
PART 2: Proposed Research

Background

The research proposed here will contribute to formal verifi-
cation technologies for systems-on-a-chip (SoC) and hard-
ware/software co-design.

Much current formal verification is directed at finding er-
rors (debugging). Our research primarily concerns assur-
ance of correctness though, of course, failure to prove
correctness can reveal errors. Assurance of correctness
adds significant value when failures would be exceptionally
costly, for example to applications which need to protect
sensitive data, such as confidential passwords and product
keys stored on hand-held devices.

In the past, full formal assurance of correctness has only
been practical for academic systems designed for proof of
correctness [14, 23, 27, 2] or fragments of designs [19, 15].
Recent advances in automated theorem proving now make
it plausible that realistic systems based on commercial-off-
the-shelf (COTS) parts can be proved correct.

If successful, this project will result in possibly the first
machine checked formal verification of software running
on a formally verified COTS processor, and would pro-
vide data and methodology to enable future system de-
signers to evaluate the costs and benefits of formal proof
of correctness as part of their verification flow. As a case
study we will develop a demonstrator application written
in ARM assembler that communicates with one or more
separate hardware components. We will investigate both
tightly coupled co-processors communicating on the data
bus and loosely coupled communication over an AMBA
system bus. Although the detailed case studies will use
the ARM processor and bus architecture, we aim to make
our verification methods as widely applicable as possible.

The main background to this proposal is a predecessor EP-
SRC project entitled Formal Specification and Verification
of ARM6 in which we used the HOL4 theorem prover to
formally verify implementations of all the instructions of
an ARM6 processor (which is identical to the ARM610 [1],
but without an MMU). The proof was achieved within a
timescale that would have been impossible ten years ago.
The approach used an algebraic modelling and proof tech-
nique developed by Harman and Tucker at Swansea Uni-
versity [13] and deployed on the ARM processor archi-
tecture at Cambridge by Fox [11, 9, 10, 8]. The goal of
the research proposed here is to establish convincing proof
of concept for the formal verification of complete systems,
and for this it is necessary not only to model data process-
ing (i.e. instruction execution), but also communication
with peripherals.

Two previous projects by researchers in Texas, USA, pro-
vide additional background. In the first project, the veri-
fication of code on a verified processor called FM9001 was
investigated, using the Boyer-Moore prover. This work is
known as the CLI stack [3]. FM9001 is an academic design
intended for formal verification. In a second project, Boyer

and Yu formally described a substantial subset of the Mo-
torola MC68020 processor in the logic of the Boyer-Moore
prover and used the resulting model to verify compiler gen-
erated object code for various simple algorithms, including
Quicksort and the Berkeley Unix C string library [4]. As
far as we are aware, the MC68020 programmers model was
not verified to correspond to the actual hardware.

Further background is provided by previous work at Cam-
bridge, in which Paul Curzon developed a programming
logic for the Vista assembly language for the Viper mi-
croprocessor [6]. Although the Vista semantics was not
mechanically derived from the formal model of the Viper
processor, it was developed in the context of prior work
on processor specification and verification [5].

The project proposed here will be an advance over pre-
vious work in that: (i) we will use a COTS processor
(ARM) that we have formally verified and (ii) we will ex-
plore ‘sideways’ linking to other components as well as
vertical ‘stacking’ of software.

Prior theorem proving work includes early studies of asyn-
chronous processor-memory communication by Joyce [17]
at Cambridge, and recent work by Melham and Susanto
[25] and Schmaltz and Borrione [26] on modelling the
AMBA bus using ACL2 (the latest version of the Boyer-
Moore theorem prover).

In a recent Grand Challenge [20] J Moore states “We are
unaware of any practical work on the verification of in-
put/output routines or the verification of code employing
them”. The proposal here will investigate this problem in
the context of ARM.

Research Programme
Our goal is to research new modelling and theorem prov-
ing methods for reasoning about the functional correctness
of combinations of hardware and software, such as those
found in systems-on-a-chip.

We will combine the verification of ‘vertical stacking’ of
software on hardware with the ‘horizontal verification’ of
bus transactions:

ARM processorSlave Co-processor

Software

Verified
System bus Data bus

E
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Because correctness assurance particularly adds value
when there are data security concerns, we will select case
studies in this area. ARM processors are used to imple-
ment devices like mobile phones and PDAs where assur-
ance that information doesn’t leak would be valuable.

In the following sections we describe the components of
our proposed research.
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Communication and exceptions

We will extend and exploit our existing verified program-
mers model of the execution of ARM6 instructions. The
extensions that are necessary are to handle communica-
tion with co-processors and slaves.

Co-processors provide tightly coupled external hardware
support, via the ARM data bus, for functions like mem-
ory management and floating-point computation. When
the master processor executes a co-processor instruction it
sends it to any co-processors which may be attached. If a
co-processor is busy at the time the instruction is sent, the
processor will wait for it. If there is no co-processor capa-
ble of executing the instruction, an undefined instruction
trap will be executed.

Slaves are loosely coupled components of a system-on-a-
chip that communicate over a system bus with a bus mas-
ter, normally a processor, via bus protocols. There are
several AMBA protocols, and we plan to use models of
them, in Z and higher order logic, that are being devel-
oped by Dr Malcolm Newey, of the Australian National
University.

We will develop a framework in higher order logic for
modelling communications between processors and com-
ponents. We plan to look both at the simpler co-
processor mechanism and also at system bus communi-
cation (AMBA). We aim to model communication hard-
ware and to investigate proving that the detailed signalling
constituting a transaction achieves the behavioural goal of
transferring and processing data.

A challenge is to derive, from a formalisation of the com-
munication protocol, a higher level executable model suit-
able for the symbolic execution needed in proofs. A spec-
ification typically says that requests must eventually be
acknowledged, which is naturally formalised with an ex-
istential quantifier (req(t) ⇒ ∃t′. t′ > t ∧ ack(t′)). To
create a symbolically executable model, the ∃ needs to be
Skolemized to create an explicit response function, f say,
such that (req(t) ⇒ ack(f(t))). We hope to be able to
mechanically derive executable models by formal logical
manipulation (carried out by theorem proving scripts) of
models of the processor, busses and co-processor or slave.

We will model processor execution using our previously
verified high-level model. A difficulty is that certain
aspects of interrupt and exception handling behaviour
can only be accurately represented using the micro-
architecture (e.g. the effect of an interrupt or exception
may depend on the pipeline state). Currently this be-
haviour is left unspecified, but we plan to lift abstractions
of the micro-architecture into the high-level specification
so that we can fully represent the complete behaviour.
Thus we need to develop a specification in which a few as-
pects of the low-level pipeline implementation are visible.
A challenge is to achieve this without making the model
intractable, but whilst enabling exceptional behaviour to
be proved to be safe (e.g. to show that interrupts cannot
cause unwanted information leakage).

High level symbolic execution

Once we have added formal specifications of communica-
tion and exceptions to our ARM model, we need to inves-
tigate the infrastructure needed to support system level
verification. It is difficult to produce complete and accu-
rate formal models of high-level languages such as C++

and Java. Furthermore, it is extremely difficult to verify
the correctness of compilers, interpreters and run-time en-
vironments for such languages. This means that establish-
ing the behavioural correctness of software in a top-down
manner, from code written in these languages to silicon,
is beyond the scope of current technology.

Formally verifying the behavioural correctness of code at
the assembly level is more readily achievable. To do this
one must be able to symbolically execute sub-routines and
then apply appropriate abstractions in order to reason
about larger programs. As we and others have found [12],
symbolic execution is a key technique underlying proofs.
The Swansea algebraic processor modelling method we
have used is based on functions, as are models in the
Boyer-Moore logic. Traditional approaches in higher order
logic use relations, but a key advantage of functions is that
they make it easier to symbolically execute specifications.

An accurate functional specification of the ARM instruc-
tion set was developed as part of the ARM6 formal verifi-
cation in HOL. This model was tested by executing ARM
machine-code generated by the GNU assembler. In ver-
ifying the processor’s correctness this model is symboli-
cally executed, covering each possible single instruction
program. We propose extending this work to support a
bottom-up approach to the verification of complete as-
sembly programs.

To reason more effectively we need to be able to manage
symbolic execution at the more abstract level correspond-
ing to assembly code. The higher level software models
must be related to the concrete machine code execution of
the processor via abstraction mappings [18, 24]. The par-
ticular abstractions needed may depend on the example
under verification, so we need to build support for appli-
cation specific higher level models on top of the standard
instruction and bus models. Understanding how to define
and execute such abstractions constitutes a core part of
the work proposed here.

For example, consider the following code fragment:

ldmia r0!, {r1,r2}

ldmia r0!, {r3,r4}

adds r6, r2, r4

adc r5, r1, r3

stmia r0, {r5,r6}

One would like to be able to show that this piece of code
performs 64-bit addition, taking arguments from the ad-
dresses r0 and r0+8 and storing the result at address
r0+16. When working with larger sections of code (with
conditional execution and loops) it will be challenging to
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find ways to manage the size and complexity of the terms
representing the programmer’s model state.

Although this work will be example driven, the aim will
be to develop techniques and tools that are as generic as
possible.

Modelling data security (case studies)

As an application of our models and verification tools, we
will perform case studies designed to show proof of concept
of the formal assurance of information security of software
running on a processor accessing data via a bus.

Our goal will be to devise a case study that is simple
enough to be completed during the project, yet is realis-
tic enough to show the feasibility of the methods to our
beneficiaries. In our experience, devising good examples
is hard, so we expect to put a lot of early effort into it.

The development of the case study will be the first step of
the research. We hope to get ideas both from our partner
ARM and from third party application providers.

We expect our example to consist of a small hardware
design of a component that provides storage to sensitive
data and code running on the processor that can access it.
There are various kinds of information flow issues that we
will consider. We propose to formulate security semanti-
cally, directly in terms of execution on our communication
and data processing model.

The simplest case to specify is when an application should
produce outputs that are independent of the sensitive data
(e.g. performing a task that doesn’t need access to se-
cret keys). There are a variety of frameworks for spec-
ifying information flow security [22, 16, 7]. A simple
idea, that is the essence of several recent semantic for-
mulations of secure information flow, is to split the sys-
tem state into a high security (e.g. secret) part h and
a low security (e.g. public) part l. The state is then a
pair 〈h, l〉. We may want to ensure a computation step
has the property that from every starting state 〈h, l〉, the
next state in the computation is such that the new l will
be independent of the original h, i.e. the new low secu-
rity component l does not leak information from the ini-
tial high security component h. If a function F maps a
state to the next state in a computation, then we want
∀l. ∃l′. ∀h. ∃h′. 〈h′, l′〉 = F 〈h, l〉. The starting point of
our case study will be seeing if abstract formulations like
this can be developed into tractable concrete and convinc-
ing security specifications for executions of ARM based
systems. We expect to liaise with ARM to ensure the
security specifications are adequate.

A more tricky case to specify is when low security observ-
able outputs are computed from high security data that
should not be revealed. A simple example is when a secret
key is used for login authentication: a user inputs a string
and the system says whether it matches a member of a
stored high security set. The matching of the input to the
stored set may be done by ‘trusted’ login code and one
may want to be certain that only this code sees the secret

data, so that the execution of other code is independent
of it. This can be formulated by defining a predicate on
system states that identifies a subset of secure states. The
software and hardware is then organised so that (i) secret
data can only be seen in secure states, and (ii) trusted code
can only be executed in secure states. The research chal-
lenge for our case study is to convincingly formulate this
in terms of executing the formal models of the processor
and peripherals.

For our case study we plan to use, as an example of trusted
code, an implementation of the AES Algorithm (Rijndael)
that has already been modelled in higher order logic and
verified by Konrad Slind of the University of Utah [24]. In
collaboration with Slind, we will create verified implemen-
tations of AES in ARM software. We expect to achieve
this by verifying a compiler from Slind’s AES specification
to ARM assembler. Slind’s specification is in the func-
tional language TFL1 that is embedded in higher order
logic and supported by the HOL system. Although for-
mally verifying a compiler for a standard programming
language, or even all of TFL, would be a major under-
taking, well beyond the scope of this project, we think
compiling a subset of TFL sufficient for AES should be
tractable.

As part of the case study, we will devise, with ARM’s help,
a demonstration to show how to verify security properties
of practical importance. Developing the details is part of
the research. For example, we might have a thread that
manipulates streams of low security data (e.g. copying it
from an input to an output) and another that uses AES for
encryption/decryption. The goal could then be a ‘proof
of separability’ [21] to show that the low security thread
cannot be influenced by the high security one.

If we are successful in verifying security properties with
the software implementation of AES, we plan, also in col-
laboration with Professor Slind, to create a hardware im-
plementation, probably as a tightly coupled co-processor.
We will then investigate the formulation and verification
of security properties for this. Finally, we hope to con-
sider implementations of AES that combine software with
hardware acceleration.

We will use this case study to explore how formal verifica-
tion can cope with a range of hardware/software decom-
positions. Our hope would be to structure the proofs into
lemmas, some of which are purely ‘mathematical’ and can
be used for all implementations, and others are ‘engineer-
ing’ and verify implementation specific details.

Recently ARM announced a security extension called
TrustZone that adds an additional security bit to the state.
We plan, with ARM’s help, to experiment with adding
similar hardware extensions to our ARM model. We will
investigate formulating and proving general semantic the-
orems about the extended architecture to aid in the veri-
fication of particular application-specific security proper-
ties. An important goal is to devise methods to formally

1http://www.cl.cam.ac.uk/users/kxs/tfl.html
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assure that trusted code and high security peripherals can
only be accessed when the hardware is in a secure state.
We intend to study how security support in hardware can
simplify formal verification of desirable properties.

The general goal of this case study is to explore the deploy-
ment of formal proof across a range of hardware/software
combinations in order to provide insight into formal ver-
ification issues for systems-on-a-chip. Because the case
study concerns security, we plan also to contribute to
the specification and verification of security properties for
hardware/software. The unique feature of the work is that
we will formulate properties directly in terms of the seman-
tics of execution on COTS parts.

Methodology

Our research methodology is example driven: we will spec-
ify and verify a simple complete system containing one of
more ARM processors running software and linked to one
or more peripheral components. We plan to use a security
application as demonstrator, because this area is where as-
surance by formal proof is likely to add significant value.

Success criteria

The success of the project depends on achieving a number
of goals.

• Devising a tractable formal model of exceptions for
the ARM processor.

• Devising a tractable formal model of co-processor and
master-slave communication.

• Devising and implementing an efficient method of
symbolically executing the semantics of ARM soft-
ware and communication transactions.

• Devising a tractable formal model of secure states of
the ARM processor, and how data and system bus
communication ensures secure signalling.

• Devising convincing formalisations of useful security
properties for the execution of software communicat-
ing with co-processor hardware.

• Demonstrating the tractability of our hardware and
software models and algorithms with convincing case
studies.

• Obtaining new insights into methods for deploying
theorem proving for system level formal verification,
and useful data on their costs and benefits.

The scientific challenge of this project involves developing
new semantic models and supporting them effectively with
new theorem proving tools. The risk is that the semantics
will turn out to be intractable, so that we are unable to
demonstrate significant case studies.

Project management

The project will be managed by the Principal Investigator
(Mike Gordon) in collaboration with Dr Anthony Fox, who
is the co-author of this proposal. Fox will work full-time
on scientific research and Gordon will work part time on
it. The development of the scientific goals of the research,
especially the case study, will be done in liaison with ARM
to ensure the problems studied are realistic.

Collaboration

We will liaise with our partners at ARM Limited about
modelling issues, and to get guidance on the industrial
potential of the research. In particular, ARM will assist
us in devising demonstrator case studies to investigate the
possibility of formal assurance of commercially significant
security properties.

We will collaborate with Professor Konrad Slind of the
University of Utah on (i) the implementation of symbolic
execution tools for ARM code, and (ii) a case study based
on his higher order logic model of AES encryption.

We plan to collaborate with Dr. Malcolm Newey, of the
Australian National University, on modelling bus transac-
tions. He is developing formal models of ARM’s AMBA
bus architectures in Z and higher order logic, and we in-
tend to evaluate these for use in our case study.

Relevance to Beneficiaries

We hope to demonstrate the use of theorem proving to
provide formal assurance of the functional correctness of
electronic systems composed of COTS parts.

A main beneficiary is intended to be our collaborator and
industrial mentor, ARM Ltd. ARM is a strong believer
in formal verification and applies commercial equivalence
checking, model checking and other automatic proof tools
to its current hardware design flow. However, at present
ARM do not use any theorem proving. We hope the re-
search proposed here will enable them to evaluate the costs
and benefits of theorem proving, and decide whether it
might be appropriate for future use in verification. If the
case study is successful, ARM might try using the theo-
rem proving tools and methods developed in the project
on-site on live projects related to TrustZone designs.

Other designers of CPU cores are also possible beneficia-
ries, especially those that require high assurance, such as
Common Criteria Evaluation Assurance Level 7 (EAL7).2

We hope our case study will make a significant scientific
contribution to the methodology of formal verification of
security critical code, and thus implementers of such code
are potential beneficiaries. In particular, we hope the re-
sults of our research collaboration with Professor Slind
will benefit those investigating challenges3 raised by im-
plementing cryptographic modules, especially if Level 4

2www.clusit.it/whitepapers/iso15408-3.pdf
3www.cryptol.net/challenges.htm
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Design Assurance is sought.4.

We believe this project will provide data on the costs
and practical feasibility of formally verifying, by machine
checked proof, applications based on commercial embed-
ded processors. It will contribute to determining the cur-
rently available “best practise” for assurance in critical
systems. Thus we expect standards organisations and in-
surers to be potential beneficiaries.

Dissemination & Exploitation

Dissemination of the results of the project will occur via
the normal channels of conference presentations and jour-
nal publications. In addition, we will establish and main-
tain a web site devoted to making results and progress
reports available during the project.

The ARM6 specification in higher order logic is publicly
available as part of the HOL4 distribution. We will con-
tinue to maintain this and will add to the project directory
at SourceForge any improvements to the processor model
(e.g. to handle exceptions better).

As ARM will be helping us devise hardware extensions for
our case study, any public release of the details of these
extensions will need prior approval from ARM.

We will also make available any formal verification tools
we develop. The research directions and results will be
discussed with engineers at ARM Ltd and other companies
with which we have contacts.

Justification of resources

Equipment.
We request a linux PC for office work and a laptop for
home working, travel and field demonstrations. We would
make an initial purchase at the start of the project, and
then an upgrade after two years. As theorem proving is
computationally demanding, we are specifying a powerful
processor and additional memory.

We also request VMware licences to enable us to run Win-
dows applications (e.g. Microsoft Office software, espe-
cially PowerPoint for presentations).

We request funds to buy some time of a computer offi-
cer (CO) to install compatible systems and ensure smooth
inter-operation between the different platforms and to sup-
port the installation and deployment of code management
systems accessible from both systems as well as via vir-
tual machines. Charges for Microsoft office software (to
run under VMware), file storage, backups and archiving,
network connection and printing are also budgeted for.

Personnel.
We are requesting support for Dr Anthony Fox, who was
responsible for the ARM6 formal verification which this
project builds on.

4csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

Travel.
Scientists in the USA whom it would be valuable to visit
for research discussions include: Gopalakrishnan, Grundy,
Harrison, Hunt, Moore, O’Leary, and Slind. Other re-
searchers include: Hurd, Luk, Melham, Susanto (UK),
Sheeran (Sweden) and Paul (Germany). We have bud-
geted for 3 overseas trips per annum to cover the investi-
gator and RA, plus 20 days of UK travel. Major confer-
ences likely to be of interest to us are: CADE, CHARME,
DAC, DATE, DVCon, FMCAD, CAV, TPHOLS, TACAS.
However, it is likely that other meetings and workshops
will appear that are appropriate for the presentation and
discussion of our work. We also may wish to attend com-
mercial training courses to enable us to understand better
the needs of industry.

Changes made in response to
referees evaluation

This proposal is a heavily revised resubmission of an ear-
lier one that was unsuccessful. We have carefully studied
the referees comments and made substantial changes to
the research plan.

One criticism was: “It is a pity that ARM does not show
more interest in this project, for example through a more
formal collaboration”. We have addressed this by mak-
ing ARM a formal collaborator and involving them in the
drafting of the revised proposal. A substantial component
of the re-emphasis of the research comes from this. In
particular, the case study is now focused on information
assurance, which is a particular current interest of ARM.

Another worry expressed by a referee was that the Pie
board, which was originally mentioned as a possible a cen-
tral component of the case study, was “not representative
of the state-of-the-art”. The case study in the revised
proposal has been completely redesigned, and we are no
longer considering using the Pie board. With ARM’s help,
we hope to ensure the case study will produce results rel-
evant to current designs.

Some of the costs were queried. We have both reduced
the cost of the project and provided greater justification
for the remaining expenditure.

We hope the revised project is slimmer and more focused
than its predecessor. It also has an additional adventur-
ous component: developing direct semantic formulations
of information assurance properties for concrete hardware
and software models.
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