
The unfinished MITB project

Mike Gordon

Contents
Introduction 2

History of MITB 3

Goals of MITB 4

What has been done so far 5

The MITB state-machine 6
Architecture . 7
API protocol for loading secret key . 8
API protocol for hashing . 8

Absorbing algorithm . 8
MITB protocol for absorbing . 8

Implementation . 9

Formal specification and verification 11
Correct state-machine implementation 11
Correct API behaviour . 12
Security . 14

Functional properties . 15
Cryptographic properties . 15

Taking stock 16
What was and wasn’t done . 16
Ignored issues . 17
Next steps and final thoughts . 18

Abstract. It’s very hard – maybe impossible – to achieve unas-
sailable proof of the security of the hardware and software making
up computer systems like PCs or servers. Perhaps there’s hope of
proving properties of a tiny system? MITB, the result of a collabora-
tion with Graham Steel and Robert Künnemann, is incredibly tiny,
but even it turned out to be challenging. What follows incorporates
comments and text from Robert.

1

http://www.cl.cam.ac.uk/~mjcg/

Introduction

The “MAC In The Box” project – “MITB” for short – was thought up by Graham
Steel following conversations on ways that he and I might collaborate. The
name, also devised by Graham, derives from “HMAC”, as the eventual goal
was to design and formally verify hardware and software implementing a device
to hash passwords and other security critical data. The idea was to explore
plugging a gap in existing security arguments for storing hash parameters in
separate hardware: for example, the formal analysis of the Yubikey protocol by
Künnemann and Steel assumes “that the implementation is correct with respect
to the documentation” (see Slide 9 of this talk). To reduce risks inherent in this
assumption, the project aimed to build and verify a hashing application running
on a server and a physically separate simple hardware token that could create
password hashes using parameters stored securely on the device.

Graham, his then PhD student Robert Künnemann, I and others initially made
fast progress. However, after a while the project slowly ground to a halt, but a
lot was achieved before this happened.

• The MITB API – the interface operations it supports – was designed by
Graham and Robert and a protocol for using these operations to create
HMACs specified.

• A state-machine to implement the API operations was designed by Robert.

• The state-machine was specified in higher-order logic and a register-transfer
level hardware implementation proved correct.

• The MITB API protocol was represented in temporal logic and the imple-
mentation of the state-machine proved to correctly execute it.

• It was proved that no matter what sequence of API operations are applied
to MITB, only zeros or hashes of strings are output.

• It was verified that the MITB implementation emulates a simulator specified
to have ‘ideal functionality’ using an approach developed by Robert based
on the universal composability model of cryptographic protocol security.

The sections below provide further details and discussion of what was and wasn’t
achieved. I think the goals of the MITB project are still timely and scientifically
challenging, so I hope the project might someday be revived.

This article reorganises and updates text extracted from the old MITB web
pages at http://www.cl.cam.ac.uk/~mjcg/MITB/ into a single document. The
security proofs done by Robert are online at https://github.com/CakeML/mitb.

2

http://www.lsv.ens-cachan.fr/~steel/
http://www.lsv.ens-cachan.fr/~steel/
http://www.ietf.org/rfc/rfc2104.txt
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/KS-stm12.pdf
http://www.openwall.com/presentations/YaC2012-Password-Hashing-At-Scale/mgp00009.html
http://www.openwall.com/presentations/YaC2012-Password-Hashing-At-Scale/
http://www.kunnemann.de/
https://en.wikipedia.org/wiki/Universal_composability
http://www.cl.cam.ac.uk/~mjcg/MITB/
https://github.com/CakeML/mitb

History of MITB

At the 2011 FMATS workshop, Graham gave a talk showing that the operations
of many crypto tokens that provide access to their functionality – their APIs –
had unexpected insecurities that could be automatically found using his Tookan
tool. Here in Figure 1 are some example tokens that Tookan found insecurities
in.

Figure 1:

The ideas underlying Tookan built on earlier work such as that by Clulow and
Bond & Clulow. To complement research on breaking existing tokens, the first
idea for a project was to see how easy would it be to design hardware token
implementations that could be mathematically proved to be unbreakable using
Tookan-like tools. It was hoped to combine the API-cracking expertise of Steel’s
group at INRIA with the formal verification expertise of Cambridge. Initially,
an ambitious project to verify a full PKCS #11 hardware security token was
planned. This early vision was outlined in an old Prezi talk I presented at an
event in Chicago to honour Dave MacQueen’s retirement. Here in Figure 2 is
the first slide.

“Cryptoki” is short for “cryptographic token interface”, the PKCS #11 standard
that specifies APIs for devices holding cryptographic information and performing
cryptographic functions. It was intended that the token would run a verified
CakeML program implementing the Cryptoki API.

Over the next year or so, this goal evolved into the much less ambitious MITB

3

http://www.cl.cam.ac.uk/~mjcg/Meeting.SecurityTools.2011/FMATS1.html
http://www.cl.cam.ac.uk/~mjcg/Meeting.SecurityTools.2011/papers/Steel-fmats-tookan.pdf
http://www.lsv.ens-cachan.fr/~steel/slides/Tookan.pdf
http://www.lsv.ens-cachan.fr/~steel/slides/Tookan.pdf
http://www.chesworkshop.org/ches2003/presentations/CHES%20-%20On%20the%20Security%20of%20PKCS11.pdf
https://www.cl.cam.ac.uk/~mkb23/research/Challenges.pdf
https://en.wikipedia.org/wiki/PKCS_11
https://prezi.com/2u63bd58hgis/mcqueenfestpublic/
http://people.cs.uchicago.edu/~dbm/
http://uk.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.cakeml.org

Figure 2:

project, which aims to be a proof-of-concept first step.

Goals of MITB

MITB is intended to be a very simple hardware token for hashing passwords and
other security critical data using the SHA-3 algorithm. Quoting from Wikipedia
(https://en.wikipedia.org/wiki/SHA-3):

"SHA-3 (Secure Hash Algorithm 3), a subset of the cryptographic
primitive family Keccak ,... is a cryptographic hash function
designed by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche, building upon RadioGatún. SHA-3 is a member of the
Secure Hash Algorithm family. The SHA-3 standard was released by
NIST on August 5, 2015. The reference implementation source code
was dedicated to public domain via CC0 waiver."

The plan was to verify an implementation of the simplest hashing device that
we could think of. An early suggestion was for just two operations:

• SETUP: a physical button on the device puts it into setup mode in which
commands can read and write the stored secret parameter. Physical

4

https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/SHA-3

attacks are considered out-of-model for the scenario where this device
will be deployed (connected to a server in a relatively physically secure
location). The device could have a bright red LED for when it’s in setup
mode and a green one for operational password authentication mode.

• AUTHENTICATE: data is input to the device, which computes a hash of
it using the secret parameter stored on the device, and then outputs the
result. This would be used both to compute initial hashes for storing in
the password file on the server and for authenticating later password uses
by computing a hash that can be compared with the one in the server file.

This is informal high-level documentation. The project was to design a hardware
implementation for an FPGA and to certify by machine-checked mathematical
proof, that the implementation of MITB correctly implements formal documen-
tation, including both normal and error behaviour. The main scientific challenge
that arises is formulating what properties need to be proved to establish the
trustworthiness of the device. These properties fall into two categories: functional
correctness and security.

Functional correctness properties establish that the behaviour of the implemen-
tation, which consists of registers connected together by combinational logic,
is the behaviour specified in the documentation. Cambridge has experience in
verifying the functional correctness of such hardware.

The security properties of MITB aim to establish that the device protects secrets:
for example, that an attacker cannot extract secret data in unexpected ways.
Both the high-level documentation and the implementation need to be secure.
Tookan discovers insecure combinations of documented API operations; we want
MITB not to be vulnerable to Tookan-style analysis. Even if the implementation
correctly implements MITB’s API it could also accidentally provide additional
undesirable functionality or insecure side channels, e.g. the time taken to produce
outputs might reveal information about what secret data was being manipulated.
Graham and his colleagues at Inria are expert in showing that security properties
do not hold of actual devices.

What has been done so far

During the summer of 2013, Graham’s PhD student Robert Künnemann visited
Cambridge for a couple of months. He produced implementations of Keccak in
Standard ML (SML) and in HOL.

Robert also designed a state machine to implement MITB and an API for driving
it. He suggested that a good security property to prove is that the only outputs
from MITB that can be produced are hashes of strings.

I then formalised a version of Robert’s machine in the HOL4 version of higher-
order logic. This was parametrised on various Keccac size parameters and

5

https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://www.kunnemann.de/
https://hol-theorem-prover.org/

a function representing the permutation component of the Keccak algorithm.
He also proved that a temporal logic formalisation of the API specification is
correctly implemented by the state-machine and that Robert’s security property
holds.

Links to further details of what Robert and I did in 2013, together with
some discussion, can be found in the 2013 progress report, which is online
at http://www.cl.cam.ac.uk/~mjcg/MITB/Autumn2013Summary.html. What
follows is an overview aiming to explain what was done, but without most of
the formalisation and proof details:these are available in web pages available via
the 2013 online progress report.

The MITB state-machine

The MITB state-machine is a device with two 1-bit control inputs skip_inp,
move_inp, two data inputs block_inp and size_inp, a 1-bit control output
ready_out and a data output digest_out (see Figure 3).

Figure 3:

MITB is parametrised on three numbers (r, c, n) and a permutation function
f . These are part of the Keccak specification: r is the bitrate, c the capacity
and n the digest size. The function f , also part of the Keccak specification, is a
function that permutes bit-strings of length r + c. An actual device would be
manufactured with specific values for the parameters.

The input block_inp is r-bits wide and the output digest_out is n-bits wide.
The input size_inp has sufficient bits to represent a number of size r or less.

MITB computes an HMAC for an arbitrary length message. The user splits
the message into blocks of r bits. A sequence of control inputs are applied via
skip_inp and move_inp to read the sequence of blocks and the number of blocks
the message is split into from data inputs block_inp and size_inp, respectively.
If MITB receives the correct inputs it will ‘squeeze’ the blocks into a digest,

6

http://www.cl.cam.ac.uk/~mjcg/MITB/Autumn2013Summary.html
http://keccak.noekeon.org/specs_summary.html

which can then be read from MITB’s data output digest_out. The control
output ready_out signals when the digest has been computed. MITB contains
a secret key that is used in hashing. There should be no way for an attacker to
extract this key using the operations. The way MITB squeezes a message into a
digest is described in more detail in the sections on the absorbing algorithm and
the MITB protocol for absorbing below.

From a user’s point of view MITB can be in either of two states: Ready or
Absorbing. It powers up into the Ready state. The 1-bit output ready_out
indicates which state the machine is in.

MITB runs continuously after being switched on. All a user can observe (assuming
tamper-resistant manufacture) are the sequences of values appearing on the
outputs ready_out and digest_out, which depend on the values input via
skip_inp, move_inp, block_inp and size_inp.

Architecture

In the state-transition diagram below (Figure 4) the Absorbing state in the
documentation is realised in the implementation by being either in the state
labelled Absorbing in the diagram or in the state labelled AbsorbEnd.

Figure 4:

The input skip_inp ‘freezes’ MITB: it stops the state changing on successive
cycles. The input move_inp causes the state to change on the next cycle; in
particular it is used to signal that MITB should start absorbing a message.

7

The MAC of a message M is specified as the Keccak hash of the result of
concatenating the secret key stored in the token onto the front of the message, i.e
the hash of key‖M , where key is the secret key and ‖ is bit-string concatenation.
The protocol for using MITB to compute the MAC of a message is described below.
The main correctness property of the device is that if the specified protocol
is used to input a message then its MAC will appear on digest_out. The
functional correctness property is that no matter what inputs are supplied, the
secret key cannot be revealed. These properties will be expressed as constraints
on what sequences of inputs and outputs are possible, using a temporal logic
notation.

API protocol for loading secret key

MITB has a permanent memory for holding an r-bit secret key. The key can be
set or changed by asserting 0 on both skip_inp and move_inp 0 in the Ready
state. The data being input on block_inp then overwrites the stored key.

API protocol for hashing

Keccak works by splitting a message into blocks and then ‘absorbing’ them.

Absorbing algorithm

The absorbing algorithm takes a message M as input and returns a digest h. It
consists of three steps: padding the input, iteratively computing a sequence of
b-bit states s0 . . . sm (b = 1600), extracting the digest from the final state sm.
In more details the three steps are:

• Apply padding to M . Let the resulting blocks be B1, . . . , Bm; each of
length r.

• Set s0 = 0b and for i = 1, . . . ,m iteratively compute si ←
f(si−1⊕(Bi||0b−r)), where || is bitstring concatenation, ⊕ is bitwise XOR
and f is the permutation function.

• Output h = bsmcn, where bsmcn is the first n bits of sm and it is guaranteed
that n < b as b = 1600 and n ∈ { 224, 256, 384, 512 }.

MITB protocol for absorbing

MITB is ready to compute the MAC of a message in state Ready. The protocol
for computing the MAC of M is as follows (|B| denotes the number of bits in B):

8

1. The user splits M into a sequence of blocks, M = B1‖B2‖ · · · ‖Bm−1‖Bm,
such that all blocks except the last one are r-bits wide, i.e. |Bi| = r for
1 ≤ i < m and |Bm| < r. If r divides exactly into |M |, then Bn is taken
to be the empty block (so |Bm| = 0).

2. When ready_out is 1 the user puts MITB into the Absorbing state by
inputting 0 on skip_inp and 1 on move_inp (block_inp and size_inp
are ignored during this step).

3. Starting on the next cycle, and continuing for m cycles, the user inputs 0
on both move_inp and skip_inp, Bi on block_inp and |Bi| on size_inp,
where 1 ≤ i ≤ m. During this time 0 will be output on ready_out.

4. After inputting Bm, the user keeps inputting 0 on skip_inp and move_inp
until ready_out becomes 1. On the cycle when this happens the hash of
key‖M will appear on digest_out. The number of cycles taken depends
on |Bm|. If |Bm| 6= r−1 then ready_out will become 1 on the cycle after
Bm is input. If |Bm| = r−1 then ready_out will become 1 the cycle after
the cycle after Bm is input.

Implementation

The MITB state-machine is implemented using combinational logic and three
blocks of registers as in the schematic diagram in Figure 5 below. Each block
of registers, REGISTER in the diagram, stores the number of bits shown on the
output wire labels; their initial power-up values are shown in brackets (e.g. the
leftmost register block stored the state, which is encoded using two bits and is
initially in state Ready.

The block MITB_CONTROL_LOGIC is combinational logic and is parametrised on
the permutation f . This logic is specified in a HOL file as a Boolean function,
which is unlikely to be interesting to readers of this document. Converting the
Boolean function specification to a verified equivalent netlist of logic gates hasn’t
been done, but would be straightforward, though a lot of work. The permutation
f is defined in the Keccak documentation as a number of iterations (typically 24)
of a function called a round, where each round is the function composition of five
sub-round functions. Appendix A of the MITB report MITB.1.0 has more details.
A realistic MITB implementation would probably use a sequential implementation
of f , perhaps with pipelining of the round/sub-round calculations, to minimise
the number and depth of logic gates needed. Assuming f is implemented
entirely in combinational logic, though perhaps unrealistic from an engineering
perspective, seems reasonable for a first proof-of-concept exercise.

9

http://www.cl.cam.ac.uk/~mjcg/MITB/MITB.ml
http://www.cl.cam.ac.uk/~mjcg/MITB/MITB1.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf

Figure 5:

10

Formal specification and verification

An MITB device is specified with a next-state function MITB that gives the next
state s′ when input i is received in state s. The observable outputs are determined
by the current state, so the specification is a Moore machine. The next-state
function MITB is parametrised on the Keccak parameters (r, c, n) and permutation
function f ; it thus takes these as arguments, hence s′ = MITB (r, c, n) f (s, i).

To verify by formal proof that the hardware design implementing the MITB state-
machine functions as it is supposed to do – e.g. correctly hashes messages via
the API protocol sketched above – the specified functionality must be formalised
and shown to be correctly realised by the implementation. This has been done
in two stages.

First, the combination of registers and combinational logic comprising the
implementation is shown to have the behaviour of the state-machine. Second,
this behaviour is proved to correspond to the hashing protocol specified in the
API. A flavour of these formal specification and verifications follows: for full
details see the MITB web pages.

Correct state-machine implementation

The implementation is at the register transfer level (RTL), but with a complex
block of combinational logic (MITB_CONTROL_LOGIC in the diagram) specified
as a boolean function parametrised on the Keccak size parameters r, c, n and
the permutation f . Devices are represented as relations between the input and
output signals. Signals are modelled as functions from time to values. Time
corresponds to the number of clock cycles that have elapsed and is represented
by a natural number. If σ is a function modelling a signal, then σ(t) is the value
at the tth clock cycle.

If MITB_IMP (r, c, n) f is the relation modelling the implementation with param-
eter values (r, c, n) and f , then MITB_IMP (r, c, n) f (σs, σi, σo) means that the
signals σs, σi and σo are in the MITB_IMP (r, c, n) f relation. The signals σs,
σi and σo represent the sequences of states, inputs and outputs on each clock
cycle, respectively. They are are multi-bit wide: σs is the sequence of states
(Ready or Absorbing, encoded using two bits), σi amalgamates inputs skip_inp,
move_inp, block_inp and size_inp and σo amalgamates outputs ready_out
and digest_out. The correctness of the implementation with respect to the
next-state function MITB is proved as a theorem which – ignoring some minor
technical conditions – has the form:
` ∀σs σi σo.

MITB_IMP (r, c, n) f (σs, σi, σo)
⇔
∀t.σs(t+1) = MITB (r, c, n) f (σs(t), σi(t))

11

http://www.cl.cam.ac.uk/~mjcg/MITB/
https://en.wikipedia.org/wiki/Register-transfer_level

Melham’s book gives an excellent description of the standard hardware mod-
elling and verification techniques used to specify and verify MITB’s functional
correctness. The details of how these techniques are utilised, including the actual
theorems proved, can be found via the MITB web page.

Correct API behaviour

A version of Linear Temporal Logic (LTL) is used to specify the API. Mathe-
matical details of this logic are not given here, but are explained in the MITB
Technical Report. A temporal formula φ is a predicate on MITB executions:
for each execution σ, either φ is true of σ or it is false of it. Five proper-
ties of the MITB API have been formalised: Init, Freeze, Reset, KeyUpdate,
ComputeMAC.

1. Init key c f specifies that the ‘power up’ state of MITB is Ready, that
zeros are being output on digest_out and that f(key‖Zeros(c)) is stored
in permanent memory (where Zeros(c) is a string consisting of c 0s).

2. Freeze specifies that the state and outputs of MITB remains unchanged
as long as 1 is input on skip_inp.

3. Reset specifies that inputting 1 on move_inp and 0 on skip_inp in an
Absorbing state, i.e. when ready_out is 0, results in a return to the Ready
state on the next cycle, with permanent memory unchanged and Zeros n
being output at ready_out.

4. KeyUpdate r c f specifies that when in state Ready, inputting 0 on
both skip_inp and move_inp and inputting key (where |key| = r) on
block_inp, results in f(key‖Zeros(c)) being stored in the permanent mem-
ory and then remaining in the Ready state on the next cycle.

5. ComputeMAC (r, c, n) f specifies that if the user follows the correct protocol
for inputting a message then its digest is computed using the Keccak
HMAC algorithm. The user is required to split the message into blocks
and then input them and their lengths. An individual block bk is input by
putting it on block_inp and its size |bk| on size_inp whilst holding both
skip_inp and move_inp at 0.

To give just an impression of how these properties are expressed in LTL, their
definitions are given in the five boxes below. The contents of these boxes are not
meant to be comprehensible as, amongst other things, they contain unexplained
symbols. They are here to try to give a rough idea of API specification in LTL.

Init key c n f =
readyOut(T) And digestOut(Zeros n) And pmemState(f(key‖Zeros(c)))

12

http://www.cs.ox.ac.uk/tom.melham/pub/Melham-1993-HOL.html
http://www.cl.cam.ac.uk/~mjcg/MITB/Autumn2013Summary.html
http://www.cl.cam.ac.uk/~mjcg/MITB/MITB1.pdf
http://www.cl.cam.ac.uk/~mjcg/MITB/MITB1.pdf

Freeze =
Always
(Forall s b1 b2

skipInp(T) And pmemState(s) And readyOut(b1) And digestOut(b2)
Implies
Next(pmemState(s) And readyOut(b1) And digestOut(b2)))

Reset n =
Always
(Forall s.

(moveInp(T) And skipInp(F) And readyOut(F) And pmemState(s))
Implies
Next(readyOut(T) And pmemState(s) And digestOut(Zeros n)))

KeyUpdate r c f =
Always
((readyOut(T) And skipInp(F) And moveInp(F))
Implies
(Forall key.

blockInp(key) And Bool(|key| = r)
Implies Next(readyOut(T) And pmemState(f(key‖Zeros(c))))))

ComputeMAC (r, c, n) f =
Always
(Forall key m.

(readyOut(T) And skipInp(F) And moveInp(T)
And Bool(|key| = r) And pmemState(f(key‖Zeros(c))))

Implies
Next
(InputBlocks r (Split r m)
Implies
(readyOut(F) And digestOut(Zeros n))
UntilN(if |m| MOD r = r−1 then |m| DIV r + 2 else |m| DIV r + 1)
(readyOut(T)
And digestOut(MAC key (r, c, n) m)
And pmemState(f(key‖Zeros(c))))))

All of these properties have been shown to hold of all executions of the MITB im-
plementation using the HOL4 proof assistant. The significance of this verification
is discussed below.

13

https://hol-theorem-prover.org/

Security

I have a very limited understanding of security, so what I write here could range
from naively superficial to completely wrong!

Verifying security is far more subtle and intricate than proving functional cor-
rectness. Even formulating what security means is contentious. There are at
least three aspects of MITB’s security that could be analysed.

1. The operations in the API could be proved to be free of undesirable
functionality, like allowing the secret key to be extracted.

2. The algorithms used to create an HMAC digest could be proved to be
‘cryptographically strong’, e.g. a brute force attack on a message digest
will have low probability of finding the message in a feasible time.

3. The physical hardware implementing MITB could be shown not to be
vulnerable to reverse engineering and also that it does not leak information
through side channels such as the time taken to perform a hash or power
usage fluctuations or electromagnetic radiation.

The third of these security aspects, physical attacks, is beyond the scope of the
MITB project, thought we did discuss packaging the FPGA in simple tamper-
resistant packaging. Two scary articles on the difficultly of achieving good
physical security appeared whilst I was writing this:

• Physical Key Extraction Attacks on PCs (June 2016 CACM)

• This ‘Demonically Clever’ Backdoor Hides In a Tiny Slice of a Computer
Chip (June 2016 Wired)

The academic paper A2: Analog Malicious Hardware behind the Wired article
discusses ‘split manufacturing’ of chips:

The idea behind defences incorporating split manufacturing is to
divide a chip into two parts, with one part being fabricated by a
cheap, but untrusted, fabrication house, while the other part gets
fabricated by an expensive, but trusted, fabrication house (that is
also responsible for putting the two parts together . . .

The idea behind hardware tokens has similarities: splitting off functionality
that needs to be trusted – password hashing in the case of MITB – into a
separate device that could be designed, verified and made by a specialist high
integrity manufacturer. Even if MITB could be made extremely trustworthy,
there is still the problem of ensuring that the total system in which it is used
– e.g. an MITB USB stick plugged into an off-the-shelf PC – actually benefits

14

http://cacm.acm.org/magazines/2016/6/202646-physical-key-extraction-attacks-on-pcs/fulltext
https://www.wired.com/2016/06/demonically-clever-backdoor-hides-inside-computer-chip/
https://www.wired.com/2016/06/demonically-clever-backdoor-hides-inside-computer-chip/
http://www.impedimenttoprogress.com/storage/publications/A2_SP_2016.pdf

from the trustworthiness. The problem of putting together the parts of a split
manufactured chips is also discussed in the A2 paper.

The CACM paper ends with:

How can we formally model the feasible side-channel attacks on
PCs? What engineering methods will ensure devices comply with the
model? And what algorithms, when running on compliant devices,
will provably protect their secrets, even in the presence of side-channel
attacks?

The next two sections outline work done on verifying the first and second aspects
of MITB’s security: API functionality and computational cryptographic strength.
The third aspect, physical security, is not considered further.

Functional properties

The only functional security property that has verified to hold of the MITB
model is to prove that in all reachable states, the value output at digest_out
is either Zeros n or the hash of some message. This property was proposed by
Robert and is called Secure (r, c, n) f here; its definition is below. Like the
other definitions of temporal properties given above, this is only here to convey
an impression of the formalisation. Further explanation is in the MITB progress
report.

Secure (r, c, n) f =
Always(digestOut(Zeros n) Or Exists m. digestOut(Hash (r, c, n) f (Zeros(r+c)) m))

The proof that Secure (r, c, n) f holds of all executions of MITB shows that
no combination of sequences of inputs can cause the secret key to be extracted
unless this key is the hash of some string. This was an early property suggested
by Robert and, in fact, the first MITB design didn’t satisfy it. I’m not sure
how strong a result this is, but it does seem at least to show that MITB is not
susceptible to Tookan-like attacks.

Cryptographic properties

The functional security discussed in the preceding section is similar to a Dolev-
Yao analyses of protocols in that it assumes cryptographic primitives are modelled
using abstract operators, namely the uninterpreted permutation function f . An
actual MITB device implements the Keccak HMAC algorithm with the actual
permutation f specified as part of Keccak – see Appendix A starting on Page
20 of the MITB report. Both the designers of Keccak and others have obtained

15

http://www.cl.cam.ac.uk/~mjcg/MITB/MITB1.pdf
http://www.cl.cam.ac.uk/~mjcg/MITB/MITB1.pdf
https://en.wikipedia.org/wiki/Dolev%E2%80%93Yao_model
https://en.wikipedia.org/wiki/Dolev%E2%80%93Yao_model
http://www.cl.cam.ac.uk/~mjcg/MITB/

cryptanalysis results that, presumably, provide some confidence that Keccak is
good.

Robert, as well as designing the MITB state-machine, has completed a proof of
the security of the MITB protocol based on universal composability (UC). This
proof formalises security as the indistinguishability of an ideal functionality from
the MITB implementation. It says that assuming an invariant on the relation
between the state of an MITB and the state of a functionality, the follow-up states
have the same relation. This implies that their outputs are the same (theorem
online here) and hence security follows because the functionality is secure by
construction, when the hash function is substituted by a random oracle. Robert’s
proof of the main theorem is online at https://github.com/CakeML/mitb; the
main theorem starts here.

Taking stock

Although MITB is tiny and the verification very incomplete, it is hoped that it
may have potential in provoking thoughts on combining traditional functional
verification with more recent computational security analysis.

In the rest of this section what was done and wasn’t done is reviewed. Following
that, there’s an attempt to consider some wider issues that might cast doubt on
what has been achieved. Finally, possible future work is outlined.

What was and wasn’t done

The current specification has not been validated as a usable API description.
Although some proofs have been done showing that the state-machine implements
the API, the list of properties proved is ad hoc. Whilst they are consistent, since
the MITB implementation is a model, how can one know if they are adequate?

There is no evidence that the communication model used to relate MITB and its
ideal functionality specification is really a good formalisation of UC. However,
the proof is complete and there is unpublished work by others using EasyCrypt
based on a very similar communication model that gives some evidence that
the approach can provide simple composition. This give some confidence in the
methodology.

Some of the MITB verification proofs are verbose and clumsy, and unlikely to
be comprehensible by anyone besides their authors.

The API operations of MITB are ad hoc: the effects of the various inputs may well
be badly designed. For example, having the stored key reset whenever move_inp
is 0 in the Ready state may be dangerous: an attacker could surreptitiously reset
the key. Adjusting the API would be easy (e.g. by just removing the ability to
reset the key).

16

http://keccak.noekeon.org/third_party.html
https://en.wikipedia.org/wiki/Universal_composability
https://github.com/CakeML/mitb/blob/master/mitbScript.sml#L2471
https://github.com/CakeML/mitb
https://github.com/CakeML/mitb/blob/master/mitbScript.sml#L1974
https://en.wikipedia.org/wiki/Universal_composability
https://www.easycrypt.info/trac/

There are two major omissions in the work so far. The first major omission
is that the MITB design is not realistic hardware. The input block_inp is
1600-bits wide and the input size_inp is a number. Whilst the latter is trivial
to fix by encoding the numbers as bitstrings, the former will require sequential
buffering, say to accumulate blocks 16-bits at a time over a 100 cycles. Adapting
the state machine to do this should be straightforward, and the temporal logic
specifications should be easy to adapt to work with the additional data acquisition
cycles, and most of the existing proofs should be reusable. The work involved
is classical data and temporal abstraction (see Melham’s book), but this is all
work which has not been done.

The second major omission is that the multi-round f permutation function has
not been implemented. It is treated in a Dolev-Yao style as an uninterpreted
function. This nicely separates the API aspects of MITB from the cryptographic
computation concerns, but a complete implementation would need hardware
implementing f , which might need several cycles (e.g. one for each sub-round),
so also requiring temporal refinement as discussed in the previous paragraph.
There is a discussion in Chapter 4 (Hardware) of the Keccak implementation
overview. Although the f is quite complicated, creating a verified hardware
designs implementing it should be straightforward (though possibly a lot of work
due to all the intricate details). An approach using verifying synthesis might be
appropriate.

Ignored issues

Imagine the MITB design and verification have been completed, say down to
synthesisable RTL represented in logic, but resembling a standard HDL like
Verilog. What would have been achieved? All that would have been shown is
that the API functionality specified in LTL is realised by the HDL model. Here
are some worries that need to be assessed.

• Maybe the verifier is lying about having completed the proof?

– This could be mitigated by an independent evaluator replaying the
proof.

• Maybe the proof tool (HOL4) is unsound?

– This could be mitigated by checking the proof with another tool
that has a strong soundness pedigree (e.g. HOL Light, ProofPower,
Isabelle/HOL).

• How can the design model be securely manufactured?

– There are many challenges here ranging from unsound synthesis tools,
to unsafe implementation technologies.

17

http://www.cs.ox.ac.uk/tom.melham/pub/Melham-1993-HOL.html
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://adam.chlipala.net/papers/FesiCAV13/

• How strong is Keccak?

– Keccak won the SHA-3 competition, but it evolved into an NSA
approved standard. Maybe it is one of those they contrived to weaken.

• What threats does the model ignore?

– There is no modelling of side-channels or tampering attacks which
could extract f(key‖0c) from the permanent memory.

Cohn give an early discussion of issues related to some of those above that
provoked a controversy – see Donald Mackenzie’s book Mechanizing Proof.

Finally, although MITB was conceived as part of a secure password secrecy
system, it has not been discussed how such a complete system would work, so
there is no analysis of what actual contribution to security an MITB device
might make.

Next steps and final thoughts

Completing the design and implementation would seem to be the essential first
next step, but maybe it would be better to step back now and decide where the
MITB project is going and what is most critical from a total system security
perspective.

Careful thinking is needed to evaluate what contribution a formal verification
of MITB could make to enhancing the security of using hashing in a real world
setting.

The two pictures in Figure 6 and Figure 7 below are from an article published
in 2017 in deepchip.com, an Electronic Design Automation (EDA) news and
gossip website. It is predicted by Wally Rhines, the CEO of Mentor Graphics, a
leading EDA company, that

“Chip designers will need to be concerned with malicious logic inside
chips, counterfeit chips, and ‘side-channel’ attacks. Verification’s
traditional focus has been verifying that a chip does what it is
supposed to do. The new challenge is to verify that a chip does
nothing it is not supposed to do. Wally thinks EDA will be the core
of this solution.”

This opinion from the EDA industry supports what was said in the Introduction:
I think the goals of the MITB project are still timely and scientifically challenging,
so I hope the project might someday be revived.

18

http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.cl.cam.ac.uk/~mjcg/papers/AvraProofPaper.pdf
https://mitpress.mit.edu/books/mechanizing-proof
http://www.deepchip.com/items/0567-02.html
http://www.deepchip.com
https://en.wikipedia.org/wiki/Wally_Rhines

Figure 6:

Figure 7:

19

First complete draft: May 25, 2016.

20

	Introduction
	History of MITB
	Goals of MITB
	What has been done so far
	The MITB state-machine
	Architecture
	API protocol for loading secret key
	API protocol for hashing
	Absorbing algorithm
	MITB protocol for absorbing

	Implementation

	Formal specification and verification
	Correct state-machine implementation
	Correct API behaviour
	Security
	Functional properties
	Cryptographic properties

	Taking stock
	What was and wasn't done
	Ignored issues
	Next steps and final thoughts

