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Preface

This is my attempt to teach myself the backpropagation algorithm for neural
networks. I don’t try to explain the significance of backpropagation, just what
it is and how and why it works.

There is absolutely nothing new here. Everything has been extracted
from publicly available sources, especially Michael Nielsen’s free book Neural
Networks and Deep Learning – indeed, what follows can be viewed as document-
ing my struggle to fully understand Chapter 2 of this book.

I hope my formal writing style – burnt into me by a long career as an academic –
doesn’t make the material below appear to be in any way authoritative. I’ve no
background in machine learning, so there are bound to be errors ranging from
typos to total misunderstandings. If you happen to be reading this and spot
any, then feel free to let me know!

Sources and acknowledgements

The sources listed below are those that I noted down as being particularly
helpful.

• Michael Nielsen’s online book Neural Networks and Deep Learning
http://neuralnetworksanddeeplearning.com, mostly Chapter 2 but also
Chapter 1.

• Lectures 12a and 12b from Patrick Winston’s online MIT course
Lecture 12a: https://www.youtube.com/watch?v=uXt8qF2Zzfo
Lecture 12b: https://www.youtube.com/watch?v=VrMHA3yX_QI

• The Stack Overflow answer on Looping through training data in Neural
Networks Backpropagation Algorithm
http://goo.gl/ZGSILb

• A graphical explanation from Poland entitled Principles of training multi-
layer neural network using backpropagation
http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html
(Great pictures, but the calculation of δl

j seems oversimplified to me.)

• Andrew Ng’s online Stanford Coursera course
https://www.coursera.org/learn/machine-learning

• Brian Dolhansky’s tutorial on the Mathematics of Backpropagation
http://goo.gl/Ry9IdB
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Many thanks to the authors of these excellent resources, numerous Wikipedia
pages and other online stuff that has helped me. Apologies to those whom I
have failed to explicitly acknowledge.

Overview

A neural network is a structure that can be used to compute a function. It
consists of computing units, called neurons, connected together. Neurons and
their connections contain adjustable parameters that determine which function
is computed by the network. The values of these are determined using ma-
chine learning methods that compare the function computed by the whole net-
work with a given function, g say, represented by argument-result pairs – e.g.
{g(I1) = D1, g(I2) = D2, . . .} where I1, I2,. . . are images and D1, D2,. . . are
manually assigned descriptors. The goal is to determine the values of the net-
work parameters so that the function computed by the network approximates
the function g, even on inputs not in the training data that have never been
seen before.

If the function computed by the network approximates g only for the training
data and doesn’t approximate it well for data not in the training set, then
overfitting may have occurred. This can happen if noise or random fluctuations
in the training data are learnt by the network. If such inessential features are
disproportionately present in the training data, then the network may fail to
learn to ignore them and so not robustly generalise from the training examples.
How to ovoid overfitting is an important topic, but is not considered here.

The backpropagation algorithm implements a machine learning method called
gradient descent. This iterates through the learning data calculating an update
for the parameter values derived from each given argument-result pair. These
updates are calculated using derivatives of the functions corresponding to the
neurons making up the network. When I attempted to understand the mathe-
matics underlying this I found I’d pretty much completely forgotten the required
notations and concepts of elementary calculus, although I must have learnt them
once at school. I therefore needed to review some basic mathematics, such as
gradients, tangents, differentiation before trying to explain why and how the
gradient descent method works.

When the updates calculated from each argument-result pair are applied to a
network depends on the machine learning strategy used. Two possibilities are
online learning and offline learning. These are explained very briefly below.

To illustrate how gradient descent is applied to train neural nets I’ve pinched
expository ideas from the YouTube video of Lecture 12a of Winston’s MIT AI
course. A toy network with four layers and one neuron per layer is introduced.
This is a minimal example to show how the chain rule for derivatives is used to
propagate errors backwards – i.e. backpropagation.
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The analysis of the one-neuron-per-layer example is split into two phases. First,
four arbitrary functions composed together in sequence are considered. This
is sufficient to show how the chain rule is used. Second, the functions are
instantiated to be simple neuron models (sigmoid function, weights, biases etc).
With this instantiation, the form of the backpropagation calculations of updates
to the neuron weight and bias parameters emerges.

Next a network is considered that still has just four layers, but now with two
neurons per layer. This example enables vectors and matrices to be introduced.
Because the example is so small – just eight neurons in total – it’s feasible
(though tedious) to present all the calculations explicitly; this makes it clear
how they can be vectorised.

Finally, using notation and expository ideas from Chapter 2 of Nielsen’s book,
the treatment is generalised to nets with arbitrary numbers of layers and neurons
per layer. This is very straightforward as the presentation of the two-neuron-
per-layer example was tuned to make this generalisation smooth and obvious.

Notation for functions

The behaviour of a neuron is modelled using a function and the behaviour
of a neural network is got by combining the functions corresponding to the
behaviours of individual neurons it contains. This section outlines informally
some λ-calculus and functional programming notation used to represent these
functions and their composition.

If E is an expression containing a variable x (e.g. E = x2), then λx.E denotes
the function that when applied to an argument a returns the value obtained by
evaluating E after a has been substituted for x (e.g. λx.x2 denotes the squaring
function a 7→ a2). The notation E[a/x] is commonly used for the expression
resulting from substituting a for x in E (e.g. x2[a/x] = a2).

The usual notation for the application of a function ϕ to arguments a1, a2, . . ., an

is ϕ(a1, a2, . . . , an). Although function applications are sometimes written this
way here, the notation ϕ a1 a2 . . . an, where the brackets are omitted, is also
often used. The reason for this is because multi-argument functions are often
conveniently represented as single argument functions that return functions,
using a trick called “currying” elaborated further below. For example, the two-
argument addition function can be represented as the one-argument function
λx.λy.x + y. Such functions are applied to their arguments one at a time. For
example

(λx.λy.x + y)2 = (λy.x + y)[2/x] = (λy.2 + y)

and then the resulting function can be applied to a second argument

(λy.2 + y)3 = 2 + 3 = 5

and so ((λx.λy.x + y)2)3 = (λy.2 + y)3 = 5.
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Functions of the form λx.λy.E can be abbreviated to λx y.E, e.g. λx y.x + y.
More generally λx1.λx2. · · · λxn.E can be abbreviated to λx1 x2 · · · xn.E.

By convention, function application associates to the left, i.e. ϕ a1 a2 . . . an−1 an

is read as ((· · · ((ϕ a1) a2) . . . an−1) an). For example, ((λx y.x + y)2)3 can be
written as (λx y.x + y)2 3.

Functions that take their arguments one-at-a-time are called curried. The con-
version of multi-argument functions to curried functions is called currying. Ap-
plying a curried function to fewer arguments than it needs is called partial
application, for example (λx y.x + y)2 is a partial application. The result of
such an application is a function which can then be applied to the remaining
arguments, as illustrated above. Note that, in my opinion, the Wikipedia page
on partial application is rather confused and unconventional.

Functions that take pairs of arguments or, more generally, take tuples or
vectors as arguments, can be expressed as λ-expressions with the notation
λ(x1, . . . , xn).E; pairs being the case when n = 2. For example, λ(x, y).x + y is
a way of denoting a non-curried version of addition, where:

(λ(x, y).x + y)(2, 3) = 2 + 3 = 5

The function λ(x, y).x + y only makes sense if it is applied to a pair. Care is
needed to make sure curried functions are applied to arguments ‘one at a time’
and non-curried functions are applied to tuples of the correct length. If this is
not done, then either meaningless expressions result like (λ(x, y).x+y) 2 3 where
2 is not a pair or (λx y.x + y)(2, 3) = λy.(2, 3) + y where a pair is substituted
for x resulting in nonsense.

The notation λ(x1, . . . , xn).E is not part of a traditional logician’s standard
version of the λ-calculus, in which only single variables are bound using λ, but
it is common in functional programming.

A statement like ϕ : R → R is sometimes called a type judgement. It means that
ϕ is a function that takes a single real number as an argument and returns a
single real number as a result. For example: λx.x2 : R → R. More generally,
ϕ : τ1 → τ2 means that ϕ takes an argument of type τ1 and returns a result of
τ2. Even more generally, E : τ means that E has the type τ . The kind of type
expressions that τ ranges over are illustrated with examples below.

The type τ1 → τ2 is the type of functions that take an argument of type τ1 and
return a result of type τ2. By convention, → to associates to the right: read
τ1 → τ2 → τ3 as τ1 → (τ2 → τ3). The type τ1 × τ2 is the type of pairs (t1, t2),
where t1 has type τ1 and t2 has type τ2, i.e t1 : τ1 and t2 : τ2. Note that ×
is more tightly binding than →, so read τ1 × τ2 → τ3 as (τ1 × τ2) → τ3, not
as τ1 × (τ2 → τ3). The type τn is the type of n-tuples of values of type τ , so
R2 = R×R. I hope the following examples are sufficient to make the types used
here intelligible; D and ∇ are explained later.
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2 : R λx.x2 : R → R (λx.x2) 2 : R
λx y.x+y : R → R → R (λx y.x+y)2 : R → R (λx y.x+y) 2 3 : R
(2, 3) : R × R λ(x, y).x+y : R × R → R (λ(x, y).x+y)(2, 3) : R
D : (R → R) → (R → R) ∇ : (Rn → R) → (R → R)n

A two-argument function that is written as an infix – i.e. between its arguments
– is called an operator. For example, + and × are operators that correspond
to the addition and multiplication functions. Sometimes, to emphasise that an
operator is just a function, it is written as a prefix, e.g. x + y and x × y are
written as + x y and × x y. This is not done here, but note that the product
of numbers x and y will sometimes be written with an explicit multiplication
symbol as x × y and sometimes just as x y.

The types of operators are shown by ignoring their infix aspect, for example:
+ : R × R → R and × : R × R → R (the two occurrences of the symbol “×”
in the immediately preceding type judgement for × stand for different things:
the leftmost is the multiplication operator and the other one is type notation
for pairing). I’ve given + and × non-curried types as this is more in line with
the usual way of thinking about them in arithmetic, but giving them the type
R → R → R would also make sense.

An important operator is function composition denoted by “◦” and defined by
(ϕ1 ◦ ϕ2)(x) = ϕ1(ϕ2 x) or alternatively ◦ = λ(ϕ1, ϕ2).λx.ϕ1(ϕ2 x). The type of
function composition is ◦ : ((τ2 → τ3) × (τ1 → τ2)) → (τ1 → τ3), where τ1, τ2,
τ3 can be any types.

The ad hoc operator ⋆ : (R → R)n × Rn → Rn is used here to apply a tuple
of functions pointwise to a tuple of arguments and return the tuple of results:
(ϕ1, . . . , ϕn) ⋆ (p1, . . . , pn) = (ϕ1 p1, . . . , ϕn pn). I arbitrarily chose ⋆ as I
couldn’t find a standard symbol for such pointwise applications of vectors of
functions.

By convention, function application associates to the left, so ϕ1 ϕ2 a means
(ϕ1 ϕ2) a, not ϕ1(ϕ2 a). An example that comes up later is ∇ϕ(p1, p2), which
by left association should mean (∇ϕ)(p1, p2). In fact (∇ϕ)(p1, p2) doesn’t make
sense – it’s not well-typed – but it’s useful to give it the special meaning of
being an abbreviation for (∇ϕ) ⋆ (p1, p2); this meaning is a one-off notational
convention for ∇. For more on ∇ see the section entitled The chain rule below.

Machine learning as function approximation

The goal of the kind of machine learning described here is to use it to train
a network to approximate a given function g. The training aims to discover a
value for a network parameter p, so that with this parameter value the behaviour
of the network approximates g. The network is denoted by N(p) to make explicit
that it has the parameter p. The behaviour of N(p) is represented by a function
fN p. Thus the goal is to discover a value for p so that g is approximated by
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fN p, i.e. g x is close to fN p x for those inputs x in the training set (which
hopefully are typical of the inputs the network is intended to be used on).
Note that fN is a curried function taking two arguments. If it is partially applied
to its first argument then the result is a function expecting the second argument:
fN p is a function and fN p x is this function applied to x.
The goal is thus to learn a value for p so fN p x and g x are close for values of
x in the learning set. The parameter p for an actual neural network is a vector
of real numbers consisting of weights and biases, but for the time being this is
abstracted away and p is simplified to a single real number. Weights and biases
appear in the section entitled Neuron models and cost functions below.
The value p is learnt by starting with a random initial value p0 and then training
with a given set of input-output examples {(x1, g x1), (x2, g x2), (x3, g x3), . . .}.
There are two methods for doing this training: online learning (also called one-
step learning) and offline learning (also called batch learning). Both methods
first compute changes, called deltas, to p for each training pair (xi, g xi).
Online learning consists in applying a delta to the parameter after each example.
Thus at the ith step of training, if pi is the parameter value computed so far,
then g xi and fN pi xi are compared and a delta, say ∆pi, is computed, so
pi+1 = pi + ∆pi is the parameter value used in the i+1th step.
Offline learning consists in first computing the deltas for all the examples in the
given set, then averaging them, and then finally applying the averaged delta
to p0. Thus if there are n examples and pi, ∆pi are the parameter value and
the delta computed at the ith step, respectively, then pi = p0 for i < n and
pn = p0 + ( 1

n × Σi=n
i=1 ∆pi).

If there are n examples, then with online learning p is updated n times, but
with offline learning it is only updated once.
Apparently online learning converges faster, but offline learning results in a
network that makes fewer errors. With offline learning, all the examples can
be processed in parallel (e.g. on a GPU) leading to faster processing. Online
learning is inherently sequential.
In practice offline learning is done in batches, called learning epochs. A sub-
set of the given examples is chosen ‘randomly’ and then processed as above.
Another subset is then chosen from the remaining unused training examples
and processed, and so on until all the examples have been processed. Thus the
learning computation is a sequence of epochs of the form ‘choose-new-subset-
then-update-parameter’ which are repeated until all the examples have been
used.
The computation of the deltas is done by using the structure of the network to
precompute the way changes in p effect the function fN p, so for each training
pair (x, g x) the difference between the desired output g x and the output of the
network fN p x can be used to compute a delta that when applied to p reduces
the error.
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The backpropagation algorithm is an efficient way of computing such parameter
changes for a machine learning method called gradient descent. Each training
example (xi, g xi) is used to calculate a delta to the parameter value p. With
online learning the changes are applied after processing each example; with
offline learning they are first computed for the current epoch and they are then
averaged and applied.

Gradient descent

Gradient descent is an iterative method for finding the minimum of a function.
The function to be minimised is called the cost function and measures the close-
ness of a desired output g x for an input x to the output of the network, i.e.
fN p x.

Suppose C is the cost function, so C y z measures the closeness of a desired
output y to the network output z. The goal is then is to learn a value p that
minimises C(g x)(fN p x) for values of x important for the application.

At the ith step of gradient descent one evaluates C(g xi)(fN pi xi) and uses the
yet-to-be-described backpropagation algorithm to determine a delta ∆pi to p so
pi+1 = pi + ∆pi.

Gradient descent is based on the fact that ϕ a decreases fastest if one changes
a in the direction of the negative gradient of the tangent of the function at a.

The next few sections focus on a single step, where the input is fixed to be
x, and explain how to compute ∆p so that ϕ(p) > ϕ(p+∆p), where ϕ p =
C(g x)(fN p x).

One-dimensional case

The tangent of a curve is the line that touches the curve at a point and ‘is
parallel’ to the curve at that point. See the red tangents to the black curve in
Figure 1 in the diagram below.

The gradient of a line is computed by taking any two distinct points on it
and dividing the change in y-coordinate between the two points divided by the
corresponding change in x-coordinate.

Consider the points (2, 0) an (4, 2) on the red tangent line to the right of the
diagram (Figure 1) above: the y coordinate changes from 0 to 2, i.e. by 2, and
the x coordinate changes from 2 to 4, i.e. also by 2. The gradient is thus 2/2 = 1
and hence so the negative gradient is −1.

Consider now the points (−3, 1) an (−1, 0) on the red tangent line to the left of
the diagram: the y coordinate changes from 0 to 1, i.e. by 1, and the x coordinate
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Figure 1: Example gradients
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changes from −1 to −3, i.e. by −2. The gradient is thus 1/ − 2 = −0.5 and
hence the negative gradient is 0.5.

This example is for a function ϕ : R → R and the direction of the tangent is
just whether its gradient is positive or negative. The diagram illustrates that
for a sufficiently small change to the argument of ϕ in the direction of the
negative gradient decreases the value of ϕ, i.e. for a sufficiently small η > 0,
ϕ(x − η×gradient-at-x) is less than ϕ(x). Thus, if dx = −η×gradient-at-x then
ϕ(x+dx) is less than ϕ(x).

The gradient at p of ϕ : R → R is given by value of the derivative of ϕ at p. The
derivative function of ϕ is denoted by Dϕ in Euler’s notation.

Other notations are: ϕ′ due to Lagrange, ϕ̇ due to Newton and dϕ
dx due to

Leibniz.

Using Euler notation, the derivative of ϕ at p is Dϕ(p), where D is a higher-order
function D : (R→R) → (R→R).

If a function is ‘sufficiently smooth’ so that it has a derivative at p, then it
is called differentiable at p. If ϕ : R → R is differentiable at p, then ϕ can
be approximated by its tangent for a sufficiently small interval around p. This
tangent is the straight line represented by the function, ϕ̂ say, defined by ϕ̂(v) =
r v + s, where r is the gradient of ϕ at p, Dϕ(p) in Euler notation, and s is the
value that makes ϕ̂(p) = ϕ(p), which is easily calculated:

ϕ̂(p) = ϕ(p) ⇔ r p + s = ϕ(p)
⇔ Dϕ(p) p + s = ϕ(p)
⇔ s = ϕ(p) − p Dϕ(p)

Thus the tangent function at p is defined by

ϕ̂(v) = Dϕ(p) v + ϕ(p) − p Dϕ(p)
= ϕ(p) + Dϕ(p) (v − p)

If the argument of ϕ̂ is changed from p to p+∆p, then the corresponding change
to ϕ̂ is easily calculated.

ϕ̂(p) − ϕ̂(p+∆p) = (r p + s) − (r (p+∆p) + s)
= r p + s − r (p+∆p) − s
= r p + s − r p − r ∆p − s
= − r ∆p
= − Dϕ(p) ∆p

This illustrates that the amount ϕ̂(p) changes when p is changed depends on
Dϕ(p), i.e. the gradient of ϕ at p.

If η > 0 and ∆p is taken to be −η × gradient-at-p i.e. ∆p = −η Dϕ(p) then

ϕ̂(p) − ϕ̂(p+∆p) = − Dϕ(p) ∆p
= − Dϕ(p)(−η Dϕ(p))
= η(Dϕ(p))2
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and thus it is guaranteed that ϕ̂(p) > ϕ̂(p+∆p), therefore adding ∆p to the
argument of ϕ̂ decreases it. If ∆p is small enough then ϕ(p+∆p) ≈ ϕ̂(p+∆p),
where the symbol “≈” means “is close to”, and hence

ϕ(p) − ϕ(p+∆p) = ϕ̂(p) − ϕ(p+∆p)
≈ ϕ̂(p) − ϕ̂(p+∆p)
= η Dϕ(p) · Dϕ(p)

Thus ∆p = −η Dϕ(p) is a plausible choice for the delta, so changing p to p+∆p,
i.e. to p−η Dϕ(p) is a plausible way to change p at each step of gradient descent.
The choice of η determines the learning behaviour: too small makes learning
slow, too large makes learning thrash and maybe even not converge.

Two-dimensional case

In practice the parameter to be learnt won’t be a single real number but a
vector of many, say k, reals (one or more for each neuron), so ϕ : Rk → R. Thus
gradient descent needs to be applied to a k-dimensional surface.
One step of gradient descent consists in computing a change ∆p to p to reduce
C(g x)(fN p x), i.e. the difference between the correct output g x from the
training set and the output fN p x from the network that’s being trained.
In the two-dimensional case k = 2 and p = (v1, v2) where v1, v2 are real numbers.
To make a step in this case one computes changes ∆v1 to v1 and ∆v2 to v2, and
then ∆p = (∆v1, ∆v2) and so p is changed to p + ∆p = (v1+∆v1, v2+∆v2),
where the “+” in “p + ∆p” is vector addition. Hopefully C(g x)(fN (p + ∆p) x)
becomes smaller than C(g x)(fN p x).
If ϕ : R2 → R is differentiable at p = (v1, v2) then for a small neighbourhood
around p it can be approximated by the tangent plane at p, which is the linear
function ϕ̂ defined by ϕ̂(v1, v2) = r1 v1 + r2 v2 + s, where the constants r1 and
r2 are the partial derivatives of ϕ that define the gradient of its tangent plane.
Using the gradient operator ∇ (also called “del”), the partial derivatives r1 and
r2 are given by (r1, r2) = ∇ϕ(p). The operator ∇ is discussed in more detail in
the section entitled The chain rule below.
The effect on the value of ϕ̂ resulting from a change in the argument can then
be calculated in the same was as before.
ϕ̂(p) − ϕ̂(p+∆p) = ϕ̂(v1, v2) − ϕ̂(v1+∆v1, v2+∆v2)

= (r1 v1 + r2 v2 + s) − (r1 (v1+∆v1) + r2 (v2+∆v2) + s)
= r1 v1 + r2 v2 + s − r1 (v1+∆v1) − r2 (v2+∆v2) − s
= r1 v1 + r2 v2 + s − r1 (v1+∆v1) − r2 (v2+∆v2) − s
= r1 v1 + r2 v2 + s − r1 v1 − r1 ∆v1 − r2 v2 − r2 ∆v2 − s
= − r1 ∆v1 − r2 ∆v2
= − (r1 ∆v1 + r2 ∆v2)
= − (r1, r2) · (∆v1, ∆v2)
= − ∇ϕ(p) · ∆p
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The symbol “·” here is the dot product of vectors. For any two vectors with the
same number of components – k below – the dot product is defined by:

(x1, x2, . . . , xm) · (y1, y2, . . . , yk) = x1 y1 + x2 y2 + · · · + xm yk

If η > 0 and ∆p is taken to be −η × gradient-vector-at-p i.e. ∆p = −η ∇ϕ(p)
then
ϕ̂(p) − ϕ̂(p+∆p) = − ∇ϕ(p) · ∆p

= − ∇ϕ(p) · (−η ∇ϕp)
= η ∇ϕ(p) · ∇ϕ(p)

Since ∇ϕ(p) · ∇ϕ(p) = (r1 + r2) · (r1 + r2) = r2
1 + r2

2, it’s guaranteed ϕ̂(p) >

ϕ̂(p+∆p), therefore adding ∆p to the argument of ϕ̂ decreases it. Just like in
the one-dimensional case, if ∆p is small enough, then ϕ(p+∆p) ≈ ϕ̂(p+∆p)
and so
ϕ(p) − ϕ(p+∆p) = ϕ̂(p) − ϕ(p+∆p)

≈ ϕ̂(p) − ϕ̂(p+∆p)
= η ∇ϕ(p) · ∇ϕ(p)

Thus ∆p = −η ∇ϕ(p), for some η > 0, is a plausible delta, so changing p to
p+∆p, i.e. to p−η ∇ϕ(p), is a plausible way to change p at each step of gradient
descent.

Note that ∆p = −η ∇ϕ(p) is an equation between pairs. If ∆p = (r1, r2) then
the equation is (∆p1, ∆p2) = (−η r1, − η r2), which means ∆p1 = −η r1 and
∆p2 = −η r2.

General case

The analysis when ϕ : Rk → R is a straightforward generalisation of the k = 2
case just considered. As before, one step of gradient descent consists in com-
puting a change ∆p to p to reduce C(g x)(fN p x), i.e. the difference between
the correct output g x from the training set and the output fN p x from the
network that’s being trained.

Replaying the k = 2 analysis for arbitrary k results in the conclusion that
∆p = −η ∇ϕ(p) is a plausible choice of a delta for machine learning. Here, the
parameter p is a k-dimensional vector of real numbers and ∆p is a k-dimensional
vector of deltas, also real numbers.

What the various notations for derivatives mean

Euler notation for derivatives is natural if one is familiar with functional pro-
gramming or the λ-calculus. Differentiation is the application of a higher-order
function D and partial derivatives are defined using λ-notation. Unfortunately,
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although this notation is logically perspicuous, it can be a bit clunky for cal-
culating derivatives of particular functions. For such concrete calculations, the
more standard Leibniz notation can work better. This is now reviewed.

Functions of one variable The Euler differentiation operator is a function
D : (R→R) → (R→R), but what does the Leibniz notation dy

dx denote?

Leibnitz notation is based on a view in which one has a number of variables,
some dependent on others, with the dependencies expressed using equations
like, for example, y = x2. Here a variable y is dependent on a variable x and to
emphasise this one sometimes writes y(x) = x2. When using Leibnitz notation
one thinks in terms of equations rather than ‘first class functions’ like λx.x2.

In Leibniz notation the derivative of y with respect to x is denoted by dy
dx .

From the equation y = x2 one can derive the equation dy
dx = 2×x by using rules

for differentiation.

In this use case, dy
dx is a variable dependent on x satisfying the derived equation.

This is similar to Newton’s notation ẏ, where the variable y depends on is taken
from the equation defining y.

The expression dy
dx is also sometimes used to denote the function D(λx.x2) =

λx.2x. In this use case one can write dy
dx (a) to mean the derivative evaluated at

point a - i.e. D(λx.x2)(a).

It would be semantically clearer to write y(x) = x2 and dy
dx (x) = 2 × x, but

this is verbose and so “(x)” is omitted and the dependency on x inferred from
context.

Sometimes dy
dx

∣∣∣
x=a

is written instead of dy
dx (a).

I find this use of dy
dx as both a variable and a function rather confusing.

Yet another Leibniz style notation is to use d
dx instead of D. One then writes

d
dx (f) or d(f)

dx to mean Df . If there is only one variable x being varied then the
dx is redundant, but the corresponding notation for partial derivatives is more
useful.

Functions of several variables The derivative dy
dx assumes y depends on

just one variable x. If y depends on more than one variable, for example y =
sin(x) + z2, where y depends on x and z, then the partial derivatives ∂y

∂x and ∂y
∂z

are the Leibniz notations for the partial derivatives with respect to y and z.

The partial derivative with respect to a variable is the ordinary derivative with
respect to the variable, but treating the other variables as constants.

If ϕ : Rk → R, then using Euler notation the partial derivatives are
D(λvi.ϕ(v1, . . . , vi, . . . , vk)) for 1 ≤ i ≤ k.
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For example, if ϕ(x, z) = sin(x) + z2 – i.e. ϕ = λ(x, z). sin(x) + z2 – then the
partial derivatives are D(λx. sin(x) + z2)) and D(λz. sin(x) + z2)).

The expression ∂(ϕ(v1,...,vi,...,vk))
∂vi

is the Leibniz notation for the ith partial deriva-
tive of the expression ϕ(v1, . . . , vi, . . . , vk).

If v is defined by the equation v = ϕ(v1, . . . , vk), then the Leibniz notation for
the ith partial derivatives is ∂v

∂vi
.

The partial derivative with respect to a variable is calculated using the ordinary
rules for differentiation, but treating the other variables as constants.

For example, if y = sin(x) + z2 then by the addition rule for differentiation:
∂y
∂x = ∂(sin(x))

∂x + ∂(z2)
∂x

= cos(x) + 0

This is so because d(sin(x))
dx = cos(x) and if z is being considered as a constant,

then z2 is also constant, so its derivative is 0.

The partial derivative with respect to z is
∂y
∂z = ∂(sin(x))

∂z + ∂(z2)
∂z

= 0 + 2 × z

because ∂(sin(x))
∂z is 0 if x is considered as a constant and ∂(z2)

∂z = d(z2)
dz = 2 × z.

The Backpropagation algorithm

A network processes an input by a sequence of ‘layers’. Here in Figure 2 is an
example from Chapter 1 of Nielsen’s book.

fL1 : R6→R6 fL2 : R6→R4 fL3 : R4→R3 fL4 : R3→R1

This network has four layers: an input layer, two hidden layers and an output
layer. The input of each layer, except for the input layer, is the output of the
preceding layer. The function computed by the whole network is the composition
of functions corresponding to each layer fL4 ◦ fL3 ◦ fL2 ◦ fL1. Here fL1 is the
function computed by the input layer, fL2 the function computed by the first
hidden layer, fL3 the function computed by the second hidden layer, and fL4
the function computed by the output layer. Their types are shown above, where
each function is below the layer it represents.

By the definition of function composition “◦”

(fL4 ◦ fL3 ◦ fL2 ◦ fL1) x = fL4(fL3(fL2(fL1 x)))

The circular nodes in the diagram represent neurons. Usually each neuron has
two parameters: a weight and a bias, both real numbers. In some treatments,
extra constant-function nodes are added to represent the biases, and then all
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Figure 2: Example neural net

nodes just have a single weight parameter. This bias representation detail isn’t
important here (it is considered in the section entitled Neuron models and cost
functions below). In the example, nodes have both weight and bias parameters,
so the function computed by a layer is parametrised on 2× the number of neu-
rons in the layer. For the example network there are 2 × 14 parameters in total.
It is the values of these that the learning algorithm learns. To explain backprop-
agation, the parameters need to be made explicit, so assume given functions fj

for each layer j such that fLj = fj(pj), where pj is the vector of parameters for
layer j. For our example:
f1 : R12 → R6 → R6

f2 : R8 → R6 → R4

f3 : R6 → R4 → R3

f4 : R2 → R3 → R1

The notation used at the beginning of this article was fN p for the function
computed by a net N(p), p being the parameters. For the example above, p =
(p1, p2, p3, p4) and fN p x = f4 p4(f3 p3(f2 p2(f1 p1 x))).

The goal of each learning step is to compute ∆p1, ∆p2, ∆p3, ∆p4 so
that if ϕ(p1, p2, p3, p4) = C(g x)(f4 p4(f3 p3(f2 p2(f1 p1 x)))) then
ϕ(p1+∆p1, p2+∆p2, p3+∆p3, p4+∆p4) is less than ϕ(p1, p2, p3, p4).

By arguments similar to those given earlier, a plausible choice of deltas is ∆p =
(∆p1, ∆p2, ∆p3, ∆p4) = −η ∇ϕ(p), where – as elaborated below – ∇ϕ(p) is the
vector of the partial derivatives of ϕ.

To see how the backpropagation algorithm calculates these backwards, it helps
to first look at a linear net.
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One neuron per layer example

Consider the linear network shown in the diagram in Figure 3 below

Figure 3: A linear net

where ai is the output from the ith layer, called the ith activation, defined by
a1 = f p1 x
a2 = f p2 (f p1 x)
a3 = f p3 (f p2 (f p1 x))
a4 = f p4 (f p3 (f p2 (f p1 x)))

The activation ai+1 can be defined in terms of ai.

a2 = f p2 a1
a3 = f p3 a2
a4 = f p4 a3

The input x and activations ai are real numbers. For simplicity, bias parameters
will be ignored for now, so the parameters pi are also real numbers and thus
f : R → R → R.

The vector equation ∆p = −η ∇ϕ(p) elaborates to

(∆p1, ∆p2, ∆p3, ∆p4) = −η ∇ϕ(p1, p2, p3, p4)

The chain rule This section starts by showing why taking the derivatives of
compositions of functions is needed for calculating deltas. The chain rule for
differentiation is used to do this and so it is then stated and explained.

The derivative operator D maps a function ϕ : R → R to the function Dϕ :
R → R such that Dϕ(p) is the derivative – i.e. gradient – of ϕ at p. Thus
D : (R→R) → (R→R).

When ϕ : Rk → R is a real-valued function of k arguments, then according to
the theory of differentiation, the gradient is given by ∇ϕ, where ∇ : (Rk →
R) → (R → R)k.

∇ϕ is a vector of functions, where each function gives the rate of change of
ϕ with respect to a single argument. These rates of change functions are the
partial derivatives of ϕ and are the derivatives when one argument is varied and
the others are held constant. The derivative when all variables are allowed to
vary is the total derivative; this is not used here.
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If 1 ≤ i ≤ k then the ith partial derivative of ϕ is D (λv.ϕ(p1, . . . , v, . . . , pk)),
where the argument being varied – the λ-bound variable – is highlighted in red.
Thus ∇ϕ = (D (λv.ϕ(v, p2, . . . , pk)), . . . , D (λv.ϕ(p1, p2, . . . , v))).

Note that ϕ : Rk → R, but λv.ϕ(p1, . . . , v, . . . , pk) : R → R and ∇ϕ : (R → R)k.

Thus if (p1, p2, . . . , pk) is a vector of k real numbers, then ∇ϕ(p1, p2, . . . , pk)
is not well-typed, because by the left association of function application,
∇ϕ(p1, p2, . . . , pk) means (∇ϕ)(p1, p2, . . . , pk). However, it is useful to adopt
the convention that ∇ϕ(p1, p2, . . . , pk) denotes the vector of the results of
applying each partial derivative to the corresponding pi – i.e. defining:
∇ϕ(p1, . . . , pi, . . . , pk) = (D (λv.ϕ(v, . . . , pi, . . . , pk)) p1,

...
D (λv.ϕ(p1, . . . , v, . . . , pk)) pi,
...

D (λv.ϕ(p1, . . . , pi, . . . , v)) pk)

This convention has already been used above when ϕ : R×R → R and it was
said that ∇ϕ(p1, p2) = (r1, r2), where r1 and r2 determine the gradient of the
tangent plane to ϕ at point (p1, p2).

If the operator ⋆ is defined to apply a tuple of functions pointwise to a tuple of
arguments by

(ϕ1, . . . , ϕk) ⋆ (p1, . . . , pk) = (ϕ1 p1, . . . , ϕk pk)

then ∇ϕ(p1, . . . , pk) is an abbreviation for ∇ϕ ⋆ (p1, . . . , pk).

To calculate each ∆pi for the four-neuron linear network example one must
calculate ∇ϕ(p1, p2, p3, p4) since (∆p1, ∆p2, ∆p3, ∆p4) = −η ∇ϕ(p1, p2, p3, p4)
and hence ∆pi is the ith partial derivative function of ϕ applied to the parameter
value pi.

Recall the definition of ϕ

ϕ(p1, p2, p3, p4) = C(g x)(f p4(f p3(f p2(f p1 x))))

Hence
∆p1 = −η D(λv.C(g x)(f p4(f p3(f p2(f v x)))) p1
∆p2 = −η D(λv.C(g x)(f p4(f p3(f v(f p1 x)))) p2
∆p3 = −η D(λv.C(g x)(f p4(f v(f p2(f p1 x)))) p3
∆p4 = −η D(λv.C(g x)(f v(f p3(f p2(f p1 x)))) p4

which can be reformulated using the function composition operator “◦” to
∆p1 = −η D(C(g x) ◦ (f p4) ◦ (f p3) ◦ (f p2) ◦ (λv.f v x)) p1
∆p2 = −η D(C(g x) ◦ (f p4) ◦ (f p3) ◦ (λv.f v(f p1 x))) p2
∆p3 = −η D(C(g x) ◦ (f p4) ◦ (λv.f v(f p2(f p1 x)))) p3
∆p4 = −η D(C(g x) ◦ (λv.f v(f p3(f p2(f p1 x))))) p4
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This shows that to calculate ∆pi one must calculate D applied to the composi-
tion of functions. This is done with the chain rule for calculating the derivatives
of compositions of functions.

The chain rule using Euler notation The chain rule states that for arbi-
trary differentiable functions θ1 : R → R and θ2 : R → R:
D(θ1 ◦ θ2) = (Dθ1 ◦ θ2) · Dθ2

Where “·” is pointwise multiplication of functions. Thus if “×” is the usual
multiplication on real numbers, then applying both sides of this equation to x
gives
D(θ1 ◦ θ2)x

= ((Dθ1 ◦ θ2) · Dθ2)x
= ((Dθ1 ◦ θ2)x)×(Dθ2 x)
= (Dθ1(θ2 x))×(Dθ2 x)
= Dθ1(θ2 x)×Dθ2 x

The example below shows the rule works in a specific case and might help build
an intuition for why it works in general. Let θ1 and θ2 be defined by
θ1(x) = xm

θ2(x) = xn

then by the rule for differentiating powers:
Dθ1(x) = mxm−1

Dθ2(x) = nxn−1

By the definition of function composition
(θ1 ◦ θ2)(x) = θ1(θ2 x) = (θ2 x)m = (xn)m = x(mn)

so by the rule for differentiating powers: D(θ1 ◦ θ2)(x) = (mn)x(mn)−1.
Also
Dθ1(θ2 x)×Dθ2(x) = m(θ2 x)m−1×nxn−1

= m(xn)m−1×nxn−1

= mxn×(m−1)×nxn−1

= mnxn×(m−1)+(n−1)

= mnxn×m−n×1+n−1

= mnx(nm)−1

so for this example D(θ1 ◦ θ2)(x) = Dθ1(θ2 x)×Dθ2(x). For the general case,
see the Wikipedia article, which has three proofs of the chain rule.
The equation D(θ1 ◦ θ2)(x) = Dθ1(θ2 x)×Dθ2(x) can be used recursively, after
left-associating multiple function compositions, for example:
D(θ1 ◦ θ2 ◦ θ3) x = D((θ1 ◦ θ2) ◦ θ3) x

= D(θ1 ◦ θ2)(θ3 x) × Dθ3 x
= Dθ1(θ2(θ3 x)) × Dθ2(θ3 x) × Dθ3 x
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The chain rule using Leibniz notation Consider now y = E1(E2), where
E2 is an expression involving x. By introducing a new variable, u say, this can
be split into two equations y = E1(u) and u = E2.
As an example consider y = sin(x2). This can be split into the two equations
y = sin(u) and u = x2.
The derivative equations are then dy

du = cos(u) and du
dx = 2x.

The chain rule in Leibitz notation is dy
dx = dy

du × du
dx .

Applying this to the example gives dy
dx = cos(u) × 2x.

As u = x2 this is dy
dx = cos(x2) × 2x.

To compare this calculation with the equivalent one using Euler notation, let
ϕ1 = λxE1 and ϕ2 = λxE2. Then D(λx.E1(E2)) = D(ϕ1 ◦ ϕ2) and so
D(λx.E1(E2)) = (Dϕ1 ◦ ϕ2) · Dϕ2 by the chain rule. The Euler notation calcu-
lation for the example is:
D(λx.E1(E2))x = ((Dϕ1 ◦ ϕ2) · Dϕ2) x

= ((Dϕ1 ◦ ϕ2) · Dϕ2) x
= (Dϕ1 ◦ ϕ2) x × Dϕ2 x
= Dϕ1(ϕ2 x) × Dϕ2 x
= D sin(x2) × D(λx.x2) x
= cos(x2) × (λx.2x) x
= cos(x2) × 2x

I think it’s illuminating – at least for someone like me whose calculus is very rusty
– to compare the calculation of the deltas for the four-neuron linear network
using both Euler and Leibniz notation. This is done in the next two sections.

Euler-style backpropagation calculation of deltas Note. Starting here,
and continuing for the rest of this article, I give a lot of detailed and sometimes
repetitive calculations. The aim is to make regularities explicit so that the tran-
sition to more compact notations where the regularities are implicit – e.g. using
vectors and matrices – is easy to explain.
First, the activations a1, a2, a3, a4 are calculated by making a forward pass
through the network.
a1 = f p1 x
a2 = f p2 a1
a3 = f p3 a2
a4 = f p4 a3

Plugging a1, a2, a3 into the equation for each the ∆pi results in:
∆p1 = −η D(C(g x) ◦ (f p4) ◦ (f p3) ◦ (f p2) ◦ (λv.f v x)) p1
∆p2 = −η D(C(g x) ◦ (f p4) ◦ (f p3) ◦ (λv.f v a1)) p2
∆p3 = −η D(C(g x) ◦ (f p4) ◦ (λv.f v a2)) p3
∆p4 = −η D(C(g x) ◦ (λv.f v a3)) p4
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Working backwards, these equation are then recursively evaluated using the
chain rule. With i counting down from 4 to 1, compute di and ∆pi as follows.

d4 = D(C(g x))a4

∆p4 = −η×D(C(g x) ◦ (λv.f v a3))p4
= −η×D(C(g x))(f p4 a3)×D(λv.f v a3)p4
= −η×D(C(g x))a4×D(λv.f v a3)p4
= −η× d4×D(λv.f v a3)p4

d3 = D(C(g x))a4×D(f p4)a3 = d4×D(f p4)a3

∆p3 = −η×D(C(g x) ◦ (f p4) ◦ (λv.f v a2))p3
= −η×D(C(g x) ◦ (f p4))(f p3 a2)×D(λv.f v a2)p3
= −η×D(C(g x) ◦ (f p4))a3×D(λv.f v a2)p3
= −η×D(C(g x))((f p4)a3)×D(f p4)a3×D(λv.f v a2)p3
= −η×D(C(g x))a4×D(f p4)a3×D(λv.f v a2)p3
= −η× d4×D(f p4)a3×D(λv.f v a2)p3
= −η× d3×D(λv.f v a2)p3

d2 = D(C(g x))a4×D(f p4)a3×D(f p3)a2 = d3×D(f p3)a2

∆p2 = −η×D(C(g x) ◦ (f p4) ◦ (f p3) ◦ (λv.f v a1))p2
= −η×D(C(g x) ◦ (f p4) ◦ (f p3))(f p2 a1)×D(λv.f v a1)p2
= −η×D(C(g x) ◦ (f p4) ◦ (f p3))a2×D(λv.f v a1)p2
= −η×D(C(g x) ◦ (f p4))((f p3)a2)×D(f p3)a2×D(λv.f v a1)p2
= −η×D(C(g x) ◦ (f p4))a3×D(f p3)a2×D(λv.f v a1)p2
= −η×D(C(g x))((f p4)a3)×D(f p4)a3×D(f p3)a2×D(λv.f v a1)p2
= −η× d2×D(λv.f v a1)p2

d1 = D(C(g x))a4×D(f p4)a3×D(f p3)a2×D(f p2)a1 = d2×D(f p2)a1

∆p1 = −η×D(C(g x) ◦ (f p4) ◦ (f p3) ◦ (f p2) ◦ (λv.f v x))p1
= −η×D((C(g x) ◦ (f p4) ◦ (f p3) ◦ (f p2)) ◦ (λv.f v x))p1
= −η×D(C(g x) ◦ (f p4) ◦ (f p3) ◦ (f p2))(f p1 x)×D(λv.f v x)p1
= −η×D((C(g x) ◦ (f p4) ◦ (f p3)) ◦ (f p2))a1×D(λv.f v x)p1
= −η×D(C(g x) ◦ (f p4) ◦ (f p3))(f p2 a1)×D(f p2)a1×D(λv.f v x)p1
= −η×D(C(g x) ◦ (f p4) ◦ (f p3))a2×D(f p2)a1×D(λv.f v x)p1
= −η×D(C(g x) ◦ (f p4))(f p3 a2)×D(f p3)a2×D(f p2)a1×D(λv.f v x)p1
= −η×D(C(g x) ◦ (f p4))a3×D(f p3)a2×D(f p2)a1×D(λv.f v x)p1
= −η×D(C(g x))(f p4 a3)×D(f p4)a3×D(f p3)a2×D(f p2)a1×D(λv.f v x)p1
= −η×D(C(g x))a4×D(f p4)a3×D(f p3)a2×D(f p2)a1×D(λv.f v x)p1
= −η× d1×D(λv.f v x)p1

Summarising the results of the calculation using Euler notation and omitting
“×”:

d4 = D(C(g x))a4 ∆p4 = −η d4D(λv.f v a3)p4
d3 = d4D(f p4)a3 ∆p3 = −η d3D(λv.f v a2)p3
d2 = d3D(f p3)a2 ∆p2 = −η d2D(λv.f v a1)p2
d1 = d2D(f p2)a1 ∆p1 = −η d1D(λv.f v x)p1
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Leibniz-style backpropagation calculation of deltas The equations for
the activations are

a1 = f p1 x
a2 = f p2 a1
a3 = f p3 a2
a4 = f p4 a3

These specify equations between variables a1, a2, a3, a4, p1, p2, p3, p4 (x is
considered a constant).

Let c be a variable representing the cost.

c = ϕ(p1, p2, p3, p4) = C(g x)(f p4(f p3(f p2(f p1 x)))) = C(g x)a4

In leibniz notation ∇ϕ(p1, p2, p3, p4) = ( ∂c
∂p1

, ∂c
∂p2

, ∂c
∂p3

, ∂c
∂p4

) and so ∆pi = −η ∂c
∂pi

.

By the chain rule:
∂c

∂p1
= ∂c

∂a4

∂a4
∂a3

∂a3
∂a2

∂a2
∂a1

∂a1
∂p1

∂c
∂p2

= ∂c
∂a4

∂a4
∂a3

∂a3
∂a2

∂a2
∂p2

∂c
∂p3

= ∂c
∂a4

∂a4
∂a3

∂a3
∂p3

∂c
∂p4

= ∂c
∂a4

∂a4
∂p4

Calculate as follows:

d4 = ∂c
∂a4

= D(C(g x))a4

∆p4 = −η ∂c
∂a4

∂a4
∂p4

= −η d4D(λv.f v a3)p4

d3 = ∂c
∂a4

∂a4
∂a3

= d4D(f p3)a3

∆p3 = −η ∂c
∂a4

∂a4
∂a3

∂a3
∂p3

= −η d3D(λv.f v a2)p3

d2 = ∂c
∂a4

∂a4
∂a3

∂a3
∂a2

= d3D(f p2)a2

∆p2 = −η ∂c
∂a4

∂a4
∂a3

∂a3
∂a2

∂a2
∂p2

= −η d2D(f a1)p2

d1 = ∂c
∂a4

∂a4
∂a3

∂a3
∂a2

∂a2
∂a1

= d2D(f p2)a1

∆p1 = −η ∂c
∂a4

∂a4
∂a3

∂a3
∂a2

∂a2
∂a1

∂a1
∂p1

= −η d1D(λv.f v x)p1

Summarising the results of the calculation using Leibniz notation:
d4 = D(C(g x)) ∆p4 = −η d4D(λv.f v a3)p4
d3 = d4D(f p3)a3 ∆p3 = −η d3D(λv.f v a2)p3
d2 = d3D(f p2)a2 ∆p2 = −η d2D(λv.f v a1)p2
d1 = d2D(f p2)a1 ∆p1 = −η d1D(λv.f v x)p1
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Pseudocode algorithm Fortunately, the calculations using Euler and Leib-
niz notations gave the same results. From these the following two-pass pseu-
docode algorithm can be used to calculate the deltas.

1. Forward pass:

a1 = f p1 x;
a2 = f p2 a1;
a3 = f p3 a2;
a4 = f p4 a3;

2. Backward pass:

d4 = D(C(g x))a4;
∆p4 = − η d4D(λv.f v a3)p4;
d3 = d4D(f p4)a3;
∆p3 = − η d3D(λv.f v a2)p3;
d2 = d3D(f p3)a2;
∆p2 = − η d2D(λv.f v a1)p2;
d1 = d2D(f p2)a1;
∆p1 = − η d1D(λv.f v x)p1;

Neuron models and cost functions

So far the cost function C which measures the error of a network output, and
the function f modelling the behaviour of neurons, have not been specified. The
next section discusses the actual functions these are.

Here in Figure 4 is an example of a typical neuron taken from Chapter 1 of
Nielsen’s book.

Figure 4: A single neuron

This example has three inputs, but neurons may have any number of inputs. A
simple model of the behaviour of this three-input neuron is given by the equation
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output = σ(w1x1 + w2x2 + w3x3 + b)

where w1, w2 and w3 are weights and b is the bias. These are real numbers
and are the parameters of the neuron that machine learning aims to learn. The
number of weights equals the number of inputs, so in the linear network example
above each neuron only had one parameter (the bias was ignored).

The function σ is a sigmoid function, i.e. has a graph with the shape shown in
Figure 5 below.

Figure 5: Sigmoid shape

There are explanations of why sigmoid functions are used in Chapter 1 of
Nielsen’s book and Patrick Winston’s online course.

The choice of a particular sigmoid function σ – called an activation function –
depends on the application. One possibility is the trigonometric tanh function;
a more common choice, at least in elementary expositions of neural networks, is
the logistic function, perhaps because it has nice mathematical properties like
a simple derivative. The logistic function is defined by:

σ(x) = 1
1+e−x

The derivative Dσ or σ′ is discussed in the section entitled Derivative of the
activation function below.

The graph of σ in Figure 6 below is taken from the Wikipedia article on the
logistic function.

I also found online the graph of tanh in Figure 7 below.

Both the logistic and tanh functions have a sigmoid shape and they are also
related by the equation tanh(x) = 2 σ(2 x) − 1. The derivative of tanh is pretty
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Figure 6: Graph of the logistic function: y = 1
1+e−x

Figure 7: Graph of the tanh function: y = tanh(x)
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simple, so I don’t really know how one chooses between σ and tanh, but Google
found a discussion on Quora on the topic.

The logistic function σ is used here, so the behaviour of the example neuron is
output = σ(w1x1 + w2x2 + w3x3 + b)

= 1
1+e−(w1x1+w2x2+w3x3+b)

= 1
1+exp(−(w1x1+w2x2+w3x3+b))

where the last line is just the one above it rewritten using the notation exp(v)
instead of ev for exponentiation.

The other uninterpreted function used above is the cost function C. This mea-
sures the closeness of a desired output g x for an input x to the output actually
produced by the network, i.e. fN p x.

Various particular cost functions are used, but the usual choice in elementary
expositions is the mean squared error (MSE) defined by C u v = 1

2 (u − v)2, so
the error for a given input x is

C(g x)(fN p x) = 1
2 (g x − fN p x)2

Note that C is commutative: C u v = C v u. However, although, for example
C 2 3 = C 3 2, the partially applied functions C 2 and C 3 are not equal.

One neuron per layer example continued

Using logistic neuron models, the behaviour each neuron in the four-neuron
linear network is given by the function f defined by

f w a = 1
1+exp(−(wa+b))

where the weight w is the only parameter and (temporarily) the bias b is not
being considered as a parameter to be learnt, but is treated as a constant.

Using mean square error to measure cost, the function to be minimised is

ϕ(w1, w2, w3, w4) = 1
2 (f w4(f w3(f w2(f w1 x))) − g x)2

For an input x, the forward pass computation of the activations ai is
a1 = f w1 x;
a2 = f w2 a1;
a3 = f w3 a2;
a4 = f w4 a3;

Expanding the definition of f :
a1 = σ(w1x + b) = 1

1+exp(−(w1x+b))
a2 = σ(w2a1 + b) = 1

1+exp(−(w2a1+b))
a3 = σ(w3a2 + b) = 1

1+exp(−(w3a2+b))
a4 = σ(w4a3 + b) = 1

1+exp(−(w4a3+b))
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In the instantiated diagram below in Figure 8 the weights are shown on the
incoming arrows and the bias inside the nodes (the logistic function σ is assumed
for the sigmoid function).

Figure 8: A linear network with the same bias for each neuron)

To execute the backward pass one must compute derivatives, specifically:
D(C(G x)) and D(λv.f v x) for the input x, D(λv.f v ai) for i = 1, 2, 3 and
D(f wi) for i = 2, 3, 4.

The particular functions whose derivatives are needed are:
λv. 1

2 (v − g x)2 (x is treated as a constant and g as a constant function)
λv. 1

1+exp(−(va+b)) (a and b are treated as constants)
λv. 1

1+exp(−(wv+b)) (w and b are treated as constants)

Note that the second and third functions above are essentially the same as
multiplication is commutative.

Derivative of the cost function The cost function is λv. 1
2 (u − v)2. The

derivative will be calculated using Leibniz notation, starting with the equation.

c = 1
2 (u − v)2

Split this into three equations using two new variables, α and β, and then
differentiate each equation using the standard rules - see table below.
Equation Derivative Differentiation rules used
c = 1

2 α dc
dα = 1

2 multiplication by constant rule, dα
dα = 1

α = β2 dα
dβ = 2β power rule

β = u − v dβ
dv = −1 subtraction rule, du

dv =0, dv
dv =1

Hence dc
dv = dc

dα × dα
dβ × dβ

dv = 1
2 × 2β × −1 = 1

2 × 2(u − v) × −1 = v − u

Thus D(λv. 1
2 (u − v)2) = λv.v − u.

Derivative of the activation function The other function whose derivative
is needed is λv.σ(wv + b) = λv. 1

1+exp(−(wv+b)) .

This is λv.σ(wv + b), where σ is the logistic function. Dσ = λv.σ(v)(1 − σ(v)).
The easy derivation of the derivative of the logistic function σ can be found here.
Using Lagrange notation Dσ is σ′.

The derivative will be calculated using Leibniz notation, starting with the equa-
tion
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a = σ(wv + b)

where a is dependent on v. Split this into two equations using a new variables
z and then differentiate each equation - see table below.

Equation Derivative Differentiation rules used
a = σ(z) da

dz = σ(z)(1−σ(z)) see discussion above
z = wv + b dz

dv = w addition, constant multiplication, dv
dv =1, db

dv =0

Hence da
dv = da

dz × dz
dv = σ(z)(1−σ(z)) × w = σ(wv + b)(1−σ(wv + b)) × w

Thus D(λv.σ(wv + b)) = λv.σ(wv + b)(1 − σ(wv + b)) × w.

Since Dσ = λv.σ(v)(1 − σ(v)), the equation above can be written more com-
pactly as D(λv.σ(wv+b)) = λv.Dσ(wv+b)×w or even more compactly by writ-
ing σ′ for Dσ and omitting the “×” symbol: D(λv.σ(wv + b)) = λv.σ′(wv + b)w.

Instantiating the pseudocode Recall the pseudocode algorithm given ear-
lier.

1. Forward pass:
a1 = f p1 x;
a2 = f p2 a1;
a3 = f p3 a2;
a4 = f p4 a3;

2. Backward pass:
d4 = D(C(g x))a4;
∆p4 = − η d4D(λv.f v a3)p4;
d3 = d4D(f p4)a3;
∆p3 = − η d3D(λv.f v a2)p3;
d2 = d3D(f p3)a2;
∆p2 = − η d2D(λv.f v a1)p2;
d1 = d2D(f p2)a1;
∆p1 = − η d1D(λv.f v x)p1;

This can be instantiated to the particular cost function C and activation function
f discussed above, namely:

C u v = 1
2 (u − v)2

f w a = σ(wa + b)

Thus from the calculation of derivatives above:

D(C u) = D(λv. 1
2 (u − v)2) = λv.v − u

D(f w) = D(λv.σ(wv + b)) = λv.σ′(wv + b)w

D(λv.f v a) = D(λv.σ(va + b)) = λv.σ′(va + b)a
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The last equation above is derived from the preceding one as av = va.

Taking the parameter pi to be weight wi, the pseudocode thus instantiates to

1. Forward pass:
a1 = σ(w1x + b);
a2 = σ(w2a1 + b);
a3 = σ(w3a2 + b);
a4 = σ(w4ab + b);

2. Backward pass:
d4 = a4 − g x;
∆w4 = − η d4σ′(w4a3 + b)a3;
d3 = d4σ′(w4a3 + b)w4;
∆w3 = − η d3σ′(w3a2 + b)a2;
d2 = d3σ′(w3a2 + b)w3;
∆w2 = − η d2σ′(w2a1 + b)a1;
d1 = d2σ′(w2a1 + b)w2;
∆w1 = − η d1σ′(w1x + b)x;

Unwinding the equations for the deltas:
d4 = a4−g x;
∆w4 = −η(a4−g x)σ′(w4a3+b)a3;
d3 = (a4−g x)σ′(w4a3+b)w4;
∆w3 = −η(a4−g x)σ′(w4a3+b)w4σ′(w3a2+b)a2;
d2 = (a4−g x)σ′(w4a3+b)w4σ′(w3a2+b)w3;
∆w2 = −η(a4−g x)σ′(w4a3+b)w3σ′(w3a2+b)w2σ′(w2a1+b)a1;
d1 = (a4−g x)σ′(w4a3+b)w4σ′(w3a2+b)w3σ′(w2a1+b)w1;
∆w1 = −η(a4−g x)σ′(w4a3+b)w4σ′(w3a2+b)w3σ′(w2a1+b)w2σ′(w1x+b)x;

Calculating bias deltas So far each activation function has the same fixed
bias. In practice each neuron has its own bias and these, like the weights, are
learnt using gradient descent. This is shown in the diagram below in Figure 9
where the weights are on the incoming arrows and the biases inside the nodes.

Figure 9: A linear network with separate biases for each neuron

The calculation of the bias deltas is similar to – in fact simpler – than the
calculation of the weight deltas.

Assume now that the activation function f has two real number parameters: a
weight w and bias b, so f : R → R → R.
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To calculate the partial derivative of the activation function with respect to the
bias let

a = f w b v = σ(wv + b)

To compute ∂a
∂b treat w and v as constants, then use the chain rule to derive da

db .

Equation Derivative Differentiation rules used
a = σ(z) da

dz = σ(z)(1−σ(z)) see discussion above
z = wv + b dz

db = 1 addition, constant, db
db =1

Hence da
db = da

dz × dz
db = σ(z)(1−σ(z)) × 1 = σ(wv + b)(1−σ(wv + b)) × 1.

Thus ∂a
∂b = σ′(wv + b). By an earlier calculation ∂a

∂v = σ′(wv + b)w.

The activations are:
a1 = σ(w1x + b1)
a2 = σ(w2a1 + b2)
a3 = σ(w3a2 + b3)
a4 = σ(w4a3 + b4)

The cost function equation is:

c = C(g x)(f w4 b4(f w3 b3(f w2 b2(f w1 b1 x)))) = C(g x)a4

The bias deltas are ∆bi = −η ∂c
∂bi

. The argument for this is similar to the
argument for the weight deltas.

By the chain rule:
∂c
∂b1

= ∂c
∂a4

∂a4
∂a3

∂a3
∂a2

∂a2
∂a1

∂a1
∂b1

∂c
∂b2

= ∂c
∂a4

∂a4
∂a3

∂a3
∂a2

∂a2
∂b2

∂c
∂b3

= ∂c
∂a4

∂a4
∂a3

∂a3
∂b3

∂c
∂b4

= ∂c
∂a4

∂a4
∂b4

Calculate as follows:

d4 = ∂c
∂a4

= a4 − g x

∆b4 = −η ∂c
∂a4

∂a4
∂b4

= −η d4σ′(w4a3 + b4)

d3 = ∂c
∂a4

∂a4
∂a3

= d4σ′(w4a3 + b4)w4

∆b3 = −η ∂c
∂a4

∂a4
∂a3

∂a3
∂b3

= −η d3σ′(w3a2 + b3)

d2 = ∂c
∂a4

∂a4
∂a3

∂a3
∂a2

= d3σ′(w3a2 + b3)w3

∆b2 = −η ∂c
∂a4

∂a4
∂a3

∂a3
∂a2

∂a2
∂b2

= −η d2σ′(w2a1 + b2)
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d1 = ∂c
∂a4

∂a4
∂a3

∂a3
∂a2

∂a2
∂a1

= d2σ′(w2a1 + b2)w2

∆b1 = −η ∂c
∂a4

∂a4
∂a3

∂a3
∂a2

∂a2
∂a1

∂a1
∂b1

= −η d1σ′(w1x + b1)

Summarising the bias deltas calculaton:
d4 = a4 − g x ∆b4 = −η d4σ′(w4a3 + b4)
d3 = d4σ′(w4a3 + b4)w4 ∆b3 = −η d3σ′(w3a2 + b3)
d2 = d3σ′(w3a2 + b3)w3 ∆b2 = −η d2σ′(w2a1 + b2)
d1 = d2σ′(w2a1 + b2)w2 ∆b1 = −η d1σ′(w1x + b1)

The weight delta calculations with separate biases for each neuron are produced
by tweaking the calculation in the previous section.

d4 = a4 − g x ∆w4 = −η d4σ′(w4a3 + b4)a3
d3 = d4σ′(w4a3 + b4)w4 ∆w3 = −η d3σ′(w3a2 + b3)a2
d2 = d3σ′(w3a2 + b3)w3 ∆w2 = −η d2σ′(w2a1 + b2)a1
d1 = d2σ′(w2a1 + b2)w2 ∆w1 = −η d1σ′(w1x + b1)x

If δi = diσ
′(wiai−1 + bi) then one can summarise everything by:

δ4 = (a4 − g x)σ′(w4a3 + b4) ∆w4 = −η δ4a3 ∆b4 = −η δ4
δ3 = δ4σ′(w3a2 + b3)w4 ∆w3 = −η δ3a2 ∆b3 = −η δ3
δ2 = δ3σ′(w2a1 + b2)w3 ∆w2 = −η δ2a1 ∆b2 = −η δ2
δ1 = δ2σ′(w1x + b1)w2 ∆w1 = −η δ1x ∆b1 = −η δ1

Two neuron per layer example

Consider now a network as shown in Figure 10 that uses the logistic σ function
and has four layers and two neurons per layer.

Figure 10: An example network with two neurons per layer

The notation from Chapter 2 of Nielsen’s book is used here. Note that super-
scripts are used to specify the layer that a variable corresponds to. Up until
now – e.g. in the one-neuron-per-layer example above – subscripts have been
used for this. The notation below uses subscripts to specify which neuron in a
layer a variable is associated with.
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• L is the number of layers; L = 4 in the example.

• yj is the desired output from the jth neuron; if the network has r inputs
and s ouputs and g : Rr → Rs is the function the network is intended to
approximate, then (y1, . . . , ys) = g(x1, . . . , xr) (r = s = 2 in the example
here).

• a0
j is the jth input, also called xj ; if l > 0 then al

j is the output, i.e. the
activation, from the jth neuron in the lth layer.

• wl
jk is the weight from the kth neuron in the (l−1)th layer to the jth

neuron in the lth layer (the reason for this ordering of subscripts – “jk”
rather than the apparently more natural “kj” – is explained in Chapter
2 of Nielsen’s book: the chosen order is to avoid a matrix transpose later
on; for more details search the web page for “quirk”).

• bl
j is the bias for the jth neuron in the lth layer.

• zl
j is the weighted input to the sigmoid function for the jth neuron in the

lth layer: zl
j = (

∑
k

wl
jkal−1

k ) + bl
j – thus al

j = σ(zl
j) = σ(

∑
k

wl
jkal−1

k + bl
j).

Note that zL
j are not the outputs of the network. I mention this to avoid

confusion, as z was used for the output back in the section entitled Gradient
descent. With the variable name conventions here, the outputs are aL

j .

For the network in the diagram in Figure 10 k ∈ {1, 2}, so al
j = σ(zl

j) =
σ(wl

j1al−1
1 + wl

j2al−1
2 + bl

j).

Cost function For more than one output, the mean square error cost function
C is
C(u1, . . . , us)(v1, . . . , vs) = 1

2 ∥(u1, . . . , us) − (v1, . . . , vs)∥2

where ∥(u1, . . . , us)∥ =
√

u2
1 + · · · + u2

s is the norm of the vector (u1, . . . , us).
The norm is also sometimes called the length, but there is potential confusion
with “length” also meaning the number of components or dimension.
Thus
C(u1, . . . , us)(v1, . . . , vs)

= 1
2 ∥(u1, . . . , us) − (v1, . . . , vs)∥2

= 1
2 ∥((u1 − v1), . . . , (us − vs))∥2

= 1
2

( √
(u1 − v1)2 + · · · + (us − vs)2

)2

= 1
2 ((v1 − u1)2 + · · · + (vs − us)2)

If the network computes function fN, which will depend on the values of all
the weights wl

jk and biases bl
j , then for a given input vector (x1, . . . , xr) =

(a0
1, . . . , a0

r), the cost to be minimised is

33

http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html


C(g(x1, . . . , xr))(fN(x1, . . . , xr))
= 1

2 ∥g(x1, . . . , xr) − fN(x1, . . . , xr)∥2

= 1
2
∥∥(y1, . . . , ys) − (aL

1 , . . . , aL
s )
∥∥2

= 1
2 ((y1 − aL

1 )2 + · · · + (ys − aL
s )2)

For the two neurons per layer example this becomes: C(g(x1, x2))(fN(x1, x2)) =
1
2 ∥g(x1, x2) − fN(x1, x2)∥2 = 1

2 ((y1−a4
1)2 + (y2−a4

2)2).

Activations The activations of the first layer are shown below both as a pair
or equations and as a single equation using vector and matrix addition and
multiplication. The function σ is interpreted as acting elementwise on vectors –
i.e. the application of σ to a vector is interpreted as the vector whose components
are the result of applying σ to each of them.

a1
1 = σ(w1

11a0
1 + w1

12a0
2 + b1

1)
a1

2 = σ(w1
21a0

1 + w1
22a0

2 + b1
2)

[
a1

1
a1

2

]
= σ

([
w1

11 w1
12

w1
21 w1

22

]
×
[
a0

1
a0

2

]
+
[
b1

1
b1

2

])
Similarly for the layer 2 activations.

a2
1 = σ(w2

11a1
1 + w2

12a1
2 + b2

1)
a2

2 = σ(w2
21a1

1 + w2
22a1

2 + b2
2)

[
a2

1
a2

2

]
= σ

([
w2

11 w2
12

w2
21 w2

22

]
×
[
a1

1
a1

2

]
+
[
b2

1
b2

2

])
These show the general pattern.

al
1 = wl

11a
(l−1)
1 + wl

12a
(l−1)
2 + bl

1
al

2 = wl
21a

(l−1)
1 + wl

22a
(l−1)
2 + bl

2

[
al

1
al

2

]
= σ

([
wl

11 wl
12

wl
21 wl

22

]
×

[
a

(l−1)
1

a
(l−1)
2

]
+
[
bl

1
bl

2

])
This can be written as a vector equation al = σ(wl × a(l−1) + bl) where:

al =
[
al

1
al

2

]
and wl =

[
wl

11 wl
12

wl
21 wl

22

]
and a(l−1) =

[
a

(l−1)
1

a
(l−1)
2

]
and bl =

[
bl

1
bl

2

]
.

Partial derivatives In the one-neuron-per-layer example, each activation is a
single real number and is entirely determined by the activation of the preceding
layer. The actual output of the network is a4 and the desired output, y say, is
g x. The error c that it is hoped to reduce by learning values of the weights and
biases is:

c = C(g x)(a4) = 1
2 (y − a4)2

Thus c depends on just one output, a4 and ∂c
∂wi

= ∂c
∂a4

∂a4
∂wi

.

To avoid confusion here, remember that in the one-neuron-per-layer net example
the layer of weights and biases is specified with a subscript, e.g. a4 is the acti-
vation from layer 4, but in the two-neuron-per-layer example these are specified
by a superscript, e.g. a4

1 is the activation from neuron 1 in layer 4.

In the two-neuron-per-layer example: c = 1
2 ((y1−a4

1)2+(y2−a4
2)2) and c depends

on two variables: a4
1 and a4

2. The contribution of changes in a weight wl
jk to

34

http://www.mathsisfun.com/algebra/matrix-introduction.html
https://www.mathsisfun.com/algebra/matrix-multiplying.html


changes in c is the combination of the changes it makes to the two outputs a4
1

and a4
2. How these contributions combine is specified by the chain rule, which

states that if a variable u depends on variables v1,. . ., vn and if each vi depends
on t, then
du
dt = du

dv1

dv1
dt + · · · + du

dvn

dvn

dt

The “d” becomes “∂” if there are other variables that are being treated as
constants.

The error c depends on both a4
1 and a4

2, which in turn depend on the weights
wl

jk and biases bl
j , hence ∂c

∂wl
jk

and ∂c
∂bl

j

. Applying the chain rule to the example
gives:

∂c
∂wl

jk

= ∂c
∂a4

1

∂a4
1

∂wl
jk

+ ∂c
∂a4

2

∂a4
2

∂wl
jk

∂c
∂bl

j

= ∂c
∂a4

1

∂a4
1

∂bl
j

+ ∂c
∂a4

2

∂a4
2

∂bl
j

∂c
∂wl

jk

= ∂c
∂a4

1

∂a4
1

∂z4
1

∂z4
1

∂wl
jk

+ ∂c
∂a4

2

∂a4
2

∂z4
2

∂z4
2

∂wl
jk

∂c
∂bl

j

= ∂c
∂a4

1

∂a4
1

∂z4
1

∂z4
1

∂bl
j

+ ∂c
∂a4

2

∂a4
2

∂z4
1

∂z4
2

∂bl
j

More generally, if there are many neurons per layer then the derivatives from
each layer are summed:

∂c
∂wl

jk

=
∑
i

∂c
∂aL

i

∂aL
i

∂wl
jk

∂c
∂bl

j

=
∑
i

∂c
∂aL

i

∂aL
i

∂bl
i

Return now to the two-neuron-per-layer example, where i = 1 or i = 2, L =
4 and the cost is c = 1

2 ((y1 − a4
1)2 + (y2 − a4

2)2) which can be split into
c = 1

2 (u+(y2−a4
2)2) and u = v2 and v = (y1−a4

1). By the chain
rule
∂c

∂a4
1

= ∂c
∂u × ∂u

∂v × ∂v
∂a4

1
= 1

2 ×2v×(0 − 1) = 1
2 ×2v×−1 = −v = −(y1 − a4

1)

and similarly ∂c
∂a4

2
= −(y2 − a4

2). To summarise (and also simplifying):

∂c
∂a4

1
= (a4

1 − y1) ∂c
∂a4

2
= (a4

2 − y2)

The derivatives of c with respect to the last layer weights and biases are:
∂c

∂w4
11

= ∂c
∂a4

1

∂a4
1

∂w4
11

+ ∂c
∂a4

2

∂a4
2

∂w4
11

∂c
∂b4

1
= ∂c

∂a4
1

∂a4
1

∂b4
1

+ ∂c
∂a4

2

∂a4
2

∂b4
1

∂c
∂w4

12
= ∂c

∂a4
1

∂a4
1

∂w4
12

+ ∂c
∂a4

2

∂a4
2

∂w4
12

∂c
∂b4

2
= ∂c

∂a4
1

∂a4
1

∂b4
2

+ ∂c
∂a4

2

∂a4
2

∂b4
2

In order to use the chain rule, it’s convenient to express the equations for the
activations al

j using the weighted inputs zl
j .

a1
1 = σ(z1

1) z1
1 = w1

11a0
1 + w1

12a0
2 + b1

1
a1

2 = σ(z1
2) z1

2 = w1
21a0

1 + w1
22a0

2 + b1
2

a2
1 = σ(z2

1) z2
1 = w2

11a1
1 + w2

12a1
2 + b2

1
a2

2 = σ(z2
2) z2

2 = w2
21a1

1 + w2
22a1

2 + b2
2

a3
1 = σ(z3

1) z3
1 = w3

11a2
1 + w3

12a2
2 + b3

1
a3

2 = σ(z3
2) z3

2 = w3
21a2

1 + w3
22a2

2 + b3
2
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a4
1 = σ(z4

1) z4
1 = w4

11a3
1 + w4

12a3
2 + b4

1
a4

2 = σ(z4
2) z4

2 = w4
21a3

1 + w4
22a3

2 + b4
2

It turns out, as nicely explained in Chapter 2 of Nielsen’s book, that things
work out especially neatly if one formulates the calculations of the weight and
bias deltas in terms of δl

j = ∂c
∂zl

j

. The calculations proceed backwards.

For the last layer of the example:

δ4
1 = ∂c

∂z4
1

= ∂c
∂a4

1

∂a4
1

∂z4
1

= (a4
1 − y1)σ′(z4

1)

δ4
2 = ∂c

∂z4
2

= ∂c
∂a4

2

∂a4
2

∂z4
2

= (a4
2 − y2)σ′(z4

2)

The derivatives of c with respect to the weights in the last layer are expressed
in terms of δ4

1 and δ4
2 below. First note that:

c = 1
2 ((y1 − σ(z4

1))2 + (y2 − σ(z4
2))2)

= 1
2 ((y1 − σ(z4

1))2 + (y2 − σ(z4
2))2)

By the chain rule
∂c

∂w4
11

= ∂c
∂z4

1

∂z4
1

∂w4
11

+ ∂c
∂z4

2

∂z4
2

∂w4
11

= δ4
1

∂z4
1

∂w4
11

+ δ4
2

∂z4
2

∂w4
11

∂c
∂w4

12
= ∂c

∂z4
1

∂z4
1

∂w4
12

+ ∂c
∂z4

2

∂z4
2

∂w4
12

= δ4
1

∂z4
1

∂w4
12

+ δ4
2

∂z4
2

∂w4
12

∂c
∂w4

21
= ∂c

∂z4
1

∂z4
1

∂w4
21

+ ∂c
∂z4

2

∂z4
2

∂w4
21

= δ4
1

∂z4
1

∂w4
21

+ δ4
2

∂z4
2

∂w4
21

∂c
∂w4

22
= ∂c

∂z4
1

∂z4
1

∂w4
22

+ ∂c
∂z4

2

∂z4
2

∂w4
22

= δ4
1

∂z4
1

∂w4
22

+ δ4
2

∂z4
2

∂w4
22

and the derivatives of the biases are:
∂c
∂b4

1
= ∂c

∂z4
1

∂z4
1

∂b4
1

+ ∂c
∂z4

2

∂z4
2

∂b4
1

= δ4
1

∂z4
1

∂b4
1

+ δ4
2

∂z4
2

∂b4
1

∂c
∂b4

2
= ∂c

∂z4
1

∂z4
1

∂b4
2

+ ∂c
∂z4

2

∂z4
2

∂b4
2

= δ4
1

∂z4
1

∂b4
2

+ δ4
2

∂z4
2

∂b4
2

By the addition and multiplication-by-a-constant rules for differentiation
∂z4

j

∂w4
jk

= a3
k

∂z4
j

∂b4
j

= 1

and if i ̸= j then:
∂z4

i

∂w4
j

k
= 0 ∂z4

i

∂b4
j

= 0
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Using these and simple arithmetic yields the following summary of the deriva-
tives of c with respect to the weights and biases of the last layer.

∂c
∂w4

11
= δ4

1a3
1

∂c
∂w4

21
= δ4

2a3
1

∂c
∂b4

1
= δ4

1

∂c
∂w4

12
= δ4

1a3
2

∂c
∂w4

22
= δ4

2a3
2

∂c
∂b4

2
= δ4

2

expanding δ4
j gives:

∂c
∂w4

11
= (a4

1 − y1)σ′(z4
1)a3

1
∂c

∂w4
21

= (a4
2 − y2)σ′(z4

2)a3
1

∂c
∂b4

1
= (a4

1 − y1)σ′(z4
1)

∂c
∂w4

12
= (a4

1 − y1)σ′(z4
1)a3

2
∂c

∂w4
22

= (a4
2 − y2)σ′(z4

2)a3
2

∂c
∂b4

2
= (a4

2 − y2)σ′(z4
2)

Now consider the derivatives with respect to the weights of the top neurons in
layer 3 of the example: ∂z3

j

∂w3
jk

= a2
k and ∂z3

j

∂b3
j

= 1, and if i ̸= j then ∂z3
i

∂w3
j

k
= 0 and

∂z3
i

∂b3
j

= 0.

Also:
δ3

1 = ∂c
∂z3

1

= ∂c
∂z4

1

∂z4
1

∂a3
1

∂a3
1

∂z3
1

+ ∂c
∂z4

2

∂z4
2

∂a3
1

∂a3
1

∂z3
1

= δ4
1w4

11σ′(z3
1) + δ4

2w4
21σ′(z3

1)
= (δ4

1w4
11 + δ4

2w4
21)σ′(z3

1)

δ3
2 = ∂c

∂z3
2

= ∂c
∂z4

1

∂z4
1

∂a3
2

∂a3
2

∂z3
2

+ ∂c
∂z4

2

∂z4
2

∂a3
2

∂a3
2

∂z3
2

= δ4
1w4

12σ(z3
2) + δ4

2w4
22σ′(z3

2)
= (δ4

1w4
12 + δ4

2w4
22)σ′(z3

2)

Now
∂c

∂w3
11

= ∂c
∂a4

1

∂a4
1

∂w3
11

+ ∂c
∂a4

2

∂a4
2

∂w3
11

= ∂c
∂a4

1

∂a4
1

∂z4
1

∂z4
1

∂w3
11

+ ∂c
∂a4

2

∂a4
2

∂z4
2

∂z4
2

∂w3
11

= δ4
1

∂z4
1

∂w3
11

+ δ4
2

∂z4
2

∂w3
11

and
∂z4

1
∂w3

11
= ∂z4

1
∂a3

1

∂a3
1

∂z3
1

∂z3
1

∂w3
11

+ ∂z4
1

∂a3
2

∂a3
2

∂z3
2

∂z3
2

∂w3
11

= w4
11×σ′(z3

1)×a2
1 + w4

12×σ′(z3
2)×0

= w4
11×σ′(z3

1)×a2
1

and
∂z4

2
∂w3

11
= ∂z4

2
∂a3

1

∂a3
1

∂z3
1

∂z3
1

∂w3
11

+ ∂z4
2

∂a3
2

∂a3
2

∂z3
2

∂z3
2

∂w3
11

= w4
21×σ′(z3

1)×a2
1 + w4

22×σ′(z3
2)×0

= w4
21×σ′(z3

1)×a2
1

Hence:
∂c

∂w3
11

= δ4
1

∂z4
1

∂w3
11

+ δ4
2

∂z4
2

∂w3
11

= δ4
1w4

11σ′(z3
1)a2

1 + δ4
2w4

21σ′(z3
1)a2

1

Now
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∂c
∂w3

12
= ∂c

∂a4
1

∂a4
1

∂w3
12

+ ∂c
∂a4

2

∂a4
2

∂w3
12

= ∂c
∂a4

1

∂a4
1

∂z4
1

∂z4
1

∂w3
12

+ ∂c
∂a4

2

∂a4
2

∂z4
2

∂z4
2

∂w3
12

= δ4
1

∂z4
1

∂w3
12

+ δ4
2

∂z4
2

∂w3
12

and
∂z4

1
∂w3

12
= ∂z4

1
∂a3

1

∂a3
1

∂z3
1

∂z3
1

∂w3
12

+ ∂z4
1

∂a3
2

∂a3
2

∂z3
2

∂z3
2

∂w3
12

= w4
11×σ′(z3

1)×a2
2 + w4

12×σ′(z3
2)×0

= w4
11×σ′(z3

1)×a2
2

∂z4
2

∂w3
12

= ∂z4
2

∂a3
1

∂a3
1

∂z3
1

∂z3
1

∂w3
12

+ ∂z4
2

∂a3
2

∂a3
2

∂z3
2

∂z3
2

∂w3
12

= w4
21×σ′(z3

1)×a2
2 + w4

22×σ′(z3
2)×0

= w4
21×σ′(z3

1)×a2
2

Hence:
∂c

∂w3
12

= δ4
1

∂z4
1

∂w3
12

+ δ4
2

∂z4
2

∂w3
12

= δ4
1w4

11σ′(z3
1)a2

2 + δ4
2w4

21σ′(z3
1)a2

2

Now the derivatives with respect to the bottom neurons in layer 3 are
∂c

∂w3
21

= ∂c
∂a4

1

∂a4
1

∂w3
21

+ ∂c
∂a4

2

∂a4
2

∂w3
21

= ∂c
∂a4

1

∂a4
1

∂z4
1

∂z4
1

∂w3
21

+ ∂c
∂a4

2

∂a4
2

∂z4
2

∂z4
2

∂w3
21

= δ4
1

∂z4
1

∂w3
21

+ δ4
2

∂z4
2

∂w3
21

and
∂z4

1
∂w3

21
= ∂z4

1
∂a3

1

∂a3
1

∂z3
1

∂z3
1

∂w3
21

+ ∂z4
1

∂a3
2

∂a3
2

∂z3
2

∂z3
2

∂w3
21

= w4
11×σ′(z3

1)×0 + w4
12×σ′(z3

2)×a2
1

= w4
12×σ′(z3

2)×a2
1

∂z4
2

∂w3
21

= ∂z4
2

∂a3
1

∂a3
1

∂z3
1

∂z3
1

∂w3
21

+ ∂z4
2

∂a3
2

∂a3
2

∂z3
2

∂z3
2

∂w3
21

= w4
21×σ′(z3

1)×0 + w4
22×σ′(z3

2)×a2
1

= w4
22×σ′(z3

2)×a2
1

Hence:
∂c

∂w3
21

= δ4
1

∂z4
1

∂w3
21

+ δ4
2

∂z4
2

∂w3
21

= δ4
1w4

12σ′(z3
2)a2

1 + δ4
2w4

22σ′(z3
2)a2

1

Now
∂c

∂w3
22

= ∂c
∂a4

1

∂a4
1

∂w3
22

+ ∂c
∂a4

2

∂a4
2

∂w3
22

= ∂c
∂a4

1

∂a4
1

∂z4
1

∂z4
1

∂w3
22

+ ∂c
∂a4

2

∂a4
2

∂z4
2

∂z4
2

∂w3
22

= δ4
1

∂z4
1

∂w3
22

+ δ4
2

∂z4
2

∂w3
22
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and
∂z4

1
∂w3

22
= ∂z4

1
∂a3

1

∂a3
1

∂z3
1

∂z3
1

∂w3
22

+ ∂z4
1

∂a3
2

∂a3
2

∂z3
2

∂z3
2

∂w3
22

= w4
11×σ′(z3

1)×0 + w4
12×σ′(z3

2)×a2
2

= w4
12×σ′(z3

2)×a2
2

∂z4
2

∂w3
22

= ∂z4
2

∂a3
1

∂a3
1

∂z3
1

∂z3
1

∂w3
22

+ ∂z4
2

∂a3
2

∂a3
2

∂z3
2

∂z3
2

∂w3
22

= w4
21×σ′(z3

1)×0 + w4
22×σ′(z3

2)×a2
2

= w4
22×σ′(z3

2)×a2
2

Hence:
∂c

∂w3
22

= ∂c
∂a4

1

∂a4
1

∂w3
22

+ ∂c
∂a4

2

∂a4
2

∂w3
22

= δ4
1w4

12σ′(z3
2)a2

2 + δ4
2w4

22σ′(z3
2)a2

2

Rearranging the equations for ∂c
∂w3

jk

derived above:

∂c
∂w3

11
= (δ4

1w4
11 + δ4

2w4
21)σ′(z3

1)a2
1

∂c
∂w3

12
= (δ4

1w4
11 + δ4

2w4
21)σ′(z3

1)a2
2

∂c
∂w3

21
= (δ4

1w4
12 + δ4

2w4
22)σ′(z3

2)a2
1

∂c
∂w3

22
= (δ4

1w4
12 + δ4

2w4
22)σ′(z3

2)a2
2

Using

δ3
1 = (δ4

1w4
11 + δ4

2w4
21)σ′(z3

1) δ3
2 = (δ4

1w4
12 + δ4

2w4
22)σ′(z3

2)

the equations for ∂c
∂w3

jk

can be shortened to:

∂c
∂w3

11
= δ3

1a2
1

∂c
∂w3

12
= δ3

1a2
2

∂c
∂w3

21
= δ3

2a2
1

∂c
∂w3

22
= δ3

2a2
2

Now calculate ∂c
∂b3

j

∂c
∂b3

j
= ∂c

∂a4
1

∂a4
1

∂b3
j

+ ∂c
∂a4

2

∂a4
2

∂b3
j

= ∂c
∂a4

1

∂a4
1

∂z4
1

∂z4
1

∂b3
j

+ ∂c
∂a4

2

∂a4
2

∂z4
2

∂z4
2

∂b3
j

= δ4
1

∂z4
1

∂b3
j

+ δ4
2

∂z4
2

∂b3
j

and
∂z4

1
∂b3

j
= ∂z4

1
∂a3

1

∂a3
1

∂z3
1

∂z3
1

∂b3
j

+ ∂z4
1

∂a3
2

∂a3
2

∂z3
2

∂z3
2

∂b3
j

= w4
11σ′(z3

1) ∂z3
1

∂b3
j

+ w4
12σ′(z3

2) ∂z3
2

∂b3
j

∂z4
2

∂b3
j

= ∂z4
2

∂a3
1

∂a3
1

∂z3
1

∂z3
1

∂b3
j

+ ∂z4
2

∂a3
2

∂a3
2

∂z3
2

∂z3
2

∂b3
j

= w4
21σ′(z3

1) ∂z3
1

∂b3
j

+ w4
22σ′(z3

2) ∂z3
2

∂b3
j

So:
∂c
∂b3

j
= δ4

1(w4
11σ′(z3

1) ∂z3
1

∂b3
j

+ w4
12σ′(z3

2) ∂z3
2

∂b3
j
) + δ4

2(w4
21σ′(z3

1) ∂z3
1

∂b3
j

+ w4
22σ′(z3

2) ∂z3
2

∂b3
j
)

Taking j = 1 and j = 2 and doing obvious simplifications:
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∂c
∂b3

1
= δ4

1(w4
11σ′(z3

1) ∂z3
1

∂b3
1

+ w4
12σ′(z3

2) ∂z3
2

∂b3
1
) + δ4

2(w4
21σ′(z3

1) ∂z3
1

∂b3
1

+ w4
22σ′(z3

2) ∂z3
2

∂b3
1
)

= δ4
1(w4

11σ′(z3
1)1 + w4

12σ′(z3
2)0) + δ4

2(w4
21σ′(z3

1)1 + w4
22σ′(z3

2)0)
= δ4

1w4
11σ′(z3

1) + δ4
2w4

21σ′(z3
1)

= (δ4
1w4

11 + δ4
2w4

21)σ′(z3
1)

= δ3
1

∂c
∂b3

2
= δ4

1(w4
11σ′(z3

1) ∂z3
1

∂b3
2

+ w4
12σ′(z3

2) ∂z3
2

∂b3
2
) + δ4

2(w4
21σ′(z3

1) ∂z3
1

∂b3
2

+ w4
22σ′(z3

2) ∂z3
2

∂b3
2
)

= δ4
1(w4

11σ′(z3
1)0 + w4

12σ′(z3
2)1) + δ4

2(w4
21σ′(z3

1)0 + w4
22σ′(z3

2)1)
= δ4

1w4
12σ′(z3

2) + δ4
2w4

22σ′(z3
2)

= (δ4
1w4

12 + δ4
2w4

22)σ′(z3
2)

= δ3
2

Summary and vectorisation The equations for δl
j , ∂c

∂wl
jk

and ∂c
∂bl

j

with l = 4
and l = 3 are derived above.

The equations for l = 2 and l = 1 are derived in a completely analogous man-
ner: just replay the calculations with smaller superscripts. The complete set of
equations are given in the table below.

δ4
1 = (a4

1 − y1)σ′(z4
1) δ4

2 = (a4
2 − y2)σ′(z4

2)
∂c

∂w4
11

= δ4
1a3

1
∂c

∂w4
21

= δ4
2a3

1
∂c
∂b4

1
= δ4

1
∂c

∂w4
12

= δ4
1a3

2
∂c

∂w4
22

= δ4
2a3

2
∂c
∂b4

2
= δ4

2

δ3
1 = (δ4

1w4
11 + δ4

2w4
21)σ′(z3

1) δ3
2 = (δ4

1w4
12 + δ4

2w4
22)σ′(z3

2)
∂c

∂w3
11

= δ3
1a2

1
∂c

∂w3
12

= δ3
1a2

2
∂c
∂b3

1
= δ3

1
∂c

∂w3
21

= δ3
2a2

1
∂c

∂w3
22

= δ3
2a2

2
∂c
∂b3

2
= δ3

2

δ2
1 = (δ3

1w3
11 + δ3

2w3
21)σ′(z2

1) δ2
2 = (δ3

1w3
12 + δ3

2w3
22)σ′(z2

2)
∂c

∂w2
11

= δ2
1a1

1
∂c

∂w2
12

= δ2
1a1

2
∂c
∂b2

1
= δ2

1
∂c

∂w2
21

= δ2
2a1

1
∂c

∂w2
22

= δ2
2a1

2
∂c
∂b2

2
= δ2

2

δ1
1 = (δ2

1w2
11 + δ2

2w2
21)σ′(z1

1) δ1
2 = (δ2

1w2
12 + δ2

2w2
22)σ′(z1

2)
∂c

∂w1
11

= δ1
1a0

1
∂c

∂w1
12

= δ1
1a0

2
∂c
∂b1

1
= δ1

1
∂c

∂w1
21

= δ1
2a0

1
∂c

∂w1
22

= δ1
2a0

2
∂c
∂b1

2
= δ1

2

Recall the vector equation al = σ(wl × a(l−1) + bl) where:

al =
[
al

1
al

2

]
and wl =

[
wl

11 wl
12

wl
21 wl

22

]
and a(l−1) =

[
a

(l−1)
1

a
(l−1)
2

]
and bl =

[
bl

1
bl

2

]
.

Let wl⊤ be the transpose of wl, zl the vector with components zl
j , δl the vector

with components δl
j and y the vector with components yj , so:

wl⊤ =
[
wl

11 wl
21

wl
12 wl

22

]
and zl =

[
zl

1
zl

2

]
and δl =

[
δl

1
δl

2

]
and y =

[
y1
y2

]
.
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If u ans v are vectors, then u ⊙ v is their elementwise product (also called the
Hadamard product) and u + v and u − v their elementwise sum and difference,
respectively.

u1
u2
...

ur

⊙


v1
v2
...

vr

 =


u1×v1
u2×v2

...
ur×vr

 and


u1
u2
...

ur

+


v1
v2
...

vr

 =


u1+v1
u2+v2

...
ur+vr

.

Recall that zl
j = (

∑
k

wl
jkal−1

k ) + bl
j so, for example:

z3
1 = (w3

11a2
1 + w3

12a2
2) + b3

1 and z3
2 = (w3

21a2
1 + w3

22a2
2) + b3

2

These two equations can be written as the single equation z3 = w3a2 + b3 using
vectors and matrices.

The equations for δ3
1 and δ3

2 are

δ3
1 = (δ4

1w4
11 + δ4

2w4
21)σ′(z3

1) and δ3
2 = (δ4

1w4
12 + δ4

2w4
22)σ′(z3

2)

which – noting that as multiplication is commutative so δl
jwl

jk = wl
jkδl

j – can
be written as[
δ3

1
δ3

2

]
=
([

w4
11 w4

21
w4

12 w4
22

]
×
[
δ4

1
δ4

2

])
⊙ σ′

([
z3

1
z3

2

])
which is the single vector equation δ3 = ((w4)⊤δ4) ⊙ σ′(z3).

The notation ∇al c denotes the vector whose components are the partial deriva-
tives ∂c

∂al
j

and so ∇aL c is the vector of the rate of changes of c with respect to
each output activation. ∇a c will abbreviate ∇aL c. For the example:

∇al c =

[
∂c

∂al
1

∂c
∂al

2

]
and ∇a c =

[
∂c

∂a4
1

∂c
∂a4

2

]
=

[
a4

1−y1

a4
2−y2

]
Armed with these notations, the table above can be used to verify the following
four equations, which are called “the equations of propagation” in Chapter 2 of
Nielsen’s book and named by him BP1, BP2, BP3 and BP4.
δL = ∇a c ⊙ σ′(zL) (BP1)

δl = ((wl+1)⊤δl+1) ⊙ σ′(zl) (BP2)

∂c
∂bl

j

= δl
j (BP3)

∂c
∂wl

jk

= al−1
k δl

j (BP4)

Vectorised pseudocode algorithms The vector equations for the activa-
tions are:
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al = σ(wl × a(l−1) + bl) where:

so, bearing in mind that a0 is the vector of the two inputs x1 and x2, the forward
pass pseudocode for the two-neuron-per-layer example is:

a1 = σ(w1a0 + b1);
a2 = σ(w2a1 + b2);
a3 = σ(w2a2 + b3);
a4 = σ(w4a3 + b4);

The pseudocode for calculating the weight and bias follows - remember that y
is the vector of desired outputs, i.e. g(x1, x2).

δ4 = (a4 − y) ⊙ σ′(z4); ∆w4
jk = −η δ4

j a3
k; ∆b4

j = −η δ4
j ;

δ3 = ((w4)⊤δ4) ⊙ σ′(z3); ∆w3
jk = −η δ3

j a2
k; ∆b3

j = −η δ3
j ;

δ2 = ((w3)⊤δ3) ⊙ σ′(z2); ∆w2
jk = −η δ2

j a1
k; ∆b2

j = −η δ2
j ;

δ1 = ((w2)⊤δ2) ⊙ σ′(z1); ∆w1
jk = −η δ1

j a0
k; ∆b1

j = −η δ1
j ;

Compare this with the scalar-calculation pseudocode for the one-neuron-per-
layer example deltas calculation (remember that for this subscripts index layers,
whereas in the two-neuron-per-layer example superscripts index layers).

δ4 = (a4 − g x)σ′(w4a3 + b4); ∆w4 = −η δ4a3; ∆b4 = −η δ4;
δ3 = δ4σ′(w3a2 + b3)w4; ∆w3 = −η δ3a2; ∆b3 = −η δ3;
δ2 = δ3σ′(w2a1 + b2)w3; ∆w2 = −η δ2a1; ∆b2 = −η δ2;
δ1 = δ2σ′(w1x + b1)w2; ∆w1 = −η δ1x; ∆b1 = −η δ1;

Generalising to many neurons per layer

Generalising from two neurons per layer to many neurons per layer is just a
matter of increasing the range of the subscripts j and k. Similarly increasing
the number of layers is just a matter of increasing the range of l. In the two-
neuron-per-layer example

zl
j = (

k=2∑
k=1

wl
jkal−1

k ) + bl
j

where j ∈ {1, 2}, l ∈ {1, 2, 3, 4}. If there are K neurons per layer and L layers,
then the equation becomes:

zl
j = (

k=K∑
k=1

wl
jkal−1

k ) + bl
j

and j ∈ {1, . . . , K}, l ∈ {1, . . . , L}.

If the equation is written in vector form, so the sum Σ is assimilated into
a matrix multiplication, then only the number-of-layers superscript remains:
zl = wlal−1 + bl and the number of neurons per layer is implicit.

The vectorised pseudocode in the general case is then as follows.
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a1 = σ(w1a0 + b1);
...

...
al = σ(wlal−1 + bl);
...

...
aL = σ(wLaL−1 + bL);

The pseudocode for calculating the weight and bias follows - remember that y
is the vector of desired outputs, i.e. g(x1, . . . , xK). The algorithm iteratively
decrements l from L down to 1:
δL = (aL − y) ⊙ σ′(wLaL−1 + bL); ∆wL

jk = −η δL
j aL−1

k ; ∆bL
j = −η δL

j ;
...

...
δl = ((wl+1)⊤δl+1) ⊙ σ′(wlal−1 + bl); ∆wl

jk = −η δl
jal−1

k ; ∆bl
j = −η δl

j;
...

...
δ1 = ((w2)⊤δ2) ⊙ σ′(w1a0 + b1); ∆w1

jk = −η δ1
j a0

k; ∆b1
j = −η δ1

j ;

So far all the layers have had the same number of neurons. At the start of the
section above entitles The Backpropagation algorithm, the example network
shown in the diagram had different numbers of neurons in each layer. There
are applications where different layers have different numbers of neurons. An
intriguing discussion of one application that uses a small hidden layer is called
“autocoding” by Winston and discussed in Lecture 12b of his online MIT AI
course beginning about 16 minutes after the start of the YouTube video. The
backpropagation algorithm for nets whose layers vary in size isn’t considered
here, but I imagine that it’s a straightforward adaption of the ideas described
above.

Concluding remarks

I wrote this with the limited goal of teaching myself how backpropagation works.
The bigger picture is presented in numerous online sources, as discussed earlier,
and there’s a peek at recent stuff from Google and its cool applications, ranging
from cucumber classification to cryptography, in Martin Abadi’s keynote talk
at ICPF 2016.

I was hoping to finish by making a few general comments on machine learning,
artificial intelligence, the singularity and so on … but right now am feeling
burned out on derivatives and matrices. Maybe I’ll add more thoughts when
I’ve recovered.
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