
PLSV, Mock Test, 2011

Question 1

The lseg predicate describes a segment of a singly-linked list. It is defined to be
the least predicate satisfying the following equation:

lseg(E,F)⇔ (E = F ∧ emp) ∨ (E 6= F ∧ ∃x.E 7→ x ∗ lseg(x, F)).

Nodes do not contain values, only a pointer to the next node. A complete
list starting at location E can hence be defined as lseg(E,null). Consider the
following routine, which takes two call-by-reference parameters:

append_list(x,y) {

if (x=null) {

x := y;

} else {

t := x;

u := [t];

while (u!=null) {

t := u;

u := [t];

};

[t] := y;

}

}

Construct a proof, using Separation Logic, of the following specification:

{lseg(x,null) ∗ lseg(y,null)}
append list(x,y)

{lseg(x,null)}

Your proof should be sufficiently detailed to be convincing, although proofs of
straightforward arithmetical or logical facts may be elided. You may assume
the following lemma without proof, but be sure to state clearly where you use
it:

lseg(x, y) ∗ lseg(y, z)⇒ lseg(x, z).

[20 marks]

1

Question 2

(a) For each of the following specifications, either construct a proof using
Concurrent Separation Logic, or explain why such a proof cannot exist.

1. {x 7→ } [x] := 5 || [x] := 5 {x 7→ 5}
2. {x 7→ ∧ f 6= g}

if f = 1 then [x] := 5

||

if g = 1 then [x] := 5

{x 7→ }
[8 marks]

(b) For each of the following specifications, either construct a proof using the
Rely-Guarantee method, or explain why such a proof cannot exist. You
may add auxiliary state to the programs as necessary.

1. {x = 0}
x := x + 3 || x := 5

{x = 8 ∨ x = 5}
2. {x = 0}

if x=0 then x := x + 1

||

if x=0 then x := x + 2

||

if x=0 then x := x + 1

{x ∈ {1, 2, 3, 4}}
[12 marks]

2

Question 3

(a) Which of the following separation logic formulae are valid, which are un-
satisfiable, and which are neither? Give examples, counterexamples and
formal proofs as appropriate.

(i) A⇒ A ∗A
(ii) x 7→ 2 ∧ y 7→ 2

(iii) x 7→ 2 ∗ x 7→ 2

(iv) (A ∗B) ∨ (A ∗ C)⇒ A ∗ (B ∨ C)

(v) (A ∗B) ∧ (A ∗ C)⇒ A ∗ (B ∧ C)

(vi) (A⇒ B)⇒ (A ∗ C ⇒ B ∗ C)

[12 marks]

(b) You have been asked to verify a concurrent program using either:

• Concurrent Separation Logic,

• the Owicki-Gries method, or

• the Rely-Guarantee method.

Explain the factors that could influence your decision about which verifi-
cation method to use. [8 marks]

3

Question 4

For each of the following specifications, either prove it correct, or explain why
it is invalid.

1. {even(x)} x := x + 1 {odd(x)}

2. {true} while true do skip {false}

3. {x = y ∧ x 7→ z} x := [x] {y 7→ z ∧ x = z}

4. {true}
r := x;

d := 0;

while r >= y do

r := r - y;

d := d + 1

{x = (d× y) + r ∧ r < y}

5. {list(x)}
h := new();

t := h;

while (true) {
p := t

v := [x+1];

[p+1] := v;

x := [x];

if (x!=0) {
t := new;

[p] := t;

}
}
[p] := 0;

{list(x) ∗ list(h)}
[20 marks]

4

Question 5

(a) The conjunction rule is:

{P1} C {Q1}
{P2} C {Q2}
{P1 ∧ P2} C {Q1 ∧Q2}

Prove the conjunction rule is sound for sequential Hoare logic. That is,
show:

|= {P1} C {Q1} ∧ |= {P2} C {Q2}
=⇒ |= {P1 ∧ P2} C {Q1 ∧Q2}

[10 marks]

(b) The disjunction rule is:

{P1} C {Q1}
{P2} C {Q2}
{P1 ∨ P2} C {Q1 ∨Q2}

Prove the disjunction rule is sound for sequential Hoare logic. [10 marks]

5

Question 6

Consider the following concurrent program.

makezero(struct listnode *h) {

cont := 1;

x := h;

resource r1 in {

(

while(cont == 1) {

with r1 when true in {

if(x != null) {

resource r2 in {

(

with r2 when true [x.val] := 0

||

with r2 when true [x.val] := 0

)

}

x := [x.nxt];

} else { cont := 0 }

}

}

||

with r1 when true in {

if (x != null) {

[x.val] := 0;

x := [x.nxt];

}

}

)

}

}

This program assumes that h points to a singly-linked list of nodes defined like
so:

struct listnode { int val; struct listnode *nxt; };

The lseg predicate describes a segment of a singly-linked list. It is defined
to be the least predicate satisfying the following equation:

lseg(E,F) ⇐⇒
(E = F ∧ emp) ∨ (E 6= F ∧ (∃x.E.val 7→ ∗ E.nxt 7→ x ∗ lseg(x, F))

The notation “E.fieldname 7→ F” can be understood as “E + n 7→ F”, where n
is the offset of the field fieldname. For list nodes we define E.val and E.nxt as
E + 0 and E + 1 respectively.

Prove the following specification for makezero:

{lseg(h,null)} makezero(h) {lseg(h,null)}

6

Your proof should be sufficiently detailed to be convincing, although proofs of
straightforward arithmetical or logical facts may be elided. You may assume
the following joining lemma without proof, but be sure to state clearly where
you use it:

lseg(x, y) ∗ lseg(y, z)⇒ lseg(x, z)

Your proof should include definitions of the resource invariants I(r1) and I(r2)
associated with the locks. [20 marks]

Bonus question! The predicates onelist and zerolist are defined as follows:

onelist(E,F) ⇐⇒
(E = F ∧ emp) ∨ (E 6= F ∧ (∃x.E.val 7→ 1 ∗ E.nxt 7→ x ∗ onelist(x, F))

zerolist(E,F) ⇐⇒
(E = F ∧ emp) ∨ (E 6= F ∧ (∃x.E.val 7→ 0 ∗ E.nxt 7→ x ∗ zerolist(x, F))

Prove the following specification for makezero:

{onelist(h,null)} makezero(h) {zerolist(h,null)}

You may assume the onelist and zerolist equivalents of the joining lemma.

7

