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Automatic Analysis of Naturalistic Hand-Over-Face Gestures

MARWA MAHMOUD, TADAS BALTRUŠAITIS, and PETER ROBINSON,
University of Cambridge

One of the main factors that limit the accuracy of facial analysis systems is hand occlusion. As the face
becomes occluded, facial features are lost, corrupted, or erroneously detected. Hand-over-face occlusions are
considered not only very common but also very challenging to handle. However, there is empirical evidence
that some of these hand-over-face gestures serve as cues for recognition of cognitive mental states. In this
article, we present an analysis of automatic detection and classification of hand-over-face gestures. We detect
hand-over-face occlusions and classify hand-over-face gesture descriptors in videos of natural expressions
using multi-modal fusion of different state-of-the-art spatial and spatio-temporal features. We show experi-
mentally that we can successfully detect face occlusions with an accuracy of 83%. We also demonstrate that
we can classify gesture descriptors (hand shape, hand action, and facial region occluded) significantly better
than a naı̈ve baseline. Our detailed quantitative analysis sheds some light on the challenges of automatic
classification of hand-over-face gestures in natural expressions.
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1. INTRODUCTION

Over the past few years, there has been an increasing interest in machine under-
standing and recognition of people’s affective and cognitive mental states, especially
based on facial expression analysis. One of the major factors that limits the accuracy
of facial analysis systems is hand occlusion. People often hold their hands near their
faces as a gesture in natural conversation. As many facial analysis systems are based
on geometric or appearance based facial features, such features are lost, corrupted,
or erroneously detected during occlusion. This results in an incorrect analysis of the
person’s facial expression. Although face touches are very common, they are under-
researched, mostly because segmenting of the hand on the face is very challenging,
as face and hand usually have similar colour and texture. Detection of hand-over-face
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occlusion can significantly improve facial landmark detection and facial expression
inference systems.

However, hand-over-face occlusions are not just noise that needs to be removed.
There is a growing body of work on the importance of body movements and gestures
as significant visual cues that complement facial expressions in affect analysis [de
Gelder 2009; Aviezer et al. 2012]. Body gestures were successfully utilised in automatic
detection of human mental states [Bernhardt and Robinson 2007; Castellano et al.
2007]. For a survey on affective body expression perception and recognition, the reader
is referred to Kleinsmith and Bianchi-Berthouze [2013]. Spontaneous self-touches or
self-grooming gestures are believed to be related to formulating thoughts, information
processing, and emotion regulation [Freedman 1977; Barroso and Feld 1986; Grunwald
et al. 2014]. Specifically, recent studies suggest that hand-over-face gestures can serve
as an additional valuable channel for multi-modal affect inference for cognitive mental
states [Mahmoud and Robinson 2011]. These studies emphasise the need not only for
an occlusion detection system but also for a way to describe the gesture in terms of a
set of quantitative descriptors that can be automatically detected.

Moreover, automatic detection of these gesture descriptors can provide tools for exper-
imental psychologists who study gesture—especially face touches—to detect and quan-
tify these gestures automatically, instead of the common practice of manual coding. To
date, there is no available automatic detection system that serves these purposes.

In this article, we present an analysis of hand-over-face gestures in a naturalistic
video corpus of complex mental states. We define three hand-over-face gesture de-
scriptors, namely hand shape, hand action, and facial region occluded, and propose a
methodology for automatic detection of face occlusions in videos of natural expressions.

We treat the problem as two separate tasks: detection of hand occlusion and classifi-
cation of hand gesture descriptors. The main contributions of this article are as follows:

(1) Proposing a multi-modal fusion approach to detect hand-over-face gestures in
videos of natural expressions, based on state-of-the-art spatial and spatio-temporal
appearance features.

(2) Proposing the first approach to automatically code and classify hand-over-face ges-
ture descriptors, namely hand shape, hand action, and facial region occluded.

(3) Demonstrating that multi-modal fusion of spatial and spatio-temporal features
outperforms single modalities in all of our classification tasks.

We start by discussing the related work in Section 2. We present the details of
gesture coding and dataset used in Section 3. We then present our proposed approach
(illustrated in Figure 1), starting by the feature extraction in Section 4 followed by the
experimental evaluation in Section 5. Conclusions and future directions are presented
in Section 6.

2. RELATED WORK

There have been several previous attempts to detect and deal with occlusion in face
area. Two such examples come from work done by Yu et al. [2013] and Burgos-Artizzu
et al. [2013]. In both pieces of work, the authors concentrated on building a facial
landmark detector that is robust to various occlusions. They achieved this by explicitly
recognising occluded landmarks of the face and using that information to detect the
visible landmarks more robustly.

Yu et al. [2013] evaluated their approach on static images of faces. They did not
report occlusion detection or hand segmentation results. They just reported face align-
ment error rates in the presence of different types of face occlusion. Burgos-Artizzu
et al. [2013] reported occlusion detection precision/recall curve for specic facial land-
marks. Selected threshold for occlusion classification was reported at 0.8 precision and
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Fig. 1. Overview diagram shows the main steps in our approach.

0.4 recall values. Both pieces of work concentrated on facial occlusion in general and
not specifically on hand-over-face occlusion. Furthermore, the authors were interested
in detecting occluded facial landmarks, which are not necessarily semantically mean-
ingful. Both of the approaches lead to better landmark alignment in the presence of
occlusion.

Another notable example is the work done by Hotta [2004], which proposes a method
for more robust face detection in presence of partial occlusion by using Support Vector
Machines (SVM) with local kernels. Again, Hotta [2004] did not provide any quantita-
tive results for the face occlusion detection. It is worth mentioning that none of these
mentioned authors distinguish among types of occlusion and make no special analysis
of hand-over-face occlusions.

There have been a few attempts [Smith et al. 2007; Mahmoud et al. 2009] to detect
the hand when it occludes the face. Both studies evaluated their approaches on posed
sets of face images that mostly included frontal faces with very limited illumination
and head motion variations. Their approaches were based on the assumption that the
face is the only object in the image as no face detection technique was employed.

A great deal of work has been published recently using depth captured from RGB-D
sensors for hand shape detection in sign language [Keskin et al. 2011; Kurakin et al.
2012; Dong et al. 2015], gesture recognition for control gestures [Ren et al. 2011; Yang
et al. 2012; Suarez and Murphy 2012], and general hand pose estimation [Poier et al.
2015]. Unlike hand-over-face gestures, in these scenarios one can assume that the hand
is the closest body part to the depth sensor and is sufficiently far from the face to allow
for segmentation.

Moreover, Gonzalez et al. [2012] use colour and edge information captured from
RGB images to track and segment the hand during hand-over-face occlusion in sign
language. They assume that the hand is mostly in front of the face, which is a fair
assumption in the context of sign language detection. When the hand is in front of
the face, some differences in the colour and edges of the hand are preserved as the
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Fig. 2. Sample frames from videos in the dataset Cam3D showing examples of face touches present in the
dataset [Mahmoud et al. 2011]. Note the challenging—close to natural—recording settings like inconsistent
lighting conditions and strong head rotations.

hand edges are not fully merged with the face edges, especially with the existence of
shadows. This assumption does not hold in the naturalistic hand-over-face occlusions
that we am interested in.

Grafsgaard et al. [2012] use surface propagation from depth images to detect two
hand-to-face gestures (one hand touching face and two hands touching face) in a
computer-mediated tutoring environment. In contrast to previous work, our work
presents a more detailed and comprehensive classification of hand-over-face gesture
descriptors, which is not tackled in any of the previous studies.

3. CODING OF HAND-OVER-FACE GESTURES

Serving as a first step in automatic classification, we coded hand-over-face gestures
using a set of descriptors. In this section, we describe the choice of the dataset, the
coding schema, the labelling, annotation assessment, and how we generate the ground-
truth labels that are used in our machine learning experiments.

3.1. Dataset

The first challenge was to find a corpus of videos of natural expressions. Most of the
work on affect analysis focuses on the face, so most of the publicly available natural
datasets also focus on faces with limited or no occlusion. Since we are also interested in
the temporal aspect of the hand gesture, corpora of still photographs were not useful.
The publicly available Cam3D corpus [Mahmoud et al. 2011] has natural expressions
and does not restrict the video collection to faces. It includes upper body videos that
have hand-over-face occlusions in around 25% of the videos. The expressions in Cam3D
are elicited as part of an emotion elicitation experiment, which implies that the hand
gestures expressed are most likely to be part of expression of emotion. We are interested
in detecting such potentially informative gestures. Figure 2 shows examples of face
touches present in the dataset Cam3D, showing the challenging—close to natural—
recording settings like inconsistent lighting conditions and strong head rotations.

In Cam3D, segmentation is event based, so each video segment contains a single
action. The dataset has 192 video segments that contain hand-over-face occlusions.
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These videos come from nine participants with mean duration of each video being 6s.
We used all of the occluded videos. For balance, we also randomly selected another
173 video segments from the Cam3D dataset that do not contain face occlusions. The
no-occlusion videos were selected to contain the same nine participants while keeping
the number of samples for each participant as balanced as possible. This led to a set of
365 videos in total.

3.2. Labelling

In order to proceed to automatic detection, we needed to code the hand-over-face occlu-
sions present in the dataset. This requires a taxonomy of hand gestures that can form
the basis of a set of descriptors.

There have been a few attempts to code hand gestures. Ip et al. [1998] developed a
Hand Action Coding System (HACS) that is based on the anatomy of the hand to be
used for hand synthesis. This system was too detailed to be used for our coding as it
was anatomical rather than descriptive of the hand gesture.

Inspired by the coding schema provided by Mahmoud and Robinson [2011], we coded
the gestures in terms of hand shape, hand action, and facial region occluded.

Labelling was carried out using the Elan video annotation tool [Lausberg and Sloetjes
2009]. Two expert coders (researchers in our research group) were instructed to label
the videos given the following instructions:

—Hand Action: coded as one label for the whole video according to the action observed
in the majority of the frames.
Labels are as follows: (1) Touching—if the hand is static while touching the face.
(2) Stroking/tapping—repetitive motion of the hand on the face. (3) Sliding—any
other hand motion that is not repetitive.

—Hand Shape: coded as one label per frame. It describes the shape of the hand on the
face in a specific frame. Labels are mutually exclusive, that is, one label is permitted
per frame.
Labels are as follows: (1) Fingers or any separate fingers. (2) OpenHand(s) or
palm(s). (3) ClosedHand(s) or a fist shape. (4) HandsTogether—tangled hands.

—Facial Region Occluded: coded as one (or multiple) labels per frame (labels are not
mutually exclusive). It describes the face area covered—or partially covered—by the
hand during occlusion.
Labels are as follows: (1) Forehead. (2) Eye(s). (3) Nose. (4) Cheek(s). (5) Lips.
(6) Chin. (7) Hair/ear.

Figure 3 shows sample frames corresposinding to different coding categories.

3.3. Coding Assessment and Refinement

To assess the coding schema and gain confidence in the labels obtained, we cal-
culated inter-rater agreement between the two expert annotators using time-slice
Krippendorff ’s alpha [Krippendorff 2004], which is widely used for this type of cod-
ing assessment because of its independence from the number of assessors and its
robustness against imperfect data [Hayes and Krippendorff 2007]. We got a Krippen-
dorff ’s alpha coefficient of 0.92 for hand action, 0.67 for hand shape, and an average
alpha coefficient of 0.56 for facial region occluded (forehead 0.69, eye(s) 0.27, Nose 0.45,
cheeks 0.65, lips 0.73, chin 0.83, hair/ear 0.25). All the classes had moderate agree-
ment or above except for the following facial regions: eyes, nose, and hair/ear. When we
explored the reason of the disagreement in these categories, this was mostly because
very few samples were available of these categories in the dataset, for example: eyes,
forehead, and hair/ear regions had only 25, 100, and 10 frame samples respectively,
that is, less than 0.2% of the total number of frames in total. We decided to exclude
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Fig. 3. Sample frames for different categories in the hand-over-face coding scheme for three gesture descip-
tors: hand action, hand shape, and facial region occluded.

these categories (mostly upper face area) in the machine-learning step, as it was unfair
to try to learn and classify these categories automatically when the human annotators
failed to agree.

Due to the nature of our unbalanced dataset, some labels had very few samples.
In the classification stage, we decided to aggregate some of the groups together. The
nose region was combined with the cheek region as one descriptor of the middle face
region. For the hand action descriptor, we combined sliding, stroking and tapping into a
single group representing non-static hand gesture, that is, any type of motion. Figure 4
illustrates the final refined coding scheme that was used in our subsequent analysis.

4. FEATURE EXTRACTION

The first building block of our approach is feature extraction. We chose features that
can effectively represent hand gesture descriptors that we want to detect. Therefore,
we extract spatial features, namely Histograms of Oriented Gradients (HOG) [Dalal
and Triggs 2005] and facial landmark alignment likelihood [Baltrušaitis et al. 2013].
Moreover, having the detection of hand action in mind, we also extract Space Time
Interest Points (STIP) [Laptev 2005] that combine spatial and temporal information.
For HOG and STIP features, dimensionality reduction of features is then applied to
obtain a more compact feature representation.

4.1. Space-Time Features

Local space-time features [Laptev 2005; Laptev et al. 2008; Dollár et al. 2005] have
become popular motion descriptors for action recognition [Poppe 2010]. They provide
compact and abstract representations of patterns in an image. Recently, they have
been used by Song et al. [2013] to encode facial and body microexpressions for emotion
detection. They were particularly successful in learning the emotion valence dimension
as they are sensitive to global motion in the video [Song et al. 2013]. Our methodology
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Fig. 4. The refined coding scheme for hand-over-face gesture descriptors.

for space-time interest points feature extraction and representation is based on the
approach proposed by Song et al. [2013].

STIP capture salient visual patterns in a space-time image volume by extending the
local spatial image descriptor to the space-time domain. Obtaining local space-time
features is a two step process: STIP detection followed by feature extraction. Wang
et al. [2009] reports that using the Harris3D interest point detector followed by a
combination of the HOG and the Histogram of Optical Flow (HOF) feature descriptors
provide good performance. Thus, we use the Harris3D detector with HOG/HOF feature
descriptors to extract local space-time features. As we are interested in the face area,
we use the face alignment input to crop the STIP features and discard any extracted
points outside the face region.

The STIP box in the overview diagram in Figure 1 shows how the hand motion is
captured by the space-time features (denoted by the yellow circles in the diagram).

The local space-time features extracted are dense as they capture micro-expressions.
Since we are interested in more semantic feature representation, we use sparse coding
to represent them so only few salient features are recovered, that is, features that
appear most frequently in the data. Thus, we learn a codebook of features and use it
to encode the extracted features in a sparse manner.

The goal of sparse coding is to obtain a compact representation of an input signal
using an over-complete codebook, that is, the number of codebook entries is larger than
the dimension of input signal so only a small number of codebook entries are used to
represent the input signal. Given an input signal x ∈ R

N and over-complete codebook
D ∈ R

N×K, K � N, we find a sparse signal α ∈ R
K that minimises the reconstruction

error,

min
α∈RK

1
2

||x − Dα||22 + λ||α||1, (1)

where the first term in this equation measures reconstruction error and the second
term is the L1 regularisation that encourages the sparsity of vector α. λ controls the
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relative importance of the two terms so we have α containing few non-zero linear
coefficients compared to the codebook D, which leads to the best approximation of x.

In our work, we learn the codebook D from our data, that is, the extracted space-time
features {x1, x2, . . . , xM},

min
D

1
M

M∑

i=1

min
αi

1
2

||xi − Dαi||22 + λ||αi||1. (2)

The optimisation problem is convex in D with A = [α1, α2, . . . , αM] fixed and in A with
D fixed but not in both at the same time [Mairal et al. 2010]. Thus, it can be solved
using online learning [Mairal et al. 2010] by alternating the two convex optimisation
problems. Once the codebook is learned, we can use it to encode each space-time feature
x into α by solving Equation (2).

From each frame we obtain different number of local space-time features (and cor-
responding sparse codes). These features need to be aggregated to obtain a vector of a
fixed dimension to be suitable for our classification step. Averaging or max pooling are
typical ways of doing this. In our work, we use max pooling as it provides a representa-
tion that is more resilient against image transformations and noise [Yang et al. 2009;
Song et al. 2013]. The max-pooling operation is defined as follows:

z = [ max
i=1...Mv

|αi,1|, max
i=1...Mv

|αi,2|, . . . , max
i=1...Mv

|αi,K|], (3)

where Mv is the number of sparse codes associated with a given space-time volume v.
To obtain a more compact representation of the features and to speed up processing

time, we aggregate the space-time features (and their corresponding sparse codes) over
a window w = 10 frames. This step is explained in Section 5.1.

4.2. Facial Landmark Detection: Likelihood

Facial landmark detection plays a large role in face analysis systems. In our case it
is important to know where the face is in order to compute HOG appearance features
around the facial region and to remove irrelevant STIP features.

We employ a Constrained Local Neural Field (CLNF) [Baltrušaitis et al. 2013] facial
landmark detector and tracker to allow us to analyse the facial region for hand-over-
face gestures. CLNF is an instance of a Constrained Local Model (CLM) [Cristinacce
and Cootes 2006] that uses more advanced patch experts and optimisation function.
We use the publicly available CLNF implementation [Baltrušaitis et al. 2013].

In summary, the model works by first detecting a face region of interest (ROI) in
an image and then finding the most likely arrangement of facial landmarks in that
ROI. This is done by evaluating the likelihood of each landmark individually using a
local patch expert and by guiding the updated locations using a global shape model
that describes possible arrangements of landmarks. This process is repeated for every
frame in a video.

The CLM model we use can be described by parameters p = [s, R, p, t] that can be
varied to acquire various instances of the model: the scale factor s; object rotation R
(first two rows of a three-dimensional (3D) rotation matrix); 2D translation t; a vector
describing non-rigid variation of shape p. The point distribution model (PDM) is as
follows:

xi = s · R(xi + �ip) + t. (4)

Here xi = (x, y) denotes the 2D location of the ith feature point in an image, xi =
(X, Y, Z) is the mean value of the ith element of the PDM in the 3D reference frame,
and the vector �i is the ith eigenvector obtained from the training set that describes
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Fig. 5. An example of patch expert responses in presence of occlusion. Green shows high likelihood values,
while red means low likelihoods.

the linear variations of non-rigid shape of this feature point, and the vector �i is the
ith eigenvector that describes the linear variations of non-rigid shape.

In CLM (and CLNF) we estimate the maximum a posteriori probability (MAP) of the
face model parameters p:

p(p|{li =1}n
i=1, I) ∝ p(p)

n∏

i=1

p(li =1|xi, I), (5)

where li ∈ {1,−1} is a discrete random variable indicating if the ith feature point is
aligned or misaligned, p(p) is the prior probability of the model parameters p, and∏n

i=1 p(li = 1|xi, I) is the joint probability of the feature points x being aligned at a
particular point xi, given an intensity image I (see Section 4.2).

We employ a common two-step CLM fitting strategy [Cristinacce and Cootes 2006;
Saragih et al. 2011]; performing an exhaustive local search around the current estimate
of feature points leading to a response map around every feature point and then iter-
atively updating the model parameters to maximise Equation (5) until a convergence
metric is reached. For fitting we use Non Uniform Regularised Landmark Mean-Shift
[Baltrušaitis et al. 2013].

As CLNF is a local optimisation approach, it relies on initial face detection. However,
few face detectors are suitable for the task in the presence of occlusion. In our work, we
used a Deformable Parts Model– (DPM) based Zhu and Ramanan [2012] face detector
to initialise landmark detection and tracking. The subsequent frames were initialised
using the previous frames estimate, only requiring to run the DPM detector multiple
times in a video: to initialise and to reinitialise when tracking fails. It would have been
possible to use the DPM to detect landmarks in every video frame; however, it is not as
accurate as dedicated landmark detectors such as CLNF [Baltrušaitis et al. 2013] and
is too slow to be used for video analysis.

In CLM patch experts are used to calculate p(li = 1|xi, I), which is the probability
of a feature being aligned at point xi (Equation (4)). As a probabilistic patch expert we
use a Continuous Conditional Neural Field regressor [Baltrušaitis et al. 2013], which
given a local n × n image patch centered around current landmark estimate predicts
the alignment likelihood.

The likelihood response from the patch expert will be low when it is either not
aligned or the landmark is occluded, as they are trained on non-occluded examples of
particular landmarks. This makes them useful as predictors of hand-over-face gesture
descriptors. An example of patch expert responses in presence of occlusion can be seen
in Figure 5.
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Fig. 6. Sample frames from videos that were badly tracked. Note the extreme occlusion and/or head rota-
tions.

4.3. HOG

HOG [Dalal and Triggs 2005] are a popular feature for describing appearance that
have been successfully used for pedestrian detection [Dalal and Triggs 2005] and facial
landmark detection [Zhu and Ramanan 2012] amongst others.

HOG descriptor counts the number of oriented gradient occurrences in a dense grid
of uniformly spaced cells. These occurrences are represented as a histogram for each
cell normalised in a larger block area. HOG features capture both appearance and
shape information making them suitable for a number of computer vision tasks.

5. EXPERIMENTAL EVALUATION

For our classification tasks, we used the labelled subset of Cam3D described in Sec-
tion 3.1 to evaluate our approach. It has a total of 365 videos of ∼2190s, which contains
∼65,700 frames (∼6570 data samples, which is one data sample per processing window
w = 10).

5.1. Methodology

As a pre-processing step, we performed face alignment on all of our videos. Face detec-
tion was done using the Zhu and Ramanan [2012] face detector followed by refinement
and tracking using the CLNF landmark detector [Baltrušaitis et al. 2013]. After land-
mark detection, the face was normalised using a similarity transform to account for
scaling and in-plane rotation. This led to a 160 × 120 pixel image, as seen in Figure 1.
The output of the facial landmark detection stage was passed to the three feature
extraction sub-systems.

The face detector did not manage to initialise in the first frame in all of the videos.
To cope with this, we performed backwards tracking alongside forwards tracking from
initial detection, leading to more robust landmark detection.

Even with these advanced tracking techniques, our analysis excluded 16 videos,
as face detection on them was unsuccessful. Those videos included either extreme
head rotation or extreme hand occlusion covering most of the face area that continued
throughout the video, thus preventing the tracker from finding a non-occluded frame
to recover. Figure 6 shows some examples when face tracking fails.

Space-time features were extracted at the original video frame rate (30 frames per
second) using the implementation provided by Laptev et al. [2008]. We removed the
features not in the facial region by using the results from the landmark detector. For
sparse coding, we used the implementation provided by Mairal et al. [2010] to learn
a codebook of size 750 for each training set. The size of the codebook was obtained by
trying out different sizes (200, 500, 750) and cross validating across all the videos to
obtain the best parameter that produced the minimum data reconstruction error. A
user-independent cross validation was utilised for this task. Space-time features were
aggregated using max pooling across a window w = 10 frames.
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Table I. Hand Detection Classification Results (Accuracy and F1 Score) Comparing Uni-Modal and Multi-Modal
Feature Fusion. Multi-Modal Fusion of Features Using a Linear SVM Classifier Had the Best Detection Rate

(Shown in Bold), Significantly Higher Than a Naı̈ve Baseline

Hand Uni-modal classification - Linear SVM Multi-modal classification
occlusion Majority vote Linear Non-linear
detection baseline Likelihood HOG STIP SVM SVM
F1 0.69 0.66 0.82 0.68 0.83 0.80
Acc. 0.56 0.67 0.83 0.56 0.83 0.80

For our task, we extracted HOG features from a similarity normalised 160×120 pixel
image of a face. We used 8 × 8 pixel cells with 18 gradient orientations and block
size of 2 × 2 cells. This led to a 9,576-dimensional HOG descriptor. We reduced its
dimensionality using Principal Component Analysis and keeping 90% of the explained
variance, leading to 1,035 dimensions vectors per frame. We aggregated the HOG
features in a temporal manner by taking the mean value in a window w = 10 frames.

As a final feature, we used the landmark alignment likelihoods for each of the 68
landmarks. This was aggregated over a 10-frame window as well by taking its mean.

For classification, our experiments consisted of uni-modal and multi-modal early
fusion of extracted features. We used a linear SVM classifier using the Liblinear [Fan
et al. 2008] library. We also evaluated SVM classifier with a Radial Basis Function
(RBF) to check if this leads to any improvement in performance [Chang and Lin 2011].

The optimal parameters for the SVM were obtained automatically using a leave-one-
out cross validation, by holding all videos of one participant out for testing at each
iteration. To ensure that our results are generalizable, all experiments were performed
in a user-independent approach, as none of the participants in the test set are used
for validation or training (both in the classifiers and the dimensionality reduction
techniques).

To obtain the ground truth for each classification task, we aggregated the annotations
provided by experts (as described in Section 3) for every window w = 10 frames. We
obtained the ground truth by taking the majority vote across the window of size w = 10
frames from the two annotators and assigning the value of the most common label. In
case of a tie (disagreement between the labellers) the window w was discarded from
further analysis—as this implied that these frames were ambiguous. The total number
of frames discarded at this step were less than 10% of the total number of frames in
all of the categories.

Besides speeding up the computation time of our approach, the choice of the aggre-
gation window size stemmed from our interest in coding and detecting hand gestures
that are semantically higher than frame-level micro-expressions. In other words, we
did not expect a change in hand gesture in less than one third of a second.

For all our experiments, we compared our approach performance with chance base-
line and a naı̈ve majority vote classifier baseline and evaluated the statistical signifi-
cance using a Related Samples Friedman’s ANOVA, with follow-up post hoc tests with
a Bonferroni correction to p values [Field 2013]. This was chosen as we wanted to
perform pairwise comparisons and the data distribution cannot be assumed to follow a
normal distribution. The unit of analysis of the significance tests is all the video of one
participant (degrees of freedom = 8).

5.2. Hand Occlusion Detection

The first task in our experiments was hand-over-face occlusion detection. The face was
considered to be occluded if one or many facial regions are labelled as occluded. For
this task, we used a binary classifier to detect if the face is occluded or not. We trained
a linear SVM classifier using single modalities and feature-level fusion. Table I shows
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Table II. Classification Results (F1 Score and Accuracy) of Facial Region Occluded Descriptor
Comparing Uni-Modal and Multi-Modal Feature Fusion. Occlusion of Each Face Area Is Treated

as a Separate Binary Classification Problem. Multi-Modal Fusion of Features Outperforms Single Modalities
in all the Classification Tasks

Uni-modal classification - Linear SVM Multi-modal classification
Facial Majority Linear Non-linear
region vote Likelihood HOG STIP SVM SVM

Chin F1 0.68 0.84 0.68 0.68 0.83 0.84
Acc. 0.56 0.69 0.85 0.56 0.85 0.87

Lips F1 0.78 0.88 0.92 0.90 0.94 0.93
Acc. 0.56 0.82 0.88 0.83 0.90 0.89

Middle face F1 0.73 0.86 0.85 0.87 0.86 0.86
(cheek/nose) Acc. 0.61 0.77 0.76 0.77 0.78 0.77

the classification results (accuracy and F1 score) of uni-modal features and multi-
modal fusion. We found that the best performance is obtained from the multi-modal
linear classifier (Accuracy 0.83, F1 score 0.83), which is higher than a naı̈ve majority
vote classifier (Accuracy 0.56, F1 score 0.69) or chance (Accuracy 0.5). To check the
significance of the improved classification accuracies, a Related Samples Friedman’s
ANOVA showed significant difference (χ2(2) = 12.67, p < 0.01). Further pairwise
comparisons showed that our classifier yielded significant improvement over chance
baseline (p < 0.01) and no significant difference over majority vote (p = 0.1).

We also tested the muti-modal fusion in a non-linear SVM, which did not produce
better results (Accuracy 0.80, F1 score 0.80). This may be because using a complex
kernel has little, if any, impact on the classification performance if we are fusing
different features of different representations.

If we look at single modality results, then we notice that the feature that had the high-
est uni-modal classification results is HOG, which indicates that appearance features
can differentiate well between occluded and non-occluded faces, even in the challenging
conditions of hand occlusion (see Table I).

5.3. Classification of Hand-Over-Face Gesture Descriptors

After occlusion detection, the second task was to classify hand-over-face gesture de-
scriptors (hand shape, hand action, and facial region occluded). Here, we used a subset
of frames where hand occlusion had been identified. We treated each descriptor as a
separate classification task. Hand shape and facial region occluded classifications were
performed per window w, while hand action classification was done per video.

Facial region occluded descriptor’s values are not mutually exclusive, that is, we can
have occlusion in more than one face region at any window w. That is why we used
three binary classifiers, one for each face region. In each experiment, we used a linear
SVM classifier using single features then fused the features in a multi-modal classifier.
Table II shows the classification results using these different approaches, highlighting
the best obtained result for each classification task.

Having a closer look at the data distribution of different descriptors’ values, we
found that the data were mostly unbalanced. This is to be expected for this type of
problem, because we are analysing gestures in natural expressions with high variance
in individual differences, so we do not expect to see all the descriptors’ values appearing
with the same frequency in all the occlusion videos. This was particularly extreme in
the chin region as we had a hand covering the chin in 92% of the occlusion videos. This
is not a surprise as the hand would cover the chin in most of the face occlusion gestures
as it comes from below the face. To remove the unbalanced effect for the chin classifier,
we added more negative samples that were randomly selected from the Cam3D dataset
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Table III. Classification Results of Hand Shape Descriptor Comparing Uni-Modal and Multi-Modal Feature
Fusion as a Four-Class Classification Problem. The Four Classes Are as Follows: Fingers, Closed Hand, Open

Hand, and Hands Together. Multi-Modal Fusion of Features Outperforms Single Modalities with an Accuracy
That Is Significantly Higher Than the Majority Vote Baseline

Hand Majority vote Uni-modal classification - Linear SVM Multi-modal classification
shape baseline Likelihood HOG STIP Linear SVM Non-linear SVM
Acc. 0.14 0.31 0.35 0.19 0.36 0.36

to the pool of videos used for chin training and classification. A different distribution of
the descriptors’ values among different participants also presented a challenge in the
classification. Since our experiments are user independent, unbalanced distribution of
cues presented a challenge to the classifiers.

5.3.1. Facial Region Occluded. Table II shows the classification results for the facial
region occluded descriptor using the uni-modal and multi-modal classification ap-
proaches, highlighting the approach that has the best performance for each task. For
chin occlusion detection, multi-modal fusion of features in a non-linear SVM classi-
fier had the best performance (Accuracy 0.87, F1 score 0.84), just slightly higher than
the multi-modal linear classification (Accuracy 0.85, F1 score 0.83). For lips occlusion
detection, the multi-modal linear SVM classifier had the best performance (Accuracy
0.90, F1 score 0.94). For middle face area occlusion detection (cheeks and nose), the
multi-modal linear SVM classifier had the best performance (Accuracy 0.78, F1 score
0.86). This confirms that multi-modal fusion of the feature performed better in all the
facial region occluded classification tasks.

Related Samples Friedman’s ANOVA showed a significant difference between the
mutimodal fusion classification accuracy, majority vote accuracy, and chance baseline
in the three classification tasks (chin detection χ2(2) = 11.56, p < 0.01, lips detection
χ2(2) = 12.67, p < 0.01, middle face detection χ2(2) = 12.67, p < 0.01). Further pair-
wise comparisons showed that multimodal detection results proved to be significantly
higher than a naı̈ve chance baseline for the chin, lips, and middle face areas (with
p < 0.01, p < 0.05, and p < 0.05, respectively). Multimodal detection results were not
significantly higher than the majority vote baseline for the chin, lips, and middle face
areas (with p = 0.06, p = 0.10, and p = 0.47, respectively). This is another indication
of the unbalanced data.

5.3.2. Hand Shape. Classification of hand shape was implemented as a four-class clas-
sification problem (one against all), as shape descriptor’s values are mutually exclusive
per processing window w. The classifier categorised the hand shape as one of four
classes: fingers, open hand, closed hand, and hands together (tangled). As shown in
Table III, multi-modal fusion of features outperforms single modalities with an accu-
racy of 0.36 that is higher than the majority vote classification baseline (Accuracy 0.14)
and chance baseline (Accuracy 0.25). Related Samples Friedman’s ANOVA showed a
significant difference among mutimodal fusion classification accuracy, majority vote
accuracy, and chance baseline (χ2(2) = 12.67, p < 0.01). Further pairwise comparisons
showed that my classifier yielded significant improvement over majority vote baseline
(p < 0.05) but no significant difference with chance (p = 0.10).

Classification of the hand shape was challenging due to the similarities between
some of the classes. Table IV shows the confusion matrix. The main misclassification
instances are “open hand” misclassified as “fingers” and “hands together” misclassified
as “closed hand”; this might be because of the similarities in the appearance of these
classes. These results indicate that further refinement in the coding scheme of the hand
shape descriptor might be needed to improve the classification results.
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Table IV. Confusion Matrix Showing Hand Shape Classification Results Using Multimodal Fusion of Features
�����������Predicted

Ground truth
Fingers Open hand Closed hand Hands together

Fingers 715 84 206 32
Open hand 146 26 179 0
Closed hand 596 80 211 122
Hands together 301 0 58 31

Note the misclassification of “open hand” with “fingers” and misclassification of hands together with
closed hand indicating the similarities in the appearance of these classes.

Table V. Classification Results (F1 Score and Accuracy) of Hand Action Descriptor Comparing Uni-Modal and
Multi-Modal Feature Fusion. Classification Performance Remained Very Close to the Majority Vote Baseline,

with the Multi-Modal Fusion of Features using a Non-Linear SVM Classifier Having the Best Results

Majority Uni-modal - Linear SVM Uni-modal - non-Linear SVM Multi-modal
Hand vote Linear Non-linear
action baseline Likelihood HOG STIP Likelihood HOG STIP SVM SVM
F1 0.81 0.81 0.81 0.81 0.80 0.82 0.81 0.80 0.83
Acc. 0.70 0.70 0.70 0.70 0.70 0.73 0.70 0.67 0.76

Note that the unbalanced dataset and initial video segmentation criteria in the Cam3D dataset influenced the performance
of classifying this descriptor.

5.3.3. Hand Action. For hand action, the data were labelled as one label per video,
describing the hand action as static or dynamic in the majority of the video frames.
Therefore, we aggregated the features to obtain one feature set per video. Space-time
features (STIP) were aggregated using max pooling in the same way described in
Section 4.1, and this allowed us to capture the salient features in the sparse codes. For
HOG and likelihood features, we calculated meansand standard deviations to capture
the changes in the features across the video.

We used a binary classification approach to categorise the hand action as dynamic
or static. As shown in Table V, SVM linear classification did not perform well on this
descriptor, with classification accuracies swinging around the majority vote baseline
accuracy, which is 0.7, which is already high due to unbalanced data distribution. Multi-
modal classification using a non-linear SVM classifier achieved the highest results
(Accuracy 0.76, F1 score 0.83), which are higher than the majority vote (Accuracy 0.70,
F1 score 0.81) and chance (Accuracy 0.5). Related Samples Friedman’s ANOVA showed
a significant difference among mutimodal fusion classification accuracy, majority vote
accuracy, and chance baseline (χ2(2) = 9.88, p < 0.01). Further pairwise comparisons
showed that our classifier yielded significant improvement over chance baseline (p <
0.05) but no significant improvement over majority vote baseline (p = 0.9).

Unbalanced dataset and initial video segmentation criteria in the Cam3D dataset
can explain the low increase of the classification results of this descriptor compared
to a naı̈ve majority vote classifier, for example: Some video segments have one part
of the video with hand motion and the rest without motion, which indeed introduced
confusion factor to the classifier. Re-segmenting the videos into shorter segments based
on the hand motion would improve the classification accuracy, but we leave this part
to future work.

5.4. Discussion

Figure 7 summarises our classification results for hand detection and classification
obtained for the six classification tasks. The results display mostly binary classifiers
except for hand shape where we employed a four-class classifier, hence the lower clas-
sification values. Our multi-modal fusion approach showed a statistically significant
improvement over a chance baseline for all of our classification experiments, except for

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 2, Article 19, Publication date: July 2016.



Automatic Analysis of Naturalistic Hand-Over-Face Gestures 19:15

Fig. 7. Classification results summary for all the classification tasks. All are binary classifiers except for
(hand shape) where we employ a four-class classifier, hence the lower classification values. Our multi-modal
fusion approach showed statistically significant improvement over naive classifier baselines for all of our
hand detection and classification tasks (*p < 0.05, **p < 0.01).

the hand shape task, where our approach showed statistically significant improvement
over majority vote baseline. However, in all the classification tasks our classification
accuracy was higher than chance and majority vote baselines.

For the challenging nature and novelty of the gesture classification task, we consider
these results satisfactory, considering the nature of the unbalanced dataset with which
we are dealing (few training samples for some categories). Unbalanced distribution of
the descriptors’ values among different participants presented a challenge in the classi-
fication as well. Since our experiments are user independent, unbalanced distribution
of cues presented a challenge to the classifiers.

6. CONCLUSION AND FUTURE WORK

In this article, we have presented an automatic approach to tackle the challenging
problem of detection and classification of hand-over-face gestures. We treat the problem
as two tasks: hand occlusion detection, followed by classification of hand gesture cues,
namely hand shape, hand action, and facial region occluded. We extract a set of spatial
and spatio-temporal features (HOG, facial landmark detection likelihoods, and STIP
features). We use feature-specific dimensionality reduction techniques and aggregation
over a window of frames to obtain a compact representation of our features. Using a
multi-modal classifier of the three features, we can detect hand-over-face occlusions
and classify hand shape, hand action, and facial region occluded significantly better
than the majority vote and chance baselines. We also demonstrate that multi-modal
fusion of the features proved to outperform single modality classification results.

Based on the quantitative analysis presented in this article. there are several future
directions for work that we suggest, which include the following.

6.1. Data

More balanced labelled data are needed. Having an automatic detection technique
can allow for faster data extraction. For example, our detection approach can be used
to quickly scan publicly available video segments to pick the segments that include
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hand-over-face gestures for further analysis. Data collection is time consuming, espe-
cially that of naturally evoked data. But the future of affective computing will focus on
natural rather than acted data [Zhang et al. 2014].

6.2. Refining the Coding Scheme

We have presented a novel coding scheme for hand-over-face gestures, but this scheme
has some limitations. For example, as discussed in Section 5.3.2, the proposed coding
scheme for hand shape descriptor proved challenging for the proposed automatic clas-
sifier due to the similarity of the appearance features of some of the labels, such as
“open hand” and “fingers.” Possible future directions can include further refining of this
coding scheme, for example, differentiating between separate fingers or between right
and left hands. Having access to more data samples can facilitate this step.

6.3. Temporal Machine-Learning Techniques

Considering temporal machine-learning techniques such as Hidden Markov Models
or Conditional Random Fields is a possible extension. Taking into account adjacent
frame information can improve the performance of hand-over-face gesture detection
and classification.

6.4. Multimodal Inference System

Ultimately, our vision is to to implement a multimodal affect inference framework
that combines facial expressions, head gestures, as well as hand-over-face gestures.
Building labelled datasets that include hand-over-face gestures is crucial to be able to
achieve such a system. We believe that the work described in this article will open the
door for further research in this area.
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