
Now You See Me, Now You Don't:
Querying with Hybrid Temporal Logic

Mistral Contrastin Andrew Rice

�1

Computation Tree Logic recap

‣ Evaluate with respect to a Kripke structure: 
(States, StartStates, AccessibilityRelation, LabellingFx)

‣ EX/AX p: p holds in some/all succeeding states

‣ EF/AF p: in some/all paths we can find a point p holds

‣ EG/AG p: in some/all paths we can p holds

‣ E/A[p U q]: in some/all paths p holds until q holds

!2

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | EX ϕ | AX ϕ | EF ϕ | AF ϕ | EG ϕ | AG ϕ | E[ϕ U ϕ] | A[ϕ U ϕ]

Version history looks like
Kripke structure

!3

State

Accessibility relation

Version history looks like
Kripke structure

!4

TimestampVersion hash File

Recent

Some simple questions

‣ Does a continuously exist in some branches?

‣ Does a continuously exist in all branches?

‣ Does a continuously exist in some branches starting
from the first commit?

‣ Are there recent commits where a is present?

!5

Some interesting questions

‣ When is this bug introduced?

‣ Which releases are affected by a particular bug?

‣ What are my colleagues working on?

‣ Are there discrepancies in the version history? (force push)

‣ More temporal questions in Fritz and Murphy, 2010

!6

Datalog is not declarative 1

CTL:
EF file(“a”)

Datalog:
eventually(V) :- version(V,_), file(“a”,V).  
eventually(V) :- version(V,V’), eventually(V’).

?- eventually(V).

!7

Can I reach a point the file a exists?

Datalog is not declarative 2

CTL:
AG file(“a”)

Datalog:
eventually(V) :- version(V,_), ! file(“a”,V).  
eventually(V) :- version(V,V’), eventually(V’).

?- version(V,_), ! eventually(V).

!8

Does a always exist in all branches?

!9

CTL is not perfect either 1:
Model processing

‣ Version histories are not quite left total! 
CTL falls apart, e.g., 
 
 

‣ In Datalog, we can make relations left total 
 
total_version(T,T’) :- version(T,T’).  
total_version(T’,T’) :- version(_,T’), ! version(T’,_).

!10

AG p ≠ ¬EF ¬p

CTL is not perfect either 2

!11

Does EG file(“a”) hold?

CTL is not perfect either 2:
Global vs Local

!12

Does EG file(“a”) hold?

Depends on if the model checker is global or local.

The query is not informative enough.

Hybrid temporal logic:
Setting time

‣ We also want to jump to a particular moment: @ 
 
?- (AG file(“a”)) @ “0778df”.

!13

CTL is not perfect either 3:
Mixing with FOL

‣ How can we say “p holds in recent versions”?

‣ ?- EX … EX p ?

‣ ?- recent, p ?

‣ recent(T) :- T > 6.  
 
?- recent(T), p ?

!14

Hybrid temporal logic:
Observing time

‣ We need to bind time to a term: ↓ (| in ASCII) 
 
?- | Hash (even(Hash), file(“a”)).

!15

CTL is not perfect either 4:
Multimodality

‣ What is the correct notion of time? 
 
Version hashes: a4afb5, 0778df, … 
 
POSIX time: 1, 2, 3, 4, 5, …

‣ Why not both?

!16

1 2 3 4 5 6 …

Defining accessibility
relation within Datalog

.pred version(text,text).
version("a4afb5","0778df").
version("0778df","376e06").
version("376e06","288f0d").
version("0778df","9eb447").
version("9eb447","288f0d").
version("288f0d","288f0d").

!17

.pred clock(int,int).
clock(1,2).
clock(2,3).
clock(3,4).
clock(4,5).
clock(5,6).
clock(6,7).
clock(7,8).
clock(8,9).
clock(9,-1).
clock(-1,-1).

Defining a temporal predicate

.pred file(text) @ version.
file("a") @ "0778df".
file("a") @ "376e06".
file("a") @ "288f0d".
file("b") @ "9eb447".
file("b") @ "288f0d".
file("c") @ "a4afb5".
file("c") @ "0778df".
file("c") @ "9eb447".

!18

?- AG file(“a").

?- file(“c”), EX ! file(“c”).

?- AG (file(“a”); file(“c”)).

Relating distinct times

.pred timestamp() @ version clock.
timestamp() @ "a4afb5" @ 1.
timestamp() @ "0778df" @ 2.
timestamp() @ "9eb447" @ 5.
timestamp() @ "376e06" @ 7.
timestamp() @ "288f0d" @ 8.

!19

Hybrid queries and joins

‣ “Which files exist in recent commits?” 
 
?- timestamp(), file(File), | <clock> T recent(T).

‣ The timestamp is just a join 
 

.join timestamp.  
?- file(File), | <clock> T recent(T).

!20

Model processing:
Reversing time!

.pred rev_version(text,text).
rev_version(H,H') :- version(H',H), ! version(H,H).
rev_version(H,H) :- version(H,H'), ! version(_,H).  
 
?- AG | <rev_version> Hash (file("c.txt") @ Hash).

!21

Interesting accessibility relations
in programming language context

‣ Program counter

‣ Nodes of a dataflow graph, 
e.g., Brauer et al. 2009 for pointer analysis

‣ ???

!22

!23

Thanks. Questions?

Implementation: github.com/madgen/temporalog

Email: Mistral.Contrastin@cl.cam.ac.uk
Website: dodisturb.me

Twitter: @madgen_

http://github.com/madgen/temporalog
mailto:mistral.Contrastin@cl.cam.ac.uk
http://dodisturb.me

Compilation

‣ Compile to stratified Datalog

‣ Simple stratification criterion: no cycles with AX, AF, AG, !

‣ Range restriction is preserved

‣ Dataflow safety (well-modedness) is preserved

!24

