code

Part 3: construction of correct code

‣ automation: code to spec 	

‣ automation: spec to code

This talk

Part 1: my approach (PhD work)

Part 2: verification of existing code

Part 3: construction of correct code

‣ automation: code to spec 	

‣ automation: spec to code

‣ verification of gcc output for
microkernel (7,000 lines of C)

This talk

Part 1: my approach (PhD work)

Part 2: verification of existing code

Part 3: construction of correct code

‣ automation: code to spec 	

‣ automation: spec to code

‣ verification of gcc output for
microkernel (7,000 lines of C)

‣ verified implementation of Lisp
that can run Jared Davis’ Milawa

HOL: fully-expansive LCF-style prover

Proofs are performed in HOL4 — a fully expansive theorem prover

HOL4 theorem prover

HOL4 kernel

All proofs expand at runtime
into primitive inferences in
the HOL4 kernel.	

!
The kernel implements the
axioms and inference rules
of higher-order logic.

The aim is to prove deep functional properties of machine code.

InfrastructureInfrastructure in HOL4

During my PhD, I developed the following infrastructure:

decompiler

ARM x86 PowerPC

compilerfunc

code

(code,thm)

(func,thm)

machine-code Hoare triple

. . . each part will be explained in the next slides.

Models of machine codeModels of machine languages

Machine models borrowed from work by others:

ARM model, by Fox [TPHOLs’03]

I covers practically all ARM instructions, for old and new ARMs

I still actively being developed

x86 model, by Sarkar et al. [POPL’09]

I covers all addressing modes in 32-bit mode x86

I includes approximately 30 instructions

PowerPC model, originally from Leroy [POPL’06]

I manual translation (Coq ! HOL4) of Leroy’s PowerPC model

I instruction decoder added

Hoare triplesHoare triple

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 is described by theorem:

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state =

0xE0800000w) ^ ¬state.undefined)
(NEXT ARM MMU cp state =

ARM WRITE REG 15w (ARM READ REG 15w state + 4w)

(ARM WRITE REG 0w

(ARM READ REG 0w state + ARM READ REG 0w state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARM MODEL Informal syntax for this talk:
(aR 0w x * aPC p) {R0 x ⇤ PC p }
{(p,0xE0800000w)} p : E0800000
(aR 0w (x+x) * aPC (p+4w)) {R0 (x+x) ⇤ PC (p+4) }

Hoare triplesHoare triple

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 is described by theorem:

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state =

0xE0800000w) ^ ¬state.undefined)
(NEXT ARM MMU cp state =

ARM WRITE REG 15w (ARM READ REG 15w state + 4w)

(ARM WRITE REG 0w

(ARM READ REG 0w state + ARM READ REG 0w state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARM MODEL Informal syntax for this talk:
(aR 0w x * aPC p) {R0 x ⇤ PC p }
{(p,0xE0800000w)} p : E0800000
(aR 0w (x+x) * aPC (p+4w)) {R0 (x+x) ⇤ PC (p+4) }

Definition of Hoare triple

{p} c {q} () 8s r. (p ⇤ r ⇤ code c) s =)
9n. (q ⇤ r ⇤ code c) (run n s)

Definition of Hoare triple

{p} c {q} () 8s r. (p ⇤ r ⇤ code c) s =)
9n. (q ⇤ r ⇤ code c) (run n s)

frame

Definition of Hoare triple

{p} c {q} () 8s r. (p ⇤ r ⇤ code c) s =)
9n. (q ⇤ r ⇤ code c) (run n s)

frame code separate

Definition of Hoare triple

{p} c {q} () 8s r. (p ⇤ r ⇤ code c) s =)
9n. (q ⇤ r ⇤ code c) (run n s)

frame code separate

total correctness

Definition of Hoare triple

{p} c {q} () 8s r. (p ⇤ r ⇤ code c) s =)
9n. (q ⇤ r ⇤ code c) (run n s)

frame code separate

total correctness machine code sem.

Definition of Hoare triple

{p} c {q} () 8s r. (p ⇤ r ⇤ code c) s =)
9n. (q ⇤ r ⇤ code c) (run n s)

frame code separate

total correctness machine code sem.

separating conjunction

Definition of Hoare triple

{p} c {q} () 8s r. (p ⇤ r ⇤ code c) s =)
9n. (q ⇤ r ⇤ code c) (run n s)

frame code separate

total correctness machine code sem.

Program logic can be used directly for verification.

separating conjunction

Definition of Hoare triple

{p} c {q} () 8s r. (p ⇤ r ⇤ code c) s =)
9n. (q ⇤ r ⇤ code c) (run n s)

frame code separate

total correctness machine code sem.

Program logic can be used directly for verification.

separating conjunction

But direct reasoning in this embedded logic is tiresome.

Decompiler
Decompilation

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

Decompiler
Decompilation

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

Decompiler
Decompilation

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

Decompilation, correct?Decompilation, correct?

Decompiler automatically proves a certificate theorem:

f
pre

(r0, r1,m))

{ (R0, R1, M) is (r0, r1,m) ⇤ PC p ⇤ S }
p : E3A00000 E3510000 12800001 15911000 1AFFFFFB

{ (R0, R1, M) is f (r0, r1,m) ⇤ PC (p + 20) ⇤ S }

which informally reads:

for any initially value (r0, r1,m) in reg 0, reg 1 and memory,
the code terminates with f (r0, r1,m) in reg 0, reg 1 and memory.

Decompilation verification exampleDecompilation, verification example

To verify code: prove properties of function f ,

8x l a m. list(l , a,m)) f (x , a,m) = (length(l), 0,m)

8x l a m. list(l , a,m)) f
pre

(x , a,m)

since properties of f carry over to machine code via the certificate.

Proof reuse: Given similar x86 and PowerPC code:

31C085F67405408B36EBF7

38A000002C140000408200107E80A02E38A500014BFFFFF0

which decompiles into f 0 and f 00, respectively. Manual proofs
above can be reused if f = f 0 = f 00.

Decompilation verification exampleDecompilation, verification example

To verify code: prove properties of function f ,

8x l a m. list(l , a,m)) f (x , a,m) = (length(l), 0,m)

8x l a m. list(l , a,m)) f
pre

(x , a,m)

since properties of f carry over to machine code via the certificate.

Proof reuse: Given similar x86 and PowerPC code:

31C085F67405408B36EBF7

38A000002C140000408200107E80A02E38A500014BFFFFF0

which decompiles into f 0 and f 00, respectively. Manual proofs
above can be reused if f = f 0 = f 00.

Decompilation
How to decompile:

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

Decompilation
How to decompile:

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

e0810000

e1a000a0

e12fff1e

Decompilation
{ R0 i * R1 j * PC p }	

 p+0 :	

{ R0 (i+j) * R1 j * PC (p+4) }	

{ R0 i * PC (p+4) }	

 p+4 :	

{ R0 (i >> 1) * PC (p+8) }	

{ LR lr * PC (p+8) }	

 p+8 :	

{ LR lr * PC lr }	

How to decompile:

1. derive Hoare triple theorems	

 using Cambridge ARM model

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

e0810000

e1a000a0

e12fff1e

Decompilation
{ R0 i * R1 j * PC p }	

 p+0 :	

{ R0 (i+j) * R1 j * PC (p+4) }	

{ R0 i * PC (p+4) }	

 p+4 :	

{ R0 (i >> 1) * PC (p+8) }	

{ LR lr * PC (p+8) }	

 p+8 :	

{ LR lr * PC lr }	

{ R0 i * R1 j * LR lr * PC p }	

 p : e0810000 e1a000a0 e12fff1e	

{ R0 ((i+j)>>1) * R1 j * LR lr * PC lr }	

How to decompile:

1. derive Hoare triple theorems	

 using Cambridge ARM model

2. compose Hoare triples

2

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

e0810000

e1a000a0

e12fff1e

Decompilation
{ R0 i * R1 j * PC p }	

 p+0 :	

{ R0 (i+j) * R1 j * PC (p+4) }	

{ R0 i * PC (p+4) }	

 p+4 :	

{ R0 (i >> 1) * PC (p+8) }	

{ LR lr * PC (p+8) }	

 p+8 :	

{ LR lr * PC lr }	

{ R0 i * R1 j * LR lr * PC p }	

 p : e0810000 e1a000a0 e12fff1e	

{ R0 ((i+j)>>1) * R1 j * LR lr * PC lr }	

How to decompile:

1. derive Hoare triple theorems	

 using Cambridge ARM model

2. compose Hoare triples

3. extract function

avg (i,j) = (i+j)>>1	

2

3

(Loops result in recursive functions.)

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

e0810000

e1a000a0

e12fff1e

Decompiler implementationDecompiler, implementation

Implementation:

I ML program which fully-automatically performs forward proof,

I no heuristics and no dangling proof obligations,

I loops are handled by a special loop rule which introduces
tail-recursive functions:

tailrec(x) = if G (x) then tailrec(F (x)) else D(x)

with termination and side-conditions H collected as:

pre(x) = (if G (x) then pre(F (x)) else true) ^ H(x)

Details in Myreen et al. [FMCAD’08].

Comparison of 	

approaches

Decompilation
Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

Comparison of 	

approaches

Decompilation
Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

direct manual proof using definition of instruction set model	

Comparison of 	

approaches

Decompilation
Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

direct manual proof using definition of instruction set model	

‣ tedious and proofs complete tied to model

Comparison of 	

approaches

Decompilation
Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

direct manual proof using definition of instruction set model	

symbolic simulation	

‣ tedious and proofs complete tied to model

Comparison of 	

approaches

Decompilation
Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

direct manual proof using definition of instruction set model	

symbolic simulation	

‣ tedious and proofs complete tied to model

‣ automatic except at looping points, proofs tied to model

Comparison of 	

approaches

Decompilation
Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

direct manual proof using definition of instruction set model	

symbolic simulation	

‣ tedious and proofs complete tied to model

‣ automatic except at looping points, proofs tied to model

proof using program logic	

Comparison of 	

approaches

Decompilation
Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

direct manual proof using definition of instruction set model	

symbolic simulation	

‣ tedious and proofs complete tied to model

‣ automatic except at looping points, proofs tied to model

proof using program logic	

‣ some reusable proofs, but tedious

Comparison of 	

approaches

Decompilation
Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

direct manual proof using definition of instruction set model	

symbolic simulation	

‣ tedious and proofs complete tied to model

‣ automatic except at looping points, proofs tied to model

proof using program logic	

‣ some reusable proofs, but tedious

verification condition generation	

Comparison of 	

approaches

Decompilation
Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

direct manual proof using definition of instruction set model	

symbolic simulation	

‣ tedious and proofs complete tied to model

‣ automatic except at looping points, proofs tied to model

proof using program logic	

‣ some reusable proofs, but tedious

verification condition generation	

‣ largely automatic, but requires annotating the machine code(!)

Comparison of 	

approaches

Decompilation
Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

direct manual proof using definition of instruction set model	

symbolic simulation	

‣ tedious and proofs complete tied to model

‣ automatic except at looping points, proofs tied to model

proof using program logic	

‣ some reusable proofs, but tedious

verification condition generation	

‣ largely automatic, but requires annotating the machine code(!)

decompilation into logic	

Comparison of 	

approaches

Decompilation
Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

direct manual proof using definition of instruction set model	

symbolic simulation	

‣ tedious and proofs complete tied to model

‣ automatic except at looping points, proofs tied to model

proof using program logic	

‣ some reusable proofs, but tedious

verification condition generation	

‣ largely automatic, but requires annotating the machine code(!)

decompilation into logic	

‣ model-specific part is automatic, does not req. annotations

Comparison of 	

approaches

Decompilation
Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

direct manual proof using definition of instruction set model	

symbolic simulation	

‣ tedious and proofs complete tied to model

‣ automatic except at looping points, proofs tied to model

proof using program logic	

‣ some reusable proofs, but tedious

verification condition generation	

‣ largely automatic, but requires annotating the machine code(!)

decompilation into logic	

‣ model-specific part is automatic, does not req. annotations
‣ can implement proof-producing compilation (next slide)

Comparison of 	

approaches

Decompilation
Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

direct manual proof using definition of instruction set model	

symbolic simulation	

‣ tedious and proofs complete tied to model

‣ automatic except at looping points, proofs tied to model

proof using program logic	

‣ some reusable proofs, but tedious

verification condition generation	

‣ largely automatic, but requires annotating the machine code(!)

decompilation into logic	

‣ model-specific part is automatic, does not req. annotations
‣ can implement proof-producing compilation (next slide)

 decompilation into logic 	

 = 	

 symbolic simulation + support for loops (tail-rec.),	

 done over a program logic (not machine model)

Proof-producing compilation
Compiler

Synthesis often more practical. Given function f ,

f (r1) = if r1 < 10 then r1 else let r1 = r1 � 10 in f (r1)

our compiler generates ARM machine code:

E351000A L: cmp r1,#10

2241100A subcs r1,r1,#10

2AFFFFFC bcs L

and automatically proves a certificate HOL theorem:

` {R1 r1 ⇤ PC p ⇤ s }
p : E351000A 2241100A 2AFFFFFC

{R1 f (r1) ⇤ PC (p+12) ⇤ s }

Compilation, example cont.Compilation example, cont.

One can prove properties of f since it lives inside HOL:

` 8x . f (x) = x mod 10

Properties proved of f translate to properties of the machine code:

` {R1 r1 ⇤ PC p ⇤ s}
p : E351000A 2241100A 2AFFFFFC

{R1 (r1 mod 10) ⇤ PC (p+12) ⇤ s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let r1 = r1 mod 10 in

ImplementationImplementation

To compile function f :

1. generate, without proof, code from input f ;

2. decompile, with proof, a function f 0 from generated code;

3. prove f = f 0.

Features:

I code generation completely separate from proof

I supports many light-weight optimisations without any
additional proof burden: instruction reordering, conditional
execution, dead-code elimination, duplicate-tail elimination, ...

I allows for significant user-defined extensions

Details in Myreen et al. [CC’09]

Infrastructure (again)Infrastructure in HOL4

During my PhD, I developed the following infrastructure:

decompiler

ARM x86 PowerPC

compilerfunc

code

(code,thm)

(func,thm)

machine-code Hoare triple

. . . each part will be explained in the next slides.

This talk

Part 1:

Part 2: verification of existing code

Part 3:

‣ automation: code to spec 	

‣ automation: spec to code

‣ verification of gcc output for
microkernel (7,000 lines of C)

‣ verified
that can run Jared Davis’

L4.verified

seL4 =	
 a formally verified general-
purpose microkernel

(Work by Gerwin Klein’s team at NICTA, Australia)

L4.verified

seL4 =	
 a formally verified general-
purpose microkernel

about 7,000 lines of C code and assembly

(Work by Gerwin Klein’s team at NICTA, Australia)

L4.verified

seL4 =	
 a formally verified general-
purpose microkernel

about 7,000 lines of C code and assembly

200,000 lines of Isabelle/HOL proofs

(Work by Gerwin Klein’s team at NICTA, Australia)

Assumptions
L4.verified project assumes correctness of:

‣ C compiler (gcc)	

‣ inline assembly	

‣ hardware	

‣ hardware management	

‣ boot code	

‣ virtual memory

Assumptions
L4.verified project assumes correctness of:

‣ C compiler (gcc)	

‣ inline assembly	

‣ hardware	

‣ hardware management	

‣ boot code	

‣ virtual memory

The aim of this work is to remove the first assumption.

Assumptions
L4.verified project assumes correctness of:

‣ C compiler (gcc)	

‣ inline assembly	

‣ hardware	

‣ hardware management	

‣ boot code	

‣ virtual memory

The aim of this work is to remove the first assumption.

‣ Cambridge ARM model

Assumptions
L4.verified project assumes correctness of:

‣ C compiler (gcc)	

‣ inline assembly	

‣ hardware	

‣ hardware management	

‣ boot code	

‣ virtual memory

The aim of this work is to remove the first assumption.

‣ Cambridge ARM model

(?)

(?)

trusted

Aim: extend downwards

detailed model of C code

low-level design

high-level design

...
Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

trusted

Aim: extend downwards

detailed model of C code

low-level design

high-level design

...
Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

Aim: remove need to trust C compiler and C semantics

...

Aim: extend downwards

detailed model of C code

low-level design

high-level design

...
Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

Aim: remove need to trust C compiler and C semantics

...

Cambridge ARM model

detailed model of C code

low-level design

high-level design

Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

Using Cambridge ARM model
ne

w
 e

xt
en

si
on

Cambridge ARM model

detailed model of C code

low-level design

high-level design

Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

Using Cambridge ARM model
ne

w
 e

xt
en

si
on

gcc (not trusted)

Cambridge ARM model

detailed model of C code

low-level design

high-level design

Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

Using Cambridge ARM model

seL4 machine code

ne
w

 e
xt

en
si

on

gcc (not trusted)

Cambridge ARM model

detailed model of C code

low-level design

high-level design

Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

Using Cambridge ARM model

seL4 machine code

ne
w

 e
xt

en
si

on

gcc (not trusted)

machine code as functions

Cambridge ARM model

detailed model of C code

low-level design

high-level design

Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

Using Cambridge ARM model

seL4 machine code

ne
w

 e
xt

en
si

on

gcc (not trusted)

machine code as functions

decompilation

Cambridge ARM model

detailed model of C code

low-level design

high-level design

Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

Using Cambridge ARM model

seL4 machine code

ne
w

 e
xt

en
si

on

gcc (not trusted)

machine code as functions

decompilation

refinement proof

Approach

• decompilation by me	

• refinement proof by Thomas Sewell (NICTA)

Cambridge ARM model
seL4 machine code

ne
w

 e
xt

en
si

on machine code as functions

decompilation

refinement proof

Stage 1: decompilation

Cambridge ARM model
seL4 machine code

machine code as functions

decompilation

Decompilation
Sample C code:	

!
uint avg (uint i, uint j) {	

 return (i + j) / 2;	

}	

Decompilation
Sample C code:	

!
uint avg (uint i, uint j) {	

 return (i + j) / 2;	

}	

gcc 	

(not trusted)

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

machine code:	

!
!
!
!

Decompilation
Sample C code:	

!
uint avg (uint i, uint j) {	

 return (i + j) / 2;	

}	

Resulting function:	

!
avg (r0, r1) = let r0 = r1 + r0 in	

 let r0 = r0 >> 1 in	

 r0

gcc 	

(not trusted)

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

machine code:	

!
!
!
!

decompilation via ARM model

Decompilation
Sample C code:	

!
uint avg (uint i, uint j) {	

 return (i + j) / 2;	

}	

HOL4 certificate theorem:	

!
 { R0 i * R1 j * LR lr * PC p }	

 p : e0810000 e1a000a0 e12fff1e	

 { R0 (avg(i,j)) * R1 _ * LR _ * PC lr }	

Resulting function:	

!
avg (r0, r1) = let r0 = r1 + r0 in	

 let r0 = r0 >> 1 in	

 r0

gcc 	

(not trusted)

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

machine code:	

!
!
!
!

decompilation via ARM model

Decompilation
Sample C code:	

!
uint avg (uint i, uint j) {	

 return (i + j) / 2;	

}	

HOL4 certificate theorem:	

!
 { R0 i * R1 j * LR lr * PC p }	

 p : e0810000 e1a000a0 e12fff1e	

 { R0 (avg(i,j)) * R1 _ * LR _ * PC lr }	

Resulting function:	

!
avg (r0, r1) = let r0 = r1 + r0 in	

 let r0 = r0 >> 1 in	

 r0

gcc 	

(not trusted)

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

machine code:	

!
!
!
!

decompilation via ARM modelreturn instruction

Decompilation
Sample C code:	

!
uint avg (uint i, uint j) {	

 return (i + j) / 2;	

}	

HOL4 certificate theorem:	

!
 { R0 i * R1 j * LR lr * PC p }	

 p : e0810000 e1a000a0 e12fff1e	

 { R0 (avg(i,j)) * R1 _ * LR _ * PC lr }	

Resulting function:	

!
avg (r0, r1) = let r0 = r1 + r0 in	

 let r0 = r0 >> 1 in	

 r0

gcc 	

(not trusted)

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

machine code:	

!
!
!
!

decompilation via ARM model
bit-string arithmetic

return instruction

Decompilation
Sample C code:	

!
uint avg (uint i, uint j) {	

 return (i + j) / 2;	

}	

HOL4 certificate theorem:	

!
 { R0 i * R1 j * LR lr * PC p }	

 p : e0810000 e1a000a0 e12fff1e	

 { R0 (avg(i,j)) * R1 _ * LR _ * PC lr }	

Resulting function:	

!
avg (r0, r1) = let r0 = r1 + r0 in	

 let r0 = r0 >> 1 in	

 r0

gcc 	

(not trusted)

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

machine code:	

!
!
!
!

decompilation via ARM model
bit-string arithmetic

bit-string right-shift

return instruction

Decompilation
Sample C code:	

!
uint avg (uint i, uint j) {	

 return (i + j) / 2;	

}	

HOL4 certificate theorem:	

!
 { R0 i * R1 j * LR lr * PC p }	

 p : e0810000 e1a000a0 e12fff1e	

 { R0 (avg(i,j)) * R1 _ * LR _ * PC lr }	

Resulting function:	

!
avg (r0, r1) = let r0 = r1 + r0 in	

 let r0 = r0 >> 1 in	

 r0

gcc 	

(not trusted)

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

machine code:	

!
!
!
!

decompilation via ARM model
bit-string arithmetic

bit-string right-shift

return instruction

separation logic: *

• seL4 is ~12,000 lines of machine code	

!

• compiled using gcc -O2	

!

• must be compatible with L4.verified proof

Decompiling seL4:	

Challenges

• seL4 is ~12,000 lines of machine code	

!

• compiled using gcc -O2	

!

• must be compatible with L4.verified proof

Decompiling seL4:	

Challenges

✓ decompilation is compositional

• seL4 is ~12,000 lines of machine code	

!

• compiled using gcc -O2	

!

• must be compatible with L4.verified proof

Decompiling seL4:	

Challenges

✓ decompilation is compositional

✓ gcc implements ARM/C calling convention

• seL4 is ~12,000 lines of machine code	

!

• compiled using gcc -O2	

!

• must be compatible with L4.verified proof

Decompiling seL4:	

Challenges

✓ decompilation is compositional

✓ gcc implements ARM/C calling convention

➡ stack requires special treatment

C code:	

!
uint avg8 (uint x0, x1, x2, x3, x4, x5, x6, x7) {	

 return (x0+x1+x2+x3+x4+x5+x6+x7) / 8;	

}	

Stack visible in m. code

Some arguments are passed on the stack,

C code:	

!
uint avg8 (uint x0, x1, x2, x3, x4, x5, x6, x7) {	

 return (x0+x1+x2+x3+x4+x5+x6+x7) / 8;	

}	

Stack visible in m. code

Some arguments are passed on the stack,

C code:	

!
uint avg8 (uint x0, x1, x2, x3, x4, x5, x6, x7) {	

 return (x0+x1+x2+x3+x4+x5+x6+x7) / 8;	

}	

Stack visible in m. code

add	
 r1, r1, r0	

add	
 r1, r1, r2	

ldr	
 r2, [sp]	

add	
 r1, r1, r3	

add	
 r0, r1, r2	

ldmib sp, {r2, r3}	

add	
 r0, r0, r2	

add	
 r0, r0, r3	

ldr	
 r3, [sp, #12]	

add	
 r0, r0, r3	

lsr	
 r0, r0, #3	

bx	
 lr	

gcc

Some arguments are passed on the stack,
 and cause memory ops in machine code

 ... that are not 	

present in C semantics.

C code:	

!
uint avg8 (uint x0, x1, x2, x3, x4, x5, x6, x7) {	

 return (x0+x1+x2+x3+x4+x5+x6+x7) / 8;	

}	

Stack visible in m. code

add	
 r1, r1, r0	

add	
 r1, r1, r2	

ldr	
 r2, [sp]	

add	
 r1, r1, r3	

add	
 r0, r1, r2	

ldmib sp, {r2, r3}	

add	
 r0, r0, r2	

add	
 r0, r0, r3	

ldr	
 r3, [sp, #12]	

add	
 r0, r0, r3	

lsr	
 r0, r0, #3	

bx	
 lr	

gcc

Solution
Use separation-logic inspired approach

_ _ _ s0 s1 s2 s3 s4 ss

stack pointer: sp

{

3 slots of unused but
required stack space

{
rest of stack

Solution
Use separation-logic inspired approach

_ _ _ s0 s1 s2 s3 s4 ss

stack pointer: sp

{

3 slots of unused but
required stack space

{
rest of stack

m

Solution
Use separation-logic inspired approach

stack sp 3 (s0::s1::s2::s3::s4::ss)

_ _ _ s0 s1 s2 s3 s4 ss

stack pointer: sp

{

3 slots of unused but
required stack space

{
rest of stack

m

Solution
Use separation-logic inspired approach

stack sp 3 (s0::s1::s2::s3::s4::ss)

_ _ _ s0 s1 s2 s3 s4 ss

stack pointer: sp

{

3 slots of unused but
required stack space

{
rest of stack

m

* memory m

Solution
Use separation-logic inspired approach

stack sp 3 (s0::s1::s2::s3::s4::ss)

_ _ _ s0 s1 s2 s3 s4 ss

stack pointer: sp

{

3 slots of unused but
required stack space

{
rest of stack

m

separation logic: *

* memory m

Solution
Use separation-logic inspired approach

stack sp 3 (s0::s1::s2::s3::s4::ss)

_ _ _ s0 s1 s2 s3 s4 ss

stack pointer: sp

{

3 slots of unused but
required stack space

{
rest of stack

m

separation logic: *

* memory m

disjoint due to *

Solution (cont.)

!
add	
r1, r1, r0	

add	
r1, r1, r2	

ldr	
 r2, [sp]	

add	
r1, r1, r3	

add	
r0, r1, r2	

ldmib sp, {r2, r3}	

add	
r0, r0, r2	

add	
r0, r0, r3	

ldr	
 r3, [sp, #12]	

add	
r0, r0, r3	

lsr	
 r0, r0, #3	

bx	
 lr	

1. static analysis to find
stack operations,	

2. derive stack-specific
Hoare triples,	

3. then run decompiler as
before.

Method:

Solution (cont.)

!
add	
r1, r1, r0	

add	
r1, r1, r2	

ldr	
 r2, [sp]	

add	
r1, r1, r3	

add	
r0, r1, r2	

ldmib sp, {r2, r3}	

add	
r0, r0, r2	

add	
r0, r0, r3	

ldr	
 r3, [sp, #12]	

add	
r0, r0, r3	

lsr	
 r0, r0, #3	

bx	
 lr	

1. static analysis to find
stack operations,	

2. derive stack-specific
Hoare triples,	

3. then run decompiler as
before.

Method:

➡

➡

➡

avg8(r0,r1,r2,r3,s0,s1,s2,s3) = 	

 let r1 = r1 + r0 in	

 let r1 = r1 + r2 in	

 let r2 = s0 in	

 let r1 = r1 + r3 in	

 let r0 = r1 + r3 in	

 let (r2,r3) = (s1,s2) in	

 let r0 = r0 + r2 in	

 let r0 = r0 + r3 in	

 let r3 = s3 in	

 let r0 = r0 + r3 in	

 let r0 = r0 >> 3 in	

 r0

Result

!
add	
r1, r1, r0	

add	
r1, r1, r2	

ldr	
 r2, [sp]	

add	
r1, r1, r3	

add	
r0, r1, r2	

ldmib sp, {r2, r3}	

add	
r0, r0, r2	

add	
r0, r0, r3	

ldr	
 r3, [sp, #12]	

add	
r0, r0, r3	

lsr	
 r0, r0, #3	

bx	
 lr	

Stack load/stores become straightforward assignments.

avg8(r0,r1,r2,r3,s0,s1,s2,s3) = 	

 let r1 = r1 + r0 in	

 let r1 = r1 + r2 in	

 let r2 = s0 in	

 let r1 = r1 + r3 in	

 let r0 = r1 + r3 in	

 let (r2,r3) = (s1,s2) in	

 let r0 = r0 + r2 in	

 let r0 = r0 + r3 in	

 let r3 = s3 in	

 let r0 = r0 + r3 in	

 let r0 = r0 >> 3 in	

 r0

Result

!
add	
r1, r1, r0	

add	
r1, r1, r2	

ldr	
 r2, [sp]	

add	
r1, r1, r3	

add	
r0, r1, r2	

ldmib sp, {r2, r3}	

add	
r0, r0, r2	

add	
r0, r0, r3	

ldr	
 r3, [sp, #12]	

add	
r0, r0, r3	

lsr	
 r0, r0, #3	

bx	
 lr	

Stack load/stores become straightforward assignments.

Additional benefit:	

 automatically proved certificate theorem	

 states explicitly stack shape/usage:

{ stack sp n (s0::s1::s2::s3::s) * ... * PC p }	

 p : code	

{ stack sp n (s0::s1::s2::s3::s) * ... * PC lr }	

avg8(r0,r1,r2,r3,s0,s1,s2,s3) = 	

 let r1 = r1 + r0 in	

 let r1 = r1 + r2 in	

 let r2 = s0 in	

 let r1 = r1 + r3 in	

 let r0 = r1 + r3 in	

 let (r2,r3) = (s1,s2) in	

 let r0 = r0 + r2 in	

 let r0 = r0 + r3 in	

 let r3 = s3 in	

 let r0 = r0 + r3 in	

 let r0 = r0 >> 3 in	

 r0

Result

!
add	
r1, r1, r0	

add	
r1, r1, r2	

ldr	
 r2, [sp]	

add	
r1, r1, r3	

add	
r0, r1, r2	

ldmib sp, {r2, r3}	

add	
r0, r0, r2	

add	
r0, r0, r3	

ldr	
 r3, [sp, #12]	

add	
r0, r0, r3	

lsr	
 r0, r0, #3	

bx	
 lr	

Stack load/stores become straightforward assignments.

Additional benefit:	

 automatically proved certificate theorem	

 states explicitly stack shape/usage:

{ stack sp n (s0::s1::s2::s3::s) * ... * PC p }	

 p : code	

{ stack sp n (s0::s1::s2::s3::s) * ... * PC lr }	

four arguments passed on stack

avg8(r0,r1,r2,r3,s0,s1,s2,s3) = 	

 let r1 = r1 + r0 in	

 let r1 = r1 + r2 in	

 let r2 = s0 in	

 let r1 = r1 + r3 in	

 let r0 = r1 + r3 in	

 let (r2,r3) = (s1,s2) in	

 let r0 = r0 + r2 in	

 let r0 = r0 + r3 in	

 let r3 = s3 in	

 let r0 = r0 + r3 in	

 let r0 = r0 >> 3 in	

 r0

Result

!
add	
r1, r1, r0	

add	
r1, r1, r2	

ldr	
 r2, [sp]	

add	
r1, r1, r3	

add	
r0, r1, r2	

ldmib sp, {r2, r3}	

add	
r0, r0, r2	

add	
r0, r0, r3	

ldr	
 r3, [sp, #12]	

add	
r0, r0, r3	

lsr	
 r0, r0, #3	

bx	
 lr	

Stack load/stores become straightforward assignments.

Additional benefit:	

 automatically proved certificate theorem	

 states explicitly stack shape/usage:

{ stack sp n (s0::s1::s2::s3::s) * ... * PC p }	

 p : code	

{ stack sp n (s0::s1::s2::s3::s) * ... * PC lr }	

four arguments passed on stack

does not require temp space, works for “any n”

avg8(r0,r1,r2,r3,s0,s1,s2,s3) = 	

 let r1 = r1 + r0 in	

 let r1 = r1 + r2 in	

 let r2 = s0 in	

 let r1 = r1 + r3 in	

 let r0 = r1 + r3 in	

 let (r2,r3) = (s1,s2) in	

 let r0 = r0 + r2 in	

 let r0 = r0 + r3 in	

 let r3 = s3 in	

 let r0 = r0 + r3 in	

 let r0 = r0 >> 3 in	

 r0

Result

!
add	
r1, r1, r0	

add	
r1, r1, r2	

ldr	
 r2, [sp]	

add	
r1, r1, r3	

add	
r0, r1, r2	

ldmib sp, {r2, r3}	

add	
r0, r0, r2	

add	
r0, r0, r3	

ldr	
 r3, [sp, #12]	

add	
r0, r0, r3	

lsr	
 r0, r0, #3	

bx	
 lr	

Stack load/stores become straightforward assignments.

Additional benefit:	

 automatically proved certificate theorem	

 states explicitly stack shape/usage:

{ stack sp n (s0::s1::s2::s3::s) * ... * PC p }	

 p : code	

{ stack sp n (s0::s1::s2::s3::s) * ... * PC lr }	

promises to leave stack unchanged

four arguments passed on stack

does not require temp space, works for “any n”

Other C-specifics
• struct as return value 	

‣ case of passing pointer of stack location	

‣ stack assertion strong enough 	

• switch statements 	

‣ position dependent	

‣ must decompile elf-files, not object files	

• infinite loops in C 	

‣ make gcc go weird	

‣ must be pruned from control-flow graph

detailed model of C code

seL4 machine code

ne
w

 e
xt

en
si

on

machine code as functions

automatic translation

refinement proof

Moving on to stage 2

detailed model of C code

seL4 machine code

ne
w

 e
xt

en
si

on

machine code as functions

automatic translation

refinement proof

Moving on to stage 2

Refinement proof

detailed model of C code

machine code as functions

proof by rewriting

(Work by Thomas Sewell, NICTA)

C code as graph

translation (unproved)

machine code as graph

‘guided SMT proof’

Graph language

machine code as graph

machine code as functions

seL4 machine code

automatic decompilation

translation (unproved)

Graph language

machine code as graph

seL4 machine code

automatic decompilation

Graph language

machine code as graph

seL4 machine code

automatic decompilation

Node types:
‣ state update	

‣ test-and-branch	

‣ call

Graph language

machine code as graph

seL4 machine code

automatic decompilation

Node types:
‣ state update	

‣ test-and-branch	

‣ call

Next pointers:
‣ node address	

‣ return (from call)	

‣ error

Graph language

machine code as graph

seL4 machine code

automatic decompilation

Node types:
‣ state update	

‣ test-and-branch	

‣ call

Theorem: any exec in graph, can be done in machine code

Next pointers:
‣ node address	

‣ return (from call)	

‣ error

Graph language

machine code as graph

seL4 machine code

automatic decompilation

Node types:
‣ state update	

‣ test-and-branch	

‣ call

Theorem: any exec in graph, can be done in machine code

Next pointers:
‣ node address	

‣ return (from call)	

‣ error

Potential to suit other applications better, e.g. safety analysis.

Connecting provers

detailed model of C code

low-level design

high-level design

machine code as functions

seL4 machine code

machine code as functions

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

ne
w

 e
xt

en
si

on

In general, hard.	

Easy in this case.

Connecting provers

detailed model of C code

low-level design

high-level design

machine code as functions

seL4 machine code

machine code as functions

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

ne
w

 e
xt

en
si

on

In general, hard.	

Easy in this case.

in
 Is

ab
el

le
/H

O
L

in
 H

O
L4

Connecting provers

detailed model of C code

low-level design

high-level design

machine code as functions

seL4 machine code

machine code as functions

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

ne
w

 e
xt

en
si

on

automatic translation of definitions	

from HOL4 to Isabelle/HOL

In general, hard.	

Easy in this case.

in
 Is

ab
el

le
/H

O
L

in
 H

O
L4

Looking back
Success: gcc output for -O1 and -O2 on seL4 decompiles.

Looking back
Success: gcc output for -O1 and -O2 on seL4 decompiles.

stack analysis brittle and requires expert user to debug,
However:

latest version avoids stack analysis,
latest version produces graphs (instead of functions)

Looking back
Success: gcc output for -O1 and -O2 on seL4 decompiles.

stack analysis brittle and requires expert user to debug,
However:

latest version avoids stack analysis,
latest version produces graphs (instead of functions)

A one-fits-all decompilation target?
graph — good for automatic analysis/proofs
functions — readable, good for interactive proofs

Looking back
Success: gcc output for -O1 and -O2 on seL4 decompiles.

stack analysis brittle and requires expert user to debug,
However:

latest version avoids stack analysis,
latest version produces graphs (instead of functions)

A one-fits-all decompilation target?
graph — good for automatic analysis/proofs
functions — readable, good for interactive proofs

Should decompilation be over program logic or machine model?

This talk

Part 1:

Part 2:

Part 3: construction of correct code

‣ automation: code to spec 	

‣ automation: spec to code

‣ verification of
microkernel

‣ verified implementation of Lisp
that can run Jared Davis’ Milawa

Inspiration: Lisp interpreter

Verified LISP implementations on

ARM, x86 and PowerPC

Magnus O. Myreen and Michael J. C. Gordon

Computer Laboratory, University of Cambridge, UK

Abstract. This paper reports on a case study, which we believe is the

first to produce a formally verified end-to-end implementation of a func-

tional programming language running on commercial processors. Inter-

preters for the core of McCarthy’s LISP 1.5 were implemented in ARM,

x86 and PowerPC machine code, and proved to correctly parse, evaluate

and print LISP s-expressions. The proof of evaluation required working

on top of verified implementations of memory allocation and garbage

collection. All proofs are mechanised in the HOL4 theorem prover.

1 Introduction

Explicit pointer manipulation is an endless source of errors in low-level programs.

Functional programming languages hide pointers and thereby achieve a more

abstract programming environment. The downside with functional programming

(and Java/C# programming) is that the programmer has to trust automatic

memory management routines built into run-time environments.

In this paper we report on a case study, which we believe is the first to

produce a formally verified end-to-end implementation of a functional program-

ming language. We have implemented, in ARM, x86 and PowerPC machine code,

a program which parses, evaluates and prints LISP; and furthermore formally

proved that our implementation respects a semantics of the core of LISP 1.5 [6].

Instead of assuming correctness of run-time routines, we build on a verified im-

plementation of allocation and garbage collection.

For a flavour of what we have implemented and proved consider an example:

if our implementation is supplied with the following call to p

a

s

c

a

l

-

t

r

i

a

n

g

l

e

,

(

p

a

s

c

a

l

-

t

r

i

a

n

g

l

e

’

(

(

1

)

)

’

6

)

it parses the string, evaluates the expression and prints a string,

(

(

1

6

1

5

2

0

1

5

6

1

)

(

1

5

1

0

1

0

5

1

)

(

1

4

6

4

1

)

(

1

3

3

1

)

(

1

2

1

)

(

1

1

)

(

1

)

)

where p

a

s

c

a

l

-

t

r

i

a

n

g

l

e

had been supplied to it as

TPHOLs’09

A verified Lisp interpreterLISP case study

Idea: create LISP implementations via compilation.

decompiler

ARM x86 PowerPC

compiler
HOL4 functions for

LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc.

ARM, x86, PowerPC code
and certificate theorems

machine-code Hoare triple

Lisp formalisedLISP formalised

LISP s-expressions defined as data-type SExp:

Num : N! SExp

Sym : string! SExp

Dot : SExp! SExp! SExp

LISP primitives were defined, e.g.

cons x y = Dot x y

car (Dot x y) = x

plus (Num m) (Num n) = Num (m + n)

The semantics of LISP evaluation was taken to be Gordon’s
formalisation of ‘LISP 1.5’-like evaluation, next slide. . .

Extending the compiler
Extending the compiler

We define heap assertion ‘lisp (v1, v2, v3, v4, v5, v6, l)’ and prove
implementations for primitive operations, e.g.

is pair v1)
{ lisp (v1, v2, v3, v4, v5, v6, l) ⇤ pc p }
p : E5934000
{ lisp (v1, car v1, v3, v4, v5, v6, l) ⇤ pc (p + 4) }

size v1 + size v2 + size v3 + size v4 + size v5 + size v6 < l)
{ lisp (v1, v2, v3, v4, v5, v6, l) ⇤ pc p }
p : E50A3018 E50A4014 E50A5010 E50A600C ...

{ lisp (cons v1 v2, v2, v3, v4, v5, v6, l) ⇤ pc (p + 332) }

with these the compiler understands:

let v2 = car v1 in ...
let v1 = cons v1 v2 in ...

Reminder
{ R0 i * R1 j * PC p }	

 p+0 :	

{ R0 (i+j) * R1 j * PC (p+4) }	

{ R0 i * PC (p+4) }	

 p+4 :	

{ R0 (i >> 1) * PC (p+8) }	

{ LR lr * PC (p+8) }	

 p+8 :	

{ LR lr * PC lr }	

{ R0 i * R1 j * LR lr * PC p }	

 p : e0810000 e1a000a0 e12fff1e	

{ R0 ((i+j)>>1) * R1 j * LR lr * PC lr }	

How to decompile:

1. derive Hoare triple theorems	

 using Cambridge ARM model

2. compose Hoare triples

3. extract function

avg (i,j) = (i+j)>>1	

2

3

(Loops result in recursive functions.)

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

e0810000

e1a000a0

e12fff1e

Reminder
{ R0 i * R1 j * PC p }	

 p+0 :	

{ R0 (i+j) * R1 j * PC (p+4) }	

{ R0 i * PC (p+4) }	

 p+4 :	

{ R0 (i >> 1) * PC (p+8) }	

{ LR lr * PC (p+8) }	

 p+8 :	

{ LR lr * PC lr }	

{ R0 i * R1 j * LR lr * PC p }	

 p : e0810000 e1a000a0 e12fff1e	

{ R0 ((i+j)>>1) * R1 j * LR lr * PC lr }	

How to decompile:

1. derive Hoare triple theorems	

 using Cambridge ARM model

2. compose Hoare triples

3. extract function

avg (i,j) = (i+j)>>1	

2

3

(Loops result in recursive functions.)

e0810000 add	 r0, r1, r0	
e1a000a0 lsr	 r0, r0, #1	
e12fff1e bx	 lr

e0810000

e1a000a0

e12fff1e

We change these triples to be about
lisp heap. Result: more abstraction.

Running the Lisp interpreter

LISP interpreter in use

To execute verified machine code, we:

1. wrote C wrapper around verified machine code,

2. compiled using gcc,

3. checked with hexdump that gcc didn’t alter the machine code,

4. ran code on real hardware:

Nintendo DS lite (ARM) MacBook (x86) old MacMini (PowerPC)

LISP interpreter in use

Example: paper gives a definition of pascal-triangle, for which:

(pascal-triangle ’((1)) ’6)

returns:

((1 6 15 20 15 6 1)

(1 5 10 10 5 1)

(1 4 6 4 1)

(1 3 3 1)

(1 2 1)

(1 1)

(1))

Timings: ARM 0.090 ms, x86 0.001 ms, PowerPC 0.004 ms

Can we do better than a simple Lisp interpreter?

Two projects meet

Jared Davis Magnus Myreen

A self-verifying 	

theorem prover

Verified Lisp
implementations

verified LISP on	

ARM, x86, PowerPC

Two projects meet

Jared Davis Magnus Myreen

A self-verifying 	

theorem prover

Verified Lisp
implementations

verified LISP on	

ARM, x86, PowerPC

My theorem prover is written in Lisp. 	

Can I try your verified Lisp?

Two projects meet

Jared Davis Magnus Myreen

A self-verifying 	

theorem prover

Verified Lisp
implementations

verified LISP on	

ARM, x86, PowerPC

My theorem prover is written in Lisp. 	

Can I try your verified Lisp? Sure, try it.

Two projects meet

Jared Davis Magnus Myreen

A self-verifying 	

theorem prover

Verified Lisp
implementations

verified LISP on	

ARM, x86, PowerPC

My theorem prover is written in Lisp. 	

Can I try your verified Lisp? Sure, try it.

Does your Lisp support ..., ... and ...?

Two projects meet

Jared Davis Magnus Myreen

A self-verifying 	

theorem prover

Verified Lisp
implementations

verified LISP on	

ARM, x86, PowerPC

My theorem prover is written in Lisp. 	

Can I try your verified Lisp? Sure, try it.

Does your Lisp support ..., ... and ...? No, but it could ...

verified LISP on
ARM, x86, PowerPC

Running Milawa

(TPHOLs 2009)

verified LISP on
ARM, x86, PowerPC

Running Milawa

Milawa’s bootstrap proof:

(TPHOLs 2009)

verified LISP on
ARM, x86, PowerPC

Running Milawa

Milawa’s bootstrap proof:

‣ 4 gigabyte proof file:
>500 million unique conses

(TPHOLs 2009)

verified LISP on
ARM, x86, PowerPC

Running Milawa

Milawa’s bootstrap proof:

‣ 4 gigabyte proof file:
>500 million unique conses

‣ takes 16 hours to run on a
state-of-the-art runtime (CCL)

(TPHOLs 2009)

verified LISP on
ARM, x86, PowerPC

Running Milawa

Milawa’s bootstrap proof:

‣ 4 gigabyte proof file:
>500 million unique conses

‣ takes 16 hours to run on a
state-of-the-art runtime (CCL)

(TPHOLs 2009)

hopelessly “toy”

Jitawa: verified LISP 	

 with JIT compiler

Running Milawa

Milawa’s bootstrap proof:

‣ 4 gigabyte proof file:
>500 million unique conses

‣ takes 16 hours to run on a
state-of-the-art runtime (CCL)

Contribution:
‣ a new verified Lisp which is able

to host the Milawa thm prover

 A short introdution to

work by Jared Davis

• Milawa is styled after theorem provers
such as NQTHM and ACL2,	

• has a small trusted logical kernel similar
to LCF-style provers, 	

• ... but does not suffer the performance
hit of LCF’s fully expansive approach.

Comparison with LCF approach

work by Jared Davis

LCF-style approach
• all proofs pass through the

core’s primitive inferences	

• extensions steer the core

core

decision	

 procedures

Comparison with LCF approach

work by Jared Davis

LCF-style approach
• all proofs pass through the

core’s primitive inferences	

• extensions steer the core

rewriter

core

simplifier

SAT/SMT
FOL provers

custom tools
...

core

decision	

 procedures

Comparison with LCF approach

work by Jared Davis

LCF-style approach the Milawa approach
• all proofs pass through the

core’s primitive inferences	

• extensions steer the core

• all proofs must pass the core	

• the core proof checker can be

replaced at runtime

rewriter

core

simplifier

SAT/SMT
FOL provers

custom tools
...

core derived rules

decision	

 procedures

Comparison with LCF approach

work by Jared Davis

LCF-style approach the Milawa approach
• all proofs pass through the

core’s primitive inferences	

• extensions steer the core

• all proofs must pass the core	

• the core proof checker can be

replaced at runtime

rewriter

core

simplifier

SAT/SMT
FOL provers

custom tools
...

core derived rules

decision	

 procedures

Comparison with LCF approach

work by Jared Davis

LCF-style approach the Milawa approach
• all proofs pass through the

core’s primitive inferences	

• extensions steer the core

• all proofs must pass the core	

• the core proof checker can be

replaced at runtime

rewriter

core

simplifier

SAT/SMT
FOL provers

custom tools

case splitting

rewriting

‘auto’ tactics
...

...

Requirements on runtime
work by Jared Davis

Milawa uses a subset of Common Lisp which 	

(Lisp subset defined on later slide.)

is for most part first-order pure functions over 	

natural numbers, symbols and conses,

cons car cdr consp natp symbolp 	
equal + - < symbol-< if	

uses primitives:

macros: or and list let let* cond 	
first second third fourth fifth	

and a simple form of lambda-applications.

Requirements on runtime

• uses destructive updates, hash tables	

• prints status messages, timing data	

• uses Common Lisp’s checkpoints	

• forces function compilation	

• makes dynamic function calls	

• can produce runtime errors

work by Jared Davis

...but Milawa also

(Lisp subset defined on later slide.)

Requirements on runtime

• uses destructive updates, hash tables	

• prints status messages, timing data	

• uses Common Lisp’s checkpoints	

• forces function compilation	

• makes dynamic function calls	

• can produce runtime errors

work by Jared Davis

...but Milawa also

(Lisp subset defined on later slide.)

Requirements on runtime

• uses destructive updates, hash tables	

• prints status messages, timing data	

• uses Common Lisp’s checkpoints	

• forces function compilation	

• makes dynamic function calls	

• can produce runtime errors

work by Jared Davis

...but Milawa also

}

}

not 	

necessary

runtime 	

must support

(Lisp subset defined on later slide.)

Runtime must scale
Designed to scale:

Runtime must scale
Designed to scale:

• just-in-time compilation for speed	

‣ functions compile to native code

Runtime must scale
Designed to scale:

• just-in-time compilation for speed	

‣ functions compile to native code

• target 64-bit x86 for heap capacity	

‣ space for 231 (2 billion) cons cells (16 GB)	

Runtime must scale
Designed to scale:

• just-in-time compilation for speed	

‣ functions compile to native code

• target 64-bit x86 for heap capacity	

‣ space for 231 (2 billion) cons cells (16 GB)	

• efficient scannerless parsing + abbreviations	

‣ must cope with 4 gigabyte input

Runtime must scale
Designed to scale:

• just-in-time compilation for speed	

‣ functions compile to native code

• target 64-bit x86 for heap capacity	

‣ space for 231 (2 billion) cons cells (16 GB)	

• efficient scannerless parsing + abbreviations	

‣ must cope with 4 gigabyte input

• graceful exits in all circumstances	

‣ allowed to run out of space, but must report it

Workflow

1. specified input language: syntax & semantics	

2. verified necessary algorithms, e.g.	

• compilation from source to bytecode	

• parsing and printing of s-expressions	

• copying garbage collection	

3. proved refinements from algorithms to x86 code	

4. plugged together to form read-eval-print loop

Workflow

1. specified input language: syntax & semantics	

2. verified necessary algorithms, e.g.	

• compilation from source to bytecode	

• parsing and printing of s-expressions	

• copying garbage collection	

3. proved refinements from algorithms to x86 code	

4. plugged together to form read-eval-print loop

~30,000 lines of HOL4 scripts

AST of input language
term ::= Const sexp

| Var string
| App func (term list)
| If term term term

| LambdaApp (string list) term (term list)
| Or (term list)
| And (term list) (macro)

| List (term list) (macro)

| Let ((string � term) list) term (macro)

| LetStar ((string � term) list) term (macro)

| Cond ((term � term) list) (macro)

| First term | Second term | Third term (macro)

| Fourth term | Fifth term (macro)

func ::= Define | Print | Error | Funcall
| PrimitiveFun primitive | Fun string

primitive ::= Equal | Symbolp | SymbolLess
| Consp | Cons | Car | Cdr |
| Natp | Add | Sub | Less

sexp ::= Val num

| Sym string

| Dot sexp sexp

compile: AST bytecode list

bytecode ::= Pop pop one stack element

| PopN num pop n stack elements

| PushVal num push a constant number

| PushSym string push a constant symbol

| LookupConst num push the nth constant from system state

| Load num push the nth stack element

| Store num overwrite the nth stack element

| DataOp primitive add, subtract, car, cons, . . .

| Jump num jump to program point n

| JumpIfNil num conditionally jump to n

| DynamicJump jump to location given by stack top

| Call num static function call (faster)

| DynamicCall dynamic function call (slower)

| Return return to calling function

| Fail signal a runtime error

| Print print an object to stdout

| Compile compile a function definition

How do we get just-in-time compilation?

We have verified compilation algorithm:

compile: AST bytecode list

but compiler must produce real x86 code....

How do we get just-in-time compilation?

We have verified compilation algorithm:

compile: AST bytecode list

but compiler must produce real x86 code....

• bytecode is represented by numbers in
memory that are x86 machine code	

• we prove that jumping to the memory
location of the bytecode executes it

Solution:

How do we get just-in-time compilation?

We have verified compilation algorithm:

compile: AST bytecode list

but compiler must produce real x86 code....

• bytecode is represented by numbers in
memory that are x86 machine code	

• we prove that jumping to the memory
location of the bytecode executes it

Solution:

Treating code as data:

⇥p c q. {p} c {q} = {p � code c} ⇤ {q � code c}

(POPL’10)

How do we get just-in-time compilation?

We have verified compilation algorithm:

compile: AST bytecode list

but compiler must produce real x86 code....

• bytecode is represented by numbers in
memory that are x86 machine code	

• we prove that jumping to the memory
location of the bytecode executes it

Solution:

Treating code as data:

⇥p c q. {p} c {q} = {p � code c} ⇤ {q � code c}

(POPL’10)

Definition of Hoare triple:

{p} c {q} = 8s r. (p ⇤ r ⇤ code c) s =)
9n. (q ⇤ r ⇤ code c) (run n s)

I/O and efficient parsing
Jitawa implements a read-eval-print loop:

• reading next string from stdin	

• printing null-terminated string to stdout	

Use of external C routines adds assumptions to proof:

Read-eval-print loop

• Result of reading lazily, writing eagerly	

• Eval = compile then jump-to-compiled-code	

• Specification: read-eval-print until end of input

is empty (get input io)
(k, io) exec�! io

¬is empty (get input io)⇤
next sexp (get input io)) = (s, rest)⇤
(sexp2term s, [], k, set input rest io) ev�⇥ (ans, k0, io0)⇤
(k0, append to output (sexp2string ans) io0) exec�⇥ io

00

(k, io) exec�⇥ io

00

Correctness theorem

Top-level correctness theorem:

{ init state io ⇥ pc p ⇥ ⌃terminates for io⌥ }
p : code for entire jitawa implementation

{ error message ⇧ ⌅io0. ⌃([], io) exec�⇤ io

0⌥ ⇥ final state io

0 }

Correctness theorem

Top-level correctness theorem:

{ init state io ⇥ pc p ⇥ ⌃terminates for io⌥ }
p : code for entire jitawa implementation

{ error message ⇧ ⌅io0. ⌃([], io) exec�⇤ io

0⌥ ⇥ final state io

0 }

There must be enough
memory and I/O

assumptions must hold.

Correctness theorem

Top-level correctness theorem:

{ init state io ⇥ pc p ⇥ ⌃terminates for io⌥ }
p : code for entire jitawa implementation

{ error message ⇧ ⌅io0. ⌃([], io) exec�⇤ io

0⌥ ⇥ final state io

0 }

Each execution is
allowed to fail with
an error message.

There must be enough
memory and I/O

assumptions must hold.

Correctness theorem

Top-level correctness theorem:

{ init state io ⇥ pc p ⇥ ⌃terminates for io⌥ }
p : code for entire jitawa implementation

{ error message ⇧ ⌅io0. ⌃([], io) exec�⇤ io

0⌥ ⇥ final state io

0 }

Each execution is
allowed to fail with
an error message.

If there is no error message,
then the result is described by
the high-level op. semantics.

There must be enough
memory and I/O

assumptions must hold.

Correctness theorem

Top-level correctness theorem:

{ init state io ⇥ pc p ⇥ ⌃terminates for io⌥ }
p : code for entire jitawa implementation

{ error message ⇧ ⌅io0. ⌃([], io) exec�⇤ io

0⌥ ⇥ final state io

0 }

Each execution is
allowed to fail with
an error message.

If there is no error message,
then the result is described by
the high-level op. semantics.

There must be enough
memory and I/O

assumptions must hold.

This machine-code Hoare
triple holds only for

terminating executions.

Correctness theorem

Top-level correctness theorem:

{ init state io ⇥ pc p ⇥ ⌃terminates for io⌥ }
p : code for entire jitawa implementation

{ error message ⇧ ⌅io0. ⌃([], io) exec�⇤ io

0⌥ ⇥ final state io

0 }

Each execution is
allowed to fail with
an error message.

If there is no error message,
then the result is described by
the high-level op. semantics.

There must be enough
memory and I/O

assumptions must hold.

This machine-code Hoare
triple holds only for

terminating executions.

list of numbers

Verified code
 $ cat verified_code.s	
!
 /* Machine code automatically extracted from a HOL4 theorem. */	
 /* The code consists of 7423 instructions (31840 bytes). */	
!
 .byte 0x48, 0x8B, 0x5F, 0x18	
 .byte 0x4C, 0x8B, 0x7F, 0x10	
 .byte 0x48, 0x8B, 0x47, 0x20	
 .byte 0x48, 0x8B, 0x4F, 0x28	
 .byte 0x48, 0x8B, 0x57, 0x08	
 .byte 0x48, 0x8B, 0x37	
 .byte 0x4C, 0x8B, 0x47, 0x60	
 .byte 0x4C, 0x8B, 0x4F, 0x68	
 .byte 0x4C, 0x8B, 0x57, 0x58	
 .byte 0x48, 0x01, 0xC1	
 .byte 0xC7, 0x00, 0x04, 0x4E, 0x49, 0x4C	
 .byte 0x48, 0x83, 0xC0, 0x04	
 .byte 0xC7, 0x00, 0x02, 0x54, 0x06, 0x51	
 .byte 0x48, 0x83, 0xC0, 0x04	
 ...

Running Milawa on Jitawa

CCL	

SBCL	

Jitawa

 16 hours	

 22 hours	

128 hours

Running Milawa’s 4-gigabyte booststrap process:

(8x slower than CCL)

Running Milawa on Jitawa

CCL	

SBCL	

Jitawa

 16 hours	

 22 hours	

128 hours

Running Milawa’s 4-gigabyte booststrap process:

(8x slower than CCL)

Jitawa’s compiler performs 	

almost no optimisations.

Running Milawa on Jitawa

CCL	

SBCL	

Jitawa

 16 hours	

 22 hours	

128 hours

Running Milawa’s 4-gigabyte booststrap process:

(8x slower than CCL)

Parsing the 4 gigabyte input:

CCL	

Jitawa

 716 seconds	

 79 seconds

(9x slower than Jitawa)

Jitawa’s compiler performs 	

almost no optimisations.

LISP case study

Idea: create LISP implementations via compilation.

decompiler

ARM x86 PowerPC

compiler
HOL4 functions for

LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc.

ARM, x86, PowerPC code
and certificate theorems

machine-code Hoare triple

verified compiler 	

as function in logic

verified x86

The x86 for the compile function was produced as follows:

Very cumbersome....

Looking back…

LISP case study

Idea: create LISP implementations via compilation.

decompiler

ARM x86 PowerPC

compiler
HOL4 functions for

LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc.

ARM, x86, PowerPC code
and certificate theorems

machine-code Hoare triple

verified compiler 	

as function in logic

verified x86

The x86 for the compile function was produced as follows:

Very cumbersome....

Looking back…

…should have compiled the verified compiler using itself!

Bootstrapping the compiler

Instead: we bootstrap the verified compile function,
we evaluate the compiler on a deep embedding 	

of itself within the logic:

EVAL ``compile COMPILE``

derives a theorem:

compile COMPILE = compiler-as-machine-code

The first(?) bootstrapping of a formally verified compiler.

Bootstrapping the compiler

Instead: we bootstrap the verified compile function,
we evaluate the compiler on a deep embedding 	

of itself within the logic:

EVAL ``compile COMPILE``

derives a theorem:

compile COMPILE = compiler-as-machine-code

The first(?) bootstrapping of a formally verified compiler.

in Lisp (eval ‘(compile compile)) ?

Ramana Kumar 	

(Uni. Cambridge)	

Scott Owens	

(Uni. Kent)	

Michael Norrish	

(NICTA, ANU)	

Magnus Myreen 	

(Uni. Cambridge)	

CakeML: A Verified Implementation of ML

Ramana Kumar ⇤ 1 Magnus O. Myreen † 1 Michael Norrish 2 Scott Owens 3

1 Computer Laboratory, University of Cambridge, UK

2 Canberra Research Lab, NICTA, Australia‡

3 School of Computing, University of Kent, UK

Abstract

We have developed and mechanically verified an ML system called

CakeML, which supports a substantial subset of Standard ML.

CakeML is implemented as an interactive read-eval-print loop

(REPL) in x86-64 machine code. Our correctness theorem ensures

that this REPL implementation prints only those results permitted

by the semantics of CakeML. Our verification effort touches on

a breadth of topics including lexing, parsing, type checking, in-

cremental and dynamic compilation, garbage collection, arbitrary-

precision arithmetic, and compiler bootstrapping.

Our contributions are twofold. The first is simply in build-

ing a system that is end-to-end verified, demonstrating that each

piece of such a verification effort can in practice be composed

with the others, and ensuring that none of the pieces rely on any

over-simplifying assumptions. The second is developing novel ap-

proaches to some of the more challenging aspects of the veri-

fication. In particular, our formally verified compiler can boot-

strap itself: we apply the verified compiler to itself to produce a

verified machine-code implementation of the compiler. Addition-

ally, our compiler proof handles diverging input programs with a

lightweight approach based on logical timeout exceptions. The en-

tire development was carried out in the HOL4 theorem prover.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification—Correctness proofs, Formal

methods; F.3.1 [Logics and meanings of programs]: Specifying

and Verifying and Reasoning about Programs—Mechanical veri-

fication, Specification techniques, Invariants

Keywords Compiler verification; compiler bootstrapping; ML;

machine code verification; read-eval-print loop; verified parsing;

verified type checking; verified garbage collection.

⇤ supported by the Gates Cambridge Trust

† supported by the Royal Society, UK

‡ NICTA is funded by the Australian Government through the Department

of Communications and the Australian Research Council through the ICT

Centre of Excellence Program.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

POPL ’14, January 22–24, 2014, San Diego, CA, USA..

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2544-8/14/01. . . $15.00.

http://dx.doi.org/10.1145/2535838.2535841

1. Introduction

The last decade has seen a strong interest in verified compilation;

and there have been significant, high-profile results, many based

on the CompCert compiler for C [1, 14, 16, 29]. This interest is

easy to justify: in the context of program verification, an unverified

compiler forms a large and complex part of the trusted computing

base. However, to our knowledge, none of the existing work on

verified compilers for general-purpose languages has addressed all

aspects of a compiler along two dimensions: one, the compilation

algorithm for converting a program from a source string to a list of

numbers representing machine code, and two, the execution of that

algorithm as implemented in machine code.

Our purpose in this paper is to explain how we have verified

a compiler along the full scope of both of these dimensions for a

practical, general-purpose programming language. Our language is

called CakeML, and it is a strongly typed, impure, strict functional

language based on Standard ML and OCaml. By verified, we mean

that the CakeML system is ultimately x86-64 machine code along-

side a mechanically checked theorem in higher-order logic saying

that running that machine code causes an input program to yield

output or diverge as specified by the semantics of CakeML.

We did not write the CakeML compiler and platform directly in

machine code. Instead we write it in higher-order logic and synthe-

sise CakeML from that using our previous technique [22], which

puts the compiler on equal footing with other CakeML programs.

We then apply the compiler to itself, i.e., we bootstrap it. This

avoids a tedious manual refinement proof relating the compilation

algorithm to its implementation, as well as providing a moderately

large example program. More specifically,

• we write, and can run, the compiler as a function in the logic,

and we synthesise a CakeML implementation of the compiler

inside the logic;

• we bootstrap the compiler to get a machine-code implementa-

tion inside the logic; and

• the compiler correctness theorem thereby applies to the

machine-code implementation of the compiler.

Another consequence of bootstrapping is that we can include the

compiler implementation as part of the runtime system to form an

interactive read-eval-print loop (REPL). A verified REPL enables

high-assurance applications that provide interactivity, an important

feature for interactive theorem provers in the LCF tradition, which

were the original motivation for ML.

Contributions
• Semantics that are carefully designed to be simultaneously suit-

able for proving meta-theoretic language properties and for sup-

porting a verified implementation. (Section 3)

• An extension of a proof-producing synthesis pathway [22] orig-

inally from logic to ML, now to machine code (via verified

compilation). (Sections 4–6, 10)

POPL’14

Ramana Kumar 	

(Uni. Cambridge)	

Scott Owens	

(Uni. Kent)	

Michael Norrish	

(NICTA, ANU)	

Magnus Myreen 	

(Uni. Cambridge)	

This talk

Part 1: my approach (PhD work)

Part 2: verification of existing code

Part 3: construction of correct code

‣ automation: code to spec 	

‣ automation: spec to code

‣ verification of gcc output for
microkernel (7,000 lines of C)

‣ verified implementation of Lisp
that can run Jared Davis’ Milawa

Summary

‣ automation: code to spec 	

‣ automation: spec to code

‣ verification of gcc output for
microkernel (7,000 lines of C)

‣ verified implementation of Lisp
that can run Jared Davis’ Milawa

Techniques from my PhD

worked for two non-trivial case studies:

Summary

‣ automation: code to spec 	

‣ automation: spec to code

‣ verification of gcc output for
microkernel (7,000 lines of C)

‣ verified implementation of Lisp
that can run Jared Davis’ Milawa

Techniques from my PhD

worked for two non-trivial case studies:

Lessons were learnt:

Summary

‣ automation: code to spec 	

‣ automation: spec to code

‣ verification of gcc output for
microkernel (7,000 lines of C)

‣ verified implementation of Lisp
that can run Jared Davis’ Milawa

Techniques from my PhD

worked for two non-trivial case studies:

Lessons were learnt:
‣ decompiler shouldn’t try to be smart (stack)

Summary

‣ automation: code to spec 	

‣ automation: spec to code

‣ verification of gcc output for
microkernel (7,000 lines of C)

‣ verified implementation of Lisp
that can run Jared Davis’ Milawa

Techniques from my PhD

worked for two non-trivial case studies:

Lessons were learnt:
‣ decompiler shouldn’t try to be smart (stack)!
‣ compile the verified compiler with itself!

Summary

‣ automation: code to spec 	

‣ automation: spec to code

‣ verification of gcc output for
microkernel (7,000 lines of C)

‣ verified implementation of Lisp
that can run Jared Davis’ Milawa

Techniques from my PhD

worked for two non-trivial case studies:

Lessons were learnt:
‣ decompiler shouldn’t try to be smart (stack)

Questions?

!
‣ compile the verified compiler with itself!

