
2

A Proof of Correctness of the Viper
Microprocessor: The First Level

Avra Cohn

University of Cambridge
Computer Laboratory
Corn Exchange Street
Cambridge, CB2 3QG

England.

Abstract: The Viper microprocessor designed at the Royal Signals
and Radar Establishment (RSRE) is one of the first commercially
produced computers to have been developed using modern formal
methods. Viper is specified in a sequence of decreasingly abstract
levels. In this paper a mechanical proof of the equivalence of the
first two of these levels is described. The proof was generated using
a version of Robin Milner's LCF system.

1 Introduction

The Viper microprocessor designed at the Royal Signals and Radar Establish
ment (RSRE) is one of the first commercially produced computers to have been
developed using modern formal methods. Viper is specified in a sequence of de
creasingly abstract levels. In this paper a mechanical proof of the equivalence
of the first two of these levels is described. The approach used for this proof is
based on HOL, a version of Robin Milner's LCF proof generating system.

There are two reasons for verifying at successive levels of abstraction. First,
though it is ultimately a circuit that is being built, and the correctness of this
circuit is the most important concern, successive levels of description represent
successive stages in the development of the implementation, and one would
like to know if these levels are correct. It is possible for the circuit to be
correct even if a more abstract specification is incorrect, but the error is still
worth knowing about. In fact, some minor errors were discovered, during the
machine-checked proof, in the two specifications of Viper. As far as we know,
the actual implementation does not reflect these difficulties. (See Section 7 for
details.)

Second, working along a sequence of levels makes the verification of the circuit
a more tractable problem; there is a logical transformation and an introduction
of detail at each stage, and these can then be treated separately. We intend to
continue the machine-checked proof of Viper down to more circuit-like levels of
abstraction in the future.

G. Birtwistle et al. (eds.), VLSI Specification, Verification and Synthesis
© Kluwer Academic Publishers, Boston 1988

28 A Proof of Correctness of the Viper Microprocessor

This paper is intended to be self contained, but is necessarily brief on back
ground material. A description of Viper can be found in Kershaw [13]; the two
specifications can be found in Cullyer [4] and Cullyer [5]. (See also Cullyer [6].)
The machine proof is based on an informal proof outline given in [5]. A de
scription of the HOL system is given in Gordon [10]. More generally, the LCF
approach to proof is described in the successive manuals [7] and [15]. [2] is a
study by Cohn and Gordon of a similar but very much simpler machine-checked
proof (of the correctness of a counter); it is based on Cullyer and Pygott [3].

We know of three other machine-checked proofs of computers: Gordon [8]
verified a PDP-8 style machine in a precursor of HOL called LCF _LSM. This
was redone and improved in HOL by Joyce [12]. In the Boyer-Moore paradigm,
Hunt [11] has verified a PDP-11 like machine. Neither of these machines was
intended for serious use, as is Viper.

The design of Viper, the high-level specification and host machine are due to
Cullyer, Kershaw and Pygott. The only differences in the specifications as they
appear in this paper are that they have been put into HOL format, and have
been corrected for errors. The idea of viewing the host machine as a transition
graph is also due to Cullyer [5], as is the informal proof outline [5]. We have
formalised the notion of traversing the graph, made the notion of time explicit,
formulated the correctness statements, and generated a machine-checked proof.

1.1 The HOL System

1.1.1 Proof in HOL

HOL, like LCF, is a system for generating formal proofs. In HOL, a logic
in which problems can be expressed is interfaced to a programming language
called ML in which proof strategies can be encoded. The logic is conventional
higher-logic (Church, [1]). It is oriented towards hardware verification only in
that it provides types, constants and axioms for representing bit strings. New
types, constants and axioms can be introduced by the user, and organised into
hierarchies of logical theories.

The type discipline of the programming language ensures that the only way
to create theorems is by performing a proof; theorems have the ML type thm,
objects of which type can only be constructed by the application of inference
rules to other theorems or axioms. (Theorems are written with a turnstile, 1-,
in front of them.)

Formal proofs (sequences of elements each of which is either an axiom or a
theorem which follows from earlier elements of the sequence by a rule of infer
ence) are generated in HOL in the sense that for each element of the sequence
which is not an axiom, an ML procedure representing the rule of inference is
executed to produce that element. That the final element, the fact proved, is
actually a theorem is guaranteed by the type discipline of the programming lan
guage. The sequences themselves are not retained. LCF -style proof is discussed

A Proof of Correctness of the Viper Microprocessor 29

further in Sections 5.1 and 5.4.

1.1.2 The Logic

The HOL system uses the ASCII characters -, \I and 1\,·'=>, ! and \ to
represent the logical symbols ..." V, 1\, :::>, V and .A respectively.

For the purposes of this paper, a term of higher-order logic can be one of
eleven kinds.

o A variable

o A constant such as T or F (which represent the truth-values true and false
respectively)

o A function application of the form tl t2 where the term tl is called the
operator and the term t2 the operand

o An abstraction of the form \x. t where the variable x is called the bound
variable and the term t the body

o A negation of the form -t where t is a term

o A conjunction of the form td\t2 where tl and t2 are terms

o A disjunction of the form tl \It 2 where tl and t2 are terms

o An implication of the form tl==>t2 where tl and t2 are terms

o A universal quantification of the form ! x. t where the variable x is the
bound variable and the term t is the body

o A conditional of the form t=>tllt2 where t, tl and t2 are terms; this has
if-part t, then-part tl and else-part t2

o A "local declaration" of the form let X=tl in t2, where x is a variable
and tl and t2 are terms; this is provably equivalent to (\x. t2)tl (see
Section 5.1)

All terms in HOL have a type. The expression t:ty means t has type ty;
for example, the expressions T:bool and F:bool indicate that the truth-values T
and F have type bool for boolean, and 3:num indicates that 3 is a number.

If ty is a type then (ty)list (also written ty list) is the type oflists whose
components have type ty. If tYl and tY2 are types, then tYl->tn is the type of
functions whose arguments have type tYl and results of type tn. The cartesian
product operator is represented by #, so that tYl #tn is the type of pairs whose
first components have type tYl and second, tn.

The HOL system provides a number of predefined types and constants for
reasoning about hardware. The types include wordn, the type of n-bit words and
memnl_n2 for memories of n2-bit words addressed by nl-bit words. #bn-l" ·bo
(where bi is either 0 or 1) denotes an n-bit word in which bo is the least signif
icant bit.

The predefined constants used in this paper are shown below.

30 A Proof of Correctness of the Viper Microprocessor

o V: (bool)list->num converts a list of truth-values to a number

o VALn:vordn->num converts an n-bit word to a number

o BITSn:vordn->(bool)list converts an n-bit word to a list of booleans

o WORDn:num->vordn converts a number to an n-bit word

o FETCHn:memnl_n2 ->(vordnl->vordn2) looks up a word in memory

List functions include HD for taking the head of a list and CONS for constructing
lists. [tlj" 'jtn] denotes the list containing tl," ·,tn .

To make terms more readable, HOL uses certain conventions. One is that a
term tl t2 .. ·tn abbreviates (.. ·(tl t2)' . ·tn); function application associates to
the left. The product operator # associates to the right and binds more tightly
than the operator ->. For example, the function used to model Viper's ALU (see
Section 3.1) has type

vord4#vord2#vord3#Vord32#vord32#bool->vord32#bool#bool

which abbreviates

(vord4#(vord2#(vord3#(vord32#(vord32#bool»»)->(vord32#(bool#bool»

From the axioms defining the various constants we can prove Theorem 0:

1- lb. HD(BITS1(WORD1(V[b]») = b

1.2 What is Proved

At the most abstract level, Viper can be viewed as a function from a state of
the machine to a new state, where a state reflects the configuration of the mem
ory, registers and program counter. This is called the high-level or functional
specification. The functional specification contains an operational semantics of
the Viper instruction set. It carries an implicit notion of time in the concepts
of current and next state.

Each state transition at the top level is implemented by a sequence of events
at the lower level (the host or major state machine), each of which may affect
the internal state of the machine. The sequence is determined as the events are
performed, according to the internal state and the current event. The possible
sequences define a graph of events, each event pointing to one or more others,
and one designated initial. The lower level can thus be viewed as a function
from internal states and nodes in the graph to new internal states and new
nodes in the graph.

An internal state is more detailed than a high-level state; it includes the
high-level state and also the state of some internal registers. The latter are
collectively called the transient. The graph is traversed by starting at a fixed
node at a fixed time, and moving from node to node until the initial node is

A Proof of Correctness of the Viper Microprocessor 31

reached again. The host machine is modelled with an explicit notion of time in
the sequencing and accumulation of the effects. (This level of description is a
first step toward a description of the Viper hardware.)

The host and target machine time scales are different, but coincide at inter
vals. In fact, the host machine provides a specific event (at the beginning of
each sequence) during which registers may be examined. Because the notions
of time are related in this way, the proof that the two levels of description cor
respond is not logically difficult. It involves examining each possible sequence
of events at the lower level and relating its cumulative effect (the visible part
of it) to the corresponding state transition at the higher level. As it happens,
there are twenty-four such sequences, hence twenty-four cases to consider in the
proof.

To give an idea of what is being proved, and how the proof is generated
mechanically, one of the twenty-four cases is examined in some detail: the
execution of a procedure call to a literal address.

1.3 The Top Level Correctness Statement

We have formulated and proved the following statement of correctness for Viper.
All concepts are explained in detail later in the paper.

Theorem 1: The Top Level Correctness of Viper

1- HOST_HEXT_SIG(state_sig,transient_sig,node_sig) /\
AT node_sig '10000 n ==>
let d = BUKBER_OF_STEPS(state_sig n) in

BEXT_TIME(n,n+d) (AT node_sig #10000) /\
(state_sig(n+d) = HEXT(state_sig n»

The terms ending with _sig are signals: functions from time (a number) to
something else: state_sig is a function from time to states, and state_sig n
means the state at time n; similarly for transient_sig and node_sig. HOST _BEXT _SIG
is an abbreviation for:

!n. (state_sig(n+1),transient_sig(n+1»,node_sig(n+1) =
HOST_HEXT«state_sig n,transient_sig n),node_sig n)

HOST _HEXT represents the host machine. HOST _HEXT _SIG holds of a state-, transient
and node-signal if the host machine always (for every n) takes the state, tran
sient and node at the current time and returns the state, transient and node at
the next time. AT is defined by:

AT f x n = (f n = x)

It means: f at time n is x. HEXT is the high-level or functional specification.
BEXT_TIME(n1,n2) P means that n2 is the next time after n1 that the predicate

32 A Proof of Correctness of the Viper Microprocessor

P is true. NUMBER_OF _STEPS takes a state s and returns the total number of node
transitions required to return to the initial node starting in state s. The initial
node happens to be called #10000.

Therefore the correctness statement means that if:

o HOST_NEXT applied to the state, transient and node at any time gives the
state, transient and node at the next time, and

o the node at some particular time n is #10000

then

o d is the number of steps it takes to return to node #10000, and

o after d steps, the state attained by the host (HOST_NEXT) is the same as the
state specified functionally (by NEXT).

(The transient does not matter in this comparison; it is just used by HOST_NEXT
in its graph traversal.)

The correctness statement is deceptively compact. To prove it requires com
puting for each possible path through the graph the number of steps that path
comprises and the final state accumulated. Each final state must be compared
to the state specified at the higher level, under the conditions that caused that
particular path to be chosen. The proof depends on the definitions of NEXT and
HOST_NEXT, as well as on various properties of numbers.

In this paper, one such path (the execution of a literal call instruction) is
examined in detail to illustrate the nature of the proof. Two main theorems
are proved for this path; the first is discussed in Section 5.2.3, and the second
in Sections 5.3 and 5.5.

In this case the first theorem has the form:

Theorem 2: The Number of Steps for the Call Path

C(state_sig n) /\
HOST_NEXT_SIG(state_sig,transient_sig,node_sig) /\
(node_sig n = #10000) ==>
NEXT_TIME (n,n+4) (AT node_sig #10000)

where C is some property of the state which causes the literal call path through
the graph to be chosen. The theorem says: given that condition C applies to
the state at some time n, and given that the state, transient and node at any
time are computed by HOST_NEXT applied to the state, transient and node at the
previous time, and given that the node at time n is #10000, then n+4 happens
to be the next time at which the node is again #10000.

The second theorem has the form:

A Proof of Correctness of the Viper Microprocessor 33

Theorem 3: Equivalence of Host and Specification for the Call Case

C(state_sig n) /\
HOST_NEXT_SIG(state_sig,transient_sig,node_sig) /\
(node_sig n = #10000) ==>
(state_sig(n+4) = NEXT(state_sig n»

This states the correctness of Viper for the one kind of instruction. It says that
under condition C, and given that HOST_NEXT computes the successive states,
transients and nodes, and starting at node #10000 at time n, the state attained
by the host machine at time n+4 agrees with the high-level transformation of
the time-n state.

A similar pair of theorems is proved for each of the twenty-four possible paths
through the graph. To tie these together into the main theorem, it has to be
shown that at each node, the conditions for choosing the next node cover all
possibilities. Then the main theorem follows by analysis of all logical cases.

2 The Design of Viper

Viper has a 32-bit memory. Addresses are 20-bit words, but the memory is
addressed by 2I-bit words, where the most significant bit distinguishes main
from peripheral memory; peripheral memory is for input-output operations.

Instructions are interpreted in the context of a memory (ram) of 32-bit words,
a 20-bit program counter (p), three 32-bit registers (accumulator a and index
registers x and y), a I-bit register (b, to hold the results of comparisons, etc)
and a flag for stopping the machine (stop) should an anomolous situation arise.
These seven components comprise the configurations (or states) described by
the functional specification.

Instructions are 32 bit words, segmented as follows:

2 bits 2 bits 3 bits 1 bit 4 bits 20 bits
source memory destin- compare function address
register address ation flag field
field control control

field field

Each field is a bit string. The first five are represented by the variables rsf,
msf, dsf, csf and fsf, respectively.

The top twelve bits encode the register source, the memory source, the desti
nation, and the function part of an instruction. The bottom twenty bits are the
address. The source register field can hold the values 0, 1, 2 or 3. These values
respectively indicate that the source register for the operation is the a, x, or y

register, or the program counter. The memory address control field can also

34 A Proof of Correctness of the Viper Microprocessor

hold the values 0, 1,2 or 3; these indicate that the memory source is the literal
address of the instruction, the contents of the address, or the contents of the
address offset by the value in the x or y register. The destination control field
can hold the values 0, ... ,7, which indicate the destination of the operation. The
a, x and y registers are indicated by values 0, 1 and 2, respectively; the program
counter by 3; the program counter if the b-flag is set, by 4; the program counter
if the b-flag is not set, by 5; and the location given by the 20-bit address field
(in peripheral or main memory) by 6 and 7, respectively. The I-bit compare
flag indicates a compare instruction if it holds the value 1, and a non-compare
if O. The function field can hold values 0, ... ,15. A call instruction is indicated
by the value 1; a peripheral memory operation by 2; various other functions
which require a memory source by 0 and 3, ... ,11; and functions which do not
need a memory source by 12. The values 13, 14 and 15 are spare instructions
whose attempted use indicates an error.

3 The Specification in HOL
To specify the behaviour of Viper in HOL, a hierarchy of logical theories is
constructed in which the new types, constants and definitions required can be
neatly organized. All of the definitions in Sections 3.1, 3.2 and 4.1 are corrected
HOL versions of those in [4] and [5].

3.1 Basic Definitions

A high-level state (ram,p,a,x,y,b,stop) is represented in HOL as an object
with the following type:

mem21_32#vord20#vord32#Vord32#vord32#bool#bool

The following logical constants are used in [4]:

o AND:bool->(bool->bool) for the logical A.

o OR:bool->(bool->bool) for the logical V

o NOT:bool->bool for the logical...,

In this paper, we use HOL's /\ and \I for AND and OR, respectively, to avoid
having two equivalent symbols in different places; in the actual proof AND, OR
and NOT are used in the places they occur in [4], and simple substitutions are
made so that HOL's inference rules for /\, and \I and - apply. We retain NOT
in this paper, however, as HOL's - is unfortunately rather unreadable.

There are some function constants for acting on bit strings:

o PAD20T032:vord20->vord32 for extending a 20-bit word to 32 bits

o TRIK32T020:vord32->vord20 for truncating a 32-bit word to 20 bits

A Proof of Correctness of the Viper Microprocessor 35

o IlfCP32:llord20->llord32 for padding a 20-bit word, then incrementing

The first two are constrained by the axiom

Axiom 1: Trim-Pad Axiom
1- !1l. TRIM32T020(PAD20T032 ll) = 1l

The function REG for selecting a source register according to the source register
field rsf has the type

REG:llord2#llord32#llord32#llord32#llord20->llord32

and is defined by

1- REG(rsf,a,x,y,p) =
let r = VAL2 rsf in
«r=O) => a 1 (r=l) => x 1 (r=2) => y 1 PAD20T032 p)

The function IlfSTFETCH to fetch from main memory according to the program
counter has the type

IRSTFETCH:mem21_32#llord20->llord32

and is defined below. A 21-bit address is formed from p and F.

1- IlfSTFETCH(ram,p) = FETCH21 ram (VORD21(V(CONS F(BITS20 p»»

The boolean value (F in this case) distinguishes main from peripheral memory.
There are functions to extract the various fields of an instruction:

o R:llord32->vord2 to extract the source register field

o M:llord32->llord2 to extract the memory address field

o D:llord32->llord3 to extract the destination field

o c: llord32->llordl to extract the compare field

o FF:llord32->llord4 to extract the function field

o A:llord32->llord20 to extract the address.

(The name FF is used instead of F, as in [4], to avoid confusion with the truth
value F.) There are constants for recognizing certain illegal instructions:

o IlfVALID:llord32->bool for detecting invalid addresses

o ILLEGALCALL:llord3#Vordl#Vord4->bool for detecting illegal call instructions

o ILLEGALPDEST:llord3#Vordl#llord4->bool for detecting illegal uses of the pro
gram counter as a destination

o ILLEGALiRlTE: vord3#Vordl#Vord2->bool for detecting illegal write instruc
tions

36 A Proof of Correctness of the Viper Microprocessor

o SPAREFUNC:vord3#vordl#Vord4->bool for detecting attempted uses of the
spare ALU functions fields.

defined, for example, by:

1- INVALID value = NOT (value = PAD20T032(TRIK32T020 value»

1- ILLEGALCALL(dsf,csf,fsf)
(let df = VAL3 dsf in
let cf = VALl csf in
let ff = VAL4 fsf in
(cf=O) /\ «ff=l) /\ «df=O) \/ «df=l) \/ (df=2»»)

INVALID tests whether the top twelve bits of a word are actually being used;
a valid address can only use the bottom twenty bits. From the definition of
INVALID and Axiom 1, it follows that

Theorem 4: Validity of Padded Addresses

1- !v. NOT(INVALID(PAD20T032 v»

which means that a 20-bit address padded to 32 bits is always valid.
ILLEGALCALL tests whether an instruction is a call whose destination is the a,

x or y register. If so it is illegal; the program counter must be the destination
of the ALU result, so that the jump to the procedure can occur.

There is a function NOOP for recognizing instructions that are non-operations;
it has the type

NOOP:vord3#vordl#bool->bool

and is defined by

1- NOOP(dsf,csf,b)
let df = VAL3 dsf in

let cf - VALl csf in
(cf=O) /\ «(df=5) /\ b) \/ «df=4) /\ (NOT b»)

An instruction is a non-operation if it is not a comparison and if its destination
field holds the value 5 while the b flag is set, or 4 while it's not. (This allows
for conditional call and jump instructions whose conditions fail.)

Next, there is the important function that represents the behaviour of the
ALU:

ALU:vord4#vord2#vord3#vord32#vord32#bool->vord32#bool#bool

A Proof of Correctness of the Viper Microprocessor 37

ALU takes a function field, a memory address field and a destination field, a
register source, a memory source and the b register, and returns a 32-bit result
(a memory source), along with values for the b register and the stop flag. At
the moment, we are only interested in the behaviour of ALU for call functions, in
which case only the destination field and memory source matter. The computed
result is the memory value given, the b-value is the value given, and the stop
value is true only if the destination is not the program counter, or if the memory
source is invalid. (For calls, the memory source returned represents the location
of the procedure being called.) " " abbreviates parts of the definition not
relevant to call instructions.

1- ALU(fsf,msf,dsf,r,m,b) ..
let ff = VAL4 fsf in
let mf = VAL2 msf in
let df = VAL3 dsf in
let pwrite = (df=3) \/ «df=4) \/ (df=5» in
«ff=O) => ... 1
(ff=l) => (m,b,(NOT pvrite) \/ (INVALID m»
(ff=2) => ... 1
(ff=3) => •.. 1

(ff"4) -> ... 1
(ff=5) => ... 1
(ff-6) => ... 1
(ff=7) => ... 1
(ff=8) => ... 1

(ff=9) => ... 1
(ff=10) => '"
(ff=ll) => '" I (ff=12) => ... I
(ff=13) => ... 1 (ff"'14) => ... 1 •••)

The functions VALUE, BVAL and SVAL extract the respective components of the
3-tuple returned by ALU. They are defined simply by

1- VALUE(result,b,stop) .. result
1- BVAL(result,b,stop) = b
1- SVAL(result,b,stop) = stop

It is easy to unfold the definition of ALU and prove:

Theorem 5: The AL U Result for the Call Case
1- (VAL4 fsf .. 1) ==>

(ALU(fsf,msf,dsf,r,m,b) ..
m,b,
(NOT«VAL3 dsf = 3) \/ «VAL3 dsf = 4) \/ (VAL3 dsf = 5»» \/
(INVALID m»

38 A Proof of Correctness of the Viper Microprocessor

Finally, there are three more function constants:

o OFFSET:vord2#vord20#vord32#vord32->vord32

o NILM:vord3#vordl#vord4->bool

o MEMREAD:mem21_32#vord2#Vord20#vord32#vord32#bool#bool->vord32

defined below. (The definition of ADD32, which adds the contents of two 32-bit
registers, is not given here; its importance for now is only that the addition may
generate an invalid address. ADD32 returns a 32-bit result and two booleans, so
VALUE can be used to extract the result.)

1- OFFSET(msf,addr,x,y) =
let mf • VAl2 msf in
let addr32 = PAD20T032 addr in
«mf-O) -> addr32 1 (mf-l) -> addr32

(mf=2) => VAlUE(ADD32(addr32,x» 1 VAlUE(ADD32(addr32,y»)

1- NILM(dsf,csf,fsf) =
let df = VAl3 dsf in let cf = VAll csf in
let ff - VAl4 fsf in
(cf=O) /\ «NOT«df-7) \/ (df-6») /\ (ff=12»

1- MEMREAD(ram,asf,addr,x,y,io,nilm) -
let _ - VAL2 msf in
(nila -> ... I

(m-O) -> PAD20T032 addr
FETCH21 ram
(VORD2l(V(CONS io(BITS20(TRIM32T020(OFFSET(msf,addr,x,y»»»»

OFFSET returns a memory value according to the memory address control field,
an address, and the x and y registers. It either pads the address to 32 bits (if
the memory address field indicates that the address is a literal or an indirect
address) or adds the x or y register to the address (if it is an offset address).

IfILM is a predicate which is true of the parts of an instruction if they indicate
that no memory source is required to interpret the instruction. It holds of
non-comparisons with non-memory destinations whose AlU operations do not
require a memory source.

MEMREAD reads from memory; it takes a memory and a memory address con
trol field, an address, two registers, a flag to distinguish main from peripheral
memory, and a flag to indicate whether a memory source is required at all. For
instructions which do require a memory source: if the memory address control
field holds value 0, the literal address is returned (padded to 32 bits); otherwise
the contents of the address of the (possibly offset) address is fetched from the
appropriate part of memory. (For instructions which do not require a memory
source, MEMREAD returns some arbitrary value.)

A Proof of Correctness of the Viper Microprocessor 39

3.2 The Specification

The high-level specification of Viper can now be stated. It is called NEXT since
it takes a state and returns the next state. The HOL definition (with parts not
immediately relevant abbreviated as " ... ") is:

1- NEXT(raa,p,a,x,y,b,stop) -
let fetched z IHSTFETCH(ram,p) in
let nevp • TRIM32T020(IRCP32 p) in
let rsf = R fetched in
let msf - M fetched in
let dsf = D fetched in
let csf - C fetched in
let fsf = FF fetched in
let addr = A fetched in
let df - VAL3 dsf in
let cf - VALl csf in
let ff = VAL4 fsf in
let comp • (cf-l) in
let call - «cf=O) /\ (ff-l» in
let output z «cf=O) /\ (df-6» in
let input - «cf-O) /\ ROT«df=7) \/ (df=6» /\ (ff=2» in
let io = (output \/ input) in
let vriteop = «cf=O) /\ «df=7) \/ (df-6») in
let skip = ROOP(dsf,csf,b) in
let noinc = IRVALID(IRCP32 p) in
let illegaladdr = (ROT(RILM(dsf,csf,fsf») /\

«IRVALID(OFFSET(msf,addr,x,y») /\
(ROT skip» in

let illegalcl - ILLEGALCALL(dsf,csf,fsf) in
let illegalsp = SPAREFUNC(dsf,csf,fsf) in
let illegalonp = ILLEGALPDEST(dsf,csf,fsf) in
let illegalvr = ILLEGALWRITE(dsf ,csf ,maf) in
let source = REG(rsf,a,x,y,nevp) in
(stop =>
(ram,p,a,x,y,b,T)
(no inc \/ illegaladdr) \/
«illegalcl \/ illegalsp) \/ (illegalonp \/ illegalvr» =>
(ram,nevp,a,x,y,b,T) 1
(comp => •.. 1
(vriteop => •.. 1
(skip =>
(ram,nevp,a,x,y,b,F)
let m = MEMREAD(ram,msf,addr,x,y,io,RILM(dsf,csf,fsf» in
let aluout = ALU(fsf,msf,dsf,source,_,b) in

40 A Proof of Correctness of the Viper Microprocessor

(df=O) =>
(ram,nevp,VALUE aluout,x,y,BVAL aluout,SVAL aluout)
(df=!) =>
(ram,nevp,a,VALUE aluout,y,BVAL aluout,SVAL aluout) I
(df=2) =>

(ram,newp,a,x,VALUE aluout,BVAL aluout,SVAL aluout) I
(call =>

(ram,TRIK32T020(VALUE aluout),a,x,INCP32 p,BVAL aluout,
SVAL aluout) I ... »»)

NEXT first tests whether the stop flag is set, and if so, returns the original state
unchanged. Otherwise, it fetches a new instruction from memory according to
the program counter, and examines its various fields. It decodes the instruction
with a series of tests. The new instruction is either an illegal instruction, a
comparison, a write instruction, a non-operation, an ALU operation with the
a, x or y register as its destination, a call instruction, or a jump. In each of
these nine cases, a new state is determined, representing the state after the new
instruction has been executed. The new state may have the memory changed,
the program counter incremented or otherwise changed, and so on.

Illegal instructions include the five sorts mentioned in 3.1, as well as instruc
tions with illegal addresses. These latter are instructions for which the ALU

requires a memory source, the address is invalid, and the operation indicated is
not a non-operation.

Not all of the possible new states are of interest at the moment; we are really
only interested in the conditional branch for call. For a call, the memory source
for the ALU is provided by KEKREAD (and the register source is selected by REG).
The value computed by the ALU, trimmed to 20 bits, is the program counter of
the new state, and the incremented original program counter is the y register
of the new state. In this way the new state "points to" the address of the
procedure being called, and carries information for an eventual return to the
original location (plus 1) in the y register. The b register and stop flag of the
new state are also set according to the result of the ALU operation.

To arrive at the call branch of the conditional, certain conditions must ob
viously apply. For one thing, the stop flag must be false. Also, the six illegal
situations must be avoided: first, the incremented program counter must be
valid. Second, the address of the new fetched instruction must be legal. (For
the example case, the address is literal, i. e. the value of the memory address
control field is 0, so OFFSET just pads the address; by Theorem 4 a padded ad
dress is necessarily valid. Thus the address is legal.) Third, the instruction
must be a legal call; the new destination cannot be the a, x or y register. This
excludes the values 0, 1 and 2 for the new destination field. The other three
illegal conditions must also be avoided. The instruction cannot be a comparison
(the compare field does not hold 1) or a write operation (the values 6 and 7 are
also excluded for the destination field) or a non-operation. Finally, for the call

A Proof of Correctness of the Viper Microprocessor 41

branch to be selected, the function field must hold the value 1. The complete
list of conditions is as follows:

1. ROT stop
2. ROT(IRVALID(IRCP32 p»
3. VAL2(M(IRSTFETCH(ram,p») = 0
4. HOT(ILLEGALCALL(D(IHSTFETCH(ram,p»,C(IHSTFETCH(ram,p»,

FF(IRSTFETCH(ram,p»»
5. ROT(SPAREFUNC(D(IRSTFETCH(ram,p»,C(IRSTFETCH(ram,p»,

FF(IHSTFETCH(ram,p»»
6. ROT(ILLEGALPDEST(D(INSTFETCH(ram,p»,C(INSTFETCH(ram,p»,

FF(INSTFETCH(ram,p»»
7. HOT(ILLEGALWRlTE(D(IRSTFETCH(ram,p»,C(IHSTFETCH(ram,p»,

M(IHSTFETCH(ram,p»»
8. VAL1(C(INSTFETCH(ram,p») = 0
9. NOT(VAL3(D(INSTFETCH(ram,p») = 7) /\

ROT(VAL3(D(IHSTFETCH(ram,p») = 6)
10. ROT(ROOP(D(INSTFETCH(ram,p»,C(INSTFETCH(ram,p»,b»
11. VAL4(FF(INSTFETCH(ram,p») = 1

4 The Host Machine in HOL

4.1 Event Sequences

The functional specification of Viper gives the new state (after a new instruction
is executed) directly from the current state. (The new instruction is implicit in
the state because the state includes a memory and a program counter.) At the
host machine level, however, there are several stages of computation for each
state transition at the higher level. A new instruction is fetched and placed in
internal registers. The state and these registers are then transformed in stages
until the instruction is completely executed. Only then is a single transition at
the time scale of functional specification completed.

For the interpretation of instructions by the host machine, five internal reg
isters (of appropriate size) are used to hold the first five fields of an instruction;
these (as mentioned in Section 2) are called rsf, msf, dsf, csf and fsf. In ad
dition, a multi-purpose 32-bit register (t) is used to hold a (padded) address or
various other information. These six registers together comprise what is called
the transient, and are invisible to the functional specification. The type of the
transient (t,rsf,msf,dsf,csf,fsf) is:

vord32#vord2#vord2#vord3#vordl#vord4

The host machine interprets an instruction by executing a sequence of (from
three to seven) events. Each event in a sequence can affect the state and/or
the transient. The event, in the context of the state and transient, determines
whether there is a next event to be executed and if so what it is.

42 A Proof of Correctness of the Viper Microprocessor

For example, a stop is a simple event during which the stop flag is set. It is
always the last event in the sequence in which it occurs.

An instruction fetch is an event during which a new instruction is found
in memory according to the program counter, and its various fields placed
in the appropriate registers of the transient. The new address is placed in
the t register. The state is affected only insofar as the program counter is
imcremented, and possibly the stop flag set, depending on the new instruction
and new program counter. Whether there is a next event in the sequence, and
if so what it is, is determined by inspection of the new state and transient. The
next event may be one of several, including the preparation for a call, or a stop
event.

The preparation for a call causes the y register of the state to contain the
program counter, and the stop flag to be set to false since nothing new can go
wrong at this point; the transient is not affected. The next event must be an
lLU operation. (The purpose is to save the program counter so that it can be
restored after the called procedure is finished.)

Performing an operation can mean either performing a comparison or per
forming an lLU operation. Performing an lLU operation is an event during which
either the a, x, or y register or the program counter receives a value computed
by the lLU. The transient does not change. The next event is based on the
result computed by the lLU; it is either a stop event, or the end of the sequence
in which the 110 event occurred is signalled.

Thus the following sequence of events is possible:

o Fetch a new instruction

o Prepare for a call

o Perform an lLU operation

For allowing the stop flag to be noticed, a dummy event is placed at the
beginning of the sequence, during which the state and transient remain un
changed. The event following a dummy event is an instruction fetch, unless the
stop flag is set, so the sequence of events is:

o Dummy event

o Fetch a new instruction

o Prepare for a call

o Perform lLU operation

Viper is modelled at the host level as continuously running. Its infinite se
quence of events consists of repetitions of twenty-four possible finite sequences
each beginning with a dummy event and ending as soon as the end of the
sequence is indicated (i. e. a dummy event is the necessary next event).

Events are associated with numbers corresponding to nodes in the transition
graph. (The numbers look random here because not all the possible events have
been revealed.) The numbers are represented by 5-bit strings.

A Proof of Correctness of tile Viper Microprocessor 43

16. DUMMY, 8. STOP, 1. FETCH, 3. PRECALL, 4. PERFORM

In HOL, the functions DUMMY, STOP, FETCH, PRECALL and PERFORM formalize the
five events mentioned so far. The auxiliary functions FKOVE and PKOVE compute
the next event after a FETCH and PERFORM event respectively. As usual, " "
abbreviates parts of the definition not relevant to the call sequence.

1- DUMMY«ram,p,a,x,y,b,stop),t,rsf,msf,dsf,csf,fsf)
let stops tate = WORD5 8 in
let fetch - WORD5 1 in
(stop =>
«(ram,p,a,x,y,b,T) ,t,rsf,msf,dsf,csf,fsf) ,stopstate)
«(ram,p,a,x,y,b,F) ,t,rsf,msf,dsf,csf,fsf) ,fetch»

1- STOP«ram,p,a,x,y,b,stop),t,rsf,msf,dsf,csf,fsf) =
let dummy .. WORD5 16 in
«ram,p,a,x,y,b,T),t,rsf,msf,dsf,csf,fsf),dummy

1- FKOVE(msf,dsf,csf,fsf,b)
let mf .. VAL2 msf in
let df = VAL3 dsf in
let cf = VALl csf in
let ff = VAL4 fsf in
let b' - HD(BITS1 b) in
let noop = NOOP(dsf,csf,b') in
let precall .. WORD5 3 in
let stopstate = WORD5 8 in
let dummy = WORD5 16 in
let in let .. .
let •.. = ... in let .. .
«cf-l) => «mf=O) => .. .
«df=7) =>

«mf=O) => .•. 1 «mf=l) =>
«df=6) =>

in let
in let

) 1

1 ••• »

«mf=O) -> •..
(noop => dummy

«mf=O) =>

«mf=i) => .•• 1 ••• »

«(cf=O) /\ (ff=l» => precall 1 •••) 1
«mf=1) =>
«(cf=O) /\ (ff=2» => ..• 1

«(cf=O) /\ (ff=12» ->
«(cf=O) /\ (ff=12» => ...

»1
»»»)

in
in

44 A Proof of Correctness of the Viper Microprocessor

1- FETCH«ram,p,a,x,y,b,stop),t,rsf,msf,dsf,csf,fsf)
let fetched = INSTFETCH(ram,p) in
let newp = TRIM32T020(INCP32 p) in
let newr = R fetched in let newm = M fetched in
let newd = 0 fetched in let newc = C fetched in
let newf = FF fetched in let newt = PAD20T032(A fetched) in
let not inc = INVALID(INCP32 p) in
let illegalcl = ILLEGALCALL(newd,newc,newf) in
let illegalsp = SPAREFUNC(newd,newc,newf) in
let illegalonp = ILLEGALPDEST(newd,newc,newf) in
let illegalwr ILLEGALWRlTE(newd,newc,newm) in

let stopstate = WORD5 8 in let b' = WORD1(V[b]) in

(not inc \I
(illegalcl \/ (illegalsp \/ (illegalonp \/ illegalwr») =>
«(ram,newp,a,x,y,b,T) ,newt,newr,newm,newd,newc,newf) ,s topstate)
«(ram,newp,a,x,y,b,F),newt ,newr,newm,newd,newc,newf),
FMOVE(newm,newd,newc,newf,b'»)

1- PRECALL«ram,p,a,x,y,b,stop),t,rsf,msf,dsf,csf,fsf)
let perform = WORD5 4 in
«ram,p,a,x,PAD20T032 p,b,F),t,rsf,msf,dsf,csf,fsf),perform

1- PMOVE halt =
let stopstate = WORD5 8 in
let dummy = WORD5 16 in (halt => stopstate 1 dummy)

1- PERFORM«ram,p,a,x,y,b,stop),t,rsf,msf,dsf,csf,fsf)
let comp = (VALl csf = 1) in
let df = VAL3 dsf in
let source = REG(rsf,a,x,y,p) in
let dummy = WORD5 16 in
(comp => «(... , ... , ... , ... , ... , ... ,F),

••• , ••• , ••• , ••• , ••• , •••), •••) 1

let result = ALU(fsf,msf,dsf,source,t,b) in
let ans = VALUE result in let newb = BVAL result in
let halt = SVAL result in

«df=O) =>
«(ram,p,ans,x,y,newb,halt),t,rsf,msf,dsf,csf,fsf),PMOVE halt)
(df=l) =>
«(ram,p,a,ans,y,newb,halt),t,rsf,msf,dsf,csf,fsf),PMOVE halt) 1

(df=2) =>
«(ram,p,a,x,ans,newb,halt),t,rsf,msf,dsf,csf,fsf),PMOVE halt)
«(ram,TRIM32T020 ans,a,x,y,newb,halt),t,rsf,msf,dsf,csf,fsf),
PMOVE halt»)

A Proof of Correctness of the Viper Microprocessor 45

4.2 The Transition Graph

Each of the events defined in Section 4.1 determines one or more subsequent
events. Together they determine a transition graph of events, part of which is
already known:

I DUMMY oil ~ FETCH ~ PRECALL I

1
I PERFORM I

STOP I
Figure 1: The Graph of Events

Each possible path through the graph, starting and ending at the DUMMY node,
can be shown in a tree:

Figure 2: Paths through the Graph

Of the five possible sequences, we only consider in this paper the one con
taining PRECALL which does not stop. It is clear from the event definitions that
where there is a choice of next event, certain conditions must hold in order that
the desired next event be chosen. As DUMMY is executed, FETCH will be chosen if

46 A Proof of Correctness of the Viper Microprocessor

the stop flag is set to false. As FETCH is executed, STOP can be avoided if none
of the five illegal conditions apply to the new fetched instruction. Furthermore,
PRECALL will be chosen if the new value of the compare field is not 1 (i. e. is
0); the new value of the destination field neither 7 nor 6; HOOP is false of the
destination field, compare field and b flag; the new value of the memory address
control field is 0; and the new value of the function field is 1. As PERFORM is
executed, STOP is again avoided if either the current value of the compare field
is 1 or the stop value returned by performing the ALU operation is false; that
is, if HOT(SVAL(ALU(fsf,msf,dsf,REG(rsf,a,lI:,y,p),t,b») holds for the values
in the various registers when PERFORM is executed. PRECALL gives no choice of
next node.

To formalize these conditions, the predicates cl, c3 and cl7, from states to
boolean values, are introduced. (The conjunction of these was called C in Sec
tion 1.3. The twenty four paths determine in all thirty-four different conditions
of which these are three.)

The examinations of the fields that take place must take into account that in
the particular sequence DUMMY, FETCH, PRECALL, PERFORM, after FETCH is executed,
it is the fields of the new instruction that occupy the transient registers. To
make the desired choice of next node during DUMMY, we require:

c1(ram,p,a,lI:,y,b,stop) m HOT stop

To make the correct choice during FETCH:

c3(ram,p,a,lI:,y,b,stop) -
(HOT

«IHVALID(IHCP32 p» \/
«ILLEGALCALL(D(IHSTFETCH(raa,p»,C(IHSTFETCH(ram,p»,

FF(IHSTFETCH(ram,p»» \/
«SPAREFUNC(D(IHSTFETCH(raa,p»,C(IHSTFETCH(raa,p»,

FF(IHSTFETCH(ram,p»» \/
«ILLEGALPDEST(D(IHSTFETCH(ram,p»,C(IHSTFETCH(raa,p»,

FF(IHSTFETCH(ram,p»» \/
(ILLEGALVRITE(D(IHSTFETCH(ram,p»,C(IHSTFETCH(ram,p»,

M(IHSTFETCH(raa,p»»»») /\
«HOT(VAL1(C(IHSTFETCH(raa,p») = 1» /\

«ROT«VAL3(D(IHSTFETCH(raa,p») • 7) \/
(VAL3(D(IHSTFETCH(ram,p») = 6») /\

«HOT(HOOP(D(IHSTFETCH(ram,p»,C(IHSTFETCH(raa,p»,b») /\
«VAL2(M(IHSTFETCH(raa,p») = 0) /\

«VAL1(C(IHSTFETCH(raa,p») - 0) /\
(VAL4(FF(IHSTFETCH(ram,p») = 1»»»

and to make the correct choice during PERFORM:

A Proof of Correctness of the Viper Microprocessor 47

c17(raa,p,a,x,y,b,stop) =
(VAL1(C(IRSTFETCH(raa,p») - 1) \/
(ROT(SVAL

(ALU
(FF(IRSTFETCH(raa,p»,M(IRSTFETCH(ram,p»,D(IRSTFETCH(ram,p»,
REG(R(IRSTFETCH(ram,p»,a,x,PAD20T032(TRIM32T020(IRCP32 p»,

TRIM32T020(IRCP32 p»,PAD20T032 (A(IRSTFETCH(ram,p») ,b»»

Some elementary inference can be done on the combined conditions: since
the function field holds 1, the compare field holds ° and the call is not illegal,
it follows that the destination field holds neither 0, 1 nor 2. Indeed, since it
does not hold 6 or 7 either, and its value has to be 0, ... ,7, it must hold 3, 4 or
5. That is:

1- ROT(ILLEGALCALL(dsf,csf,fsf» /\
(VALl csf = 0) /\ ROT(VAL3 dsf = 7) /\ ROT(VAL3 dsf = 6) /\
(VAL4 fBf = 1)
.... >
«VAL3 dsf = 3) \/ (VAL3 dsf = 4) \/ (VAL3 dsf = 5» /\
ROT(VAL3 dsf = 0) /\ ROT(VAL3 dsf = 1) /\ ROT(VAL3 dsf = 2)

In particular it follows that:

Theorem 6: Legal Call Destinations
1- ROT(ILLEGALCALL(D(IRSTFETCH(ram,p»,C(IRSTFETCH(ram,p»,

FF(INSTFETCH(ram,p»» /\
(VAL1(C(INSTFETCH(ram,p») = 0) /\
NOT(VAL3(D(INSTFETCH(ram,p») - 7) /\
ROT(VAL3(D(INSTFETCH(ram,p») = 6) /\

(VAL4(FF(INSTFETCH(ram,p») = 1)

«VAL3(D(INSTFETCH(ram,p») = 3) \/
(VAL3(D(INSTFETCH(ram,p») = 4) \/

(VAL3(D(INSTFETCH(ram,p») - 5» /\
NOT(VAL3(D(INSTFETCH(ram,p») = 0) /\
NOT(VAL3(D(INSTFETCH(ram,p») - 1) /\
NOT(VAL3(D(IRSTFETCH(ram,p») = 2)

Because the value of the compare field is 0, it follows from c3 and c17 that:

NOT (SVAL
(ALU
(FF(INSTFETCH(ram,p»,M(INSTFETCH(ram,p»,D(IRSTFETCH(ram,p»,
REG(R(INSTFETCH(ram,p»,a,x,PAD20T032(TRIM32T020(INCP32 p»,

TRIM32T020(IRCP32 p»,PAD20T032(A(INSTFETCH(ram,p») ,b»)

48 A Proof of Correctness of the Viper Microprocessor

In fact, this last fact also follows from c3, Theorem 4, Theorem 5 and Theorem
6, so c17 is actually redundant for this path. We keep it as a reminder that
there is a choice of next node during PERFORM.

The three conditions and their corollaries give all of the conditions for choos
ing the call branch of the conditional in the specification, NEXT, in Section 3.2.
(The instruction does not have an illegal address for the same reason as before.)

5 The Equivalence Proof of Specification and
Host Machine

What has to be proved is that under the conditions cl, c3 and c17, the functional
specification agrees with the host machine on the visible state. The first thing
to establish is what that state is; the second is whether NEXT gives that state.

The events comprising the host machine (Section 4.1) only say implicitly what
the transformation is; they determine a sequence of events (a path through the
graph shown in Section 4.2) which transforms the initial state and transient in
stages. The transformation can be made more explicit by defining a "control"
function (HOSLNEXT) linking the events. (Branches which are not needed at the
moment are filled in by" ... ".) The type major abbreviates state#transient.
HOST_NEXT has type major#node->major#node. Its partial definition is:

1- HOST_NEXT (maj ,node) =
(let nodenum - VALS node in

(nodenum=O) => ... 1 (nodenum=l) => FETCH maj 1
(nodenum=2) => ... 1 (nodenum=3) .. > PRECALL maj
(nodenum=4) => PERFORM maj (nodenum=5) =>
(nodenum=6) => .. ". 1 (nodenum=7) =>
(nodenum=8) => STOP maj (nodenum=9) =>
(nodenum=10) => 1 (nodenum=l1) =>
(nodenum=12) => ... 1 (nodenum=13) =>
(nodenum=14) => ... 1 (nodenum=15) =>
(nodenum=16) => DUMMY maj (nodenum=l7) =>
(nodenum=18) => 1 (nodenum=19) =>
(nodenum=20) => 1 (nodenum=21) =>
(nodenum=22) => 1 (nodenum=23) =>
(nodenum=24) => 1 (nodenum=25) =>
(nodenum=26) => 1 (nodenum=27) =>
(nodenum=28) => 1 (nodenum=29) =>
(nodenum=30) => 1 (nodenum=31) => ...)

HOST_NEXT says how to step through the graph. It defines the host machine,
which takes a state, transient and node to a new state, transient and node. The
new state, transient and node are still not fully explicit; they are computed

A Proof of Correctness of the Viper Microprocessor 49

by functions such as PRECALL which in turn may either call other functions or
return a new major and node. In Sections 5.1 and 5.2 the transformation is
made completely explicit.

5.1 A Digression on Forward Proof in HOL

First, each transition in the graph is characterized by saying exactly how
HOST_NEXT changes a state and transient and selects a next node during that
transition. It is clearly true, for example, by the definition of HOST_NEXT and
the fact that VAL5 #00011 = 3 that

1- HOST_NEXT«(ram,p,a,x,y,b,stop) ,t,rsf,msf,dsf,csf,fsf) ,#0 0011) -
PRECALL«ram,p,a,x,y,b,stop),t,rsf,msf,dsf,csf,fsf)

and that by the definition of PRECALL

1- PRECALL«ram,p,a,x,y,b,stop),t,rsf,msf,dsf,csf,fsf) -
let perform = WORD5 4 in
«ram,p,a,x,PAD20T032 p,b,F) ,t,rsf,msf,dsf,csf,fsf) ,perform

By definition of let and the fact that WORD5 4 = #00100, it follows that

1- (let perform = WORD5 4 in

hence

«ram,p,a,x,PAD20T032 p,b,F) ,t,rsf,msf,dsf,csf,fsf) ,perform) •
«ram,p,a,x,PAD20T032 p,b,F) ,t,rsf,msf,dsf,csf,fsf) ,#00100

Theorem 7: HOST..NEXT for Node 3

1- HOST_BEXT«(ram,p,a,x,y,b,stop) ,t,rsf,msf,dsf,csf,fsf) ,#0 0011) -
«ram,p,a,x,PAD20T032 p,b,F) ,t,rsf,msf,dsf,csf,fsf) ,#00100

Simple as this reasoning appears, it represents a long chain of primitive in
ferences. To unfold HOSLBEXT the facts BOT(3=0), BOT(3=1), BOT(3=2) and 3=3,
as well as (T=>t1It2) = t1 and (F=>t1It2) '" t2 must be used to rewrite the
definition.

Furthermore, each expression of the form let z = t1 in t2 is logically equiv
alent to (\z. t2)t 1. Taking that inference step on the definition of PRE CALL gives:

1- PRECALL«ram,p,a,x,y,b,stop),t,rsf,msf,dsf,csf,fsf)
(\z.

(\perform.
«ram,p,a,x,PAD20T032 p,b,F) ,t,rsf,msf,dsf,csf,fsf) ,perform)

z)
(WORD5 4)

50 A Proof of Correctness of the Viper Microprocessor

The next inference step is beta-conversion; expressions of the form (\z.t2)t1
can be reduced to t2 [t1/z] , the result of substituting t1 for free occurrences of
z in t2 (subject to restrictions on free variable capture). Taking that step once
gives:

1- PRECALL«ram,p,a,x,y,b,stop),t,rsf,msf,dsf,csf,fsf) =
(\perform.

«ram,p,a,x,PAD20T032 p,b,F),t,rsf,msf,dsf,csf,fsf) ,perform)
(WORDS 4)

and taking it again

1- PRECALL«ram,p,a,x,y,b,stop),t,rsf,msf,dsf,csf,fsf)
«ram,p,a,x,PAD20T032 p,b,F) ,t,rsf,msf,dsf,csf,fsf) ,WORDS 4.

Transitivity is needed to complete the chain: if t1 = t2 and t2 = t3 then t1 =
t3. The fact that WORDS 4 = #00100 is also required.

This chain of primitive inferences is the proof of Theorem 7. All of the proofs
discussed in this paper are proofs in that sense: a chain of inferences justified by
axioms and inference rules ofthe logic. Obviously, it is not practical to construct
proofs of any size manually, nor would they be very interesting to look at, but
one likes to know that they exist and could be displayed. (The whole correctness
proof described in this paper comprises over a million primitive inferences, for
example.) In HOL, the general purpose programming language (ML) interfaced
to the logic allows the user to write procedures to generate the actual chains
of inferences at some level of abstraction above primitive inference steps. (The
level of abstraction depends on the cleverness of the procedure.)

A general ML procedure which proves Theorem 7 unfolds (rewrites) the def
initions of all new constants (HOST_NEXT, PRECALL, etc), unfolds the definition of
let, and does beta-conversion repeatedly until there are no lambda expressions
left. Wherever possible, the procedure uses facts about numbers, substitutes
equals for equals, use the transitivity of equality, and so on. By executing this
general procedure, the proof is generated with a single high-level command. In
fact, over 7,000 primitive inferences are performed in the course of generating
the proof using this procedure. The number is as large as that partly because
the procedure is so general; a great deal of inference is done in the course of each
unfolding (rewriting) in order to find the location of the replacement and build
up a new theorem by inference. This saves the user the trouble of specifying
exactly each replacement to be made and its location in the structure of a term,
or indeed of thinking very hard about how to prove the fact; the procedure is a
general way of unfolding any definition phrased in terms of previous definitions
and let expressions. This sort of proof by rewriting is central to HOL (and
LCF) methodology; it is at once very powerful and quite expensive. For further
discussion of this trade-off, see Section 8. For more on LCF-style rewriting see
the LCF manual (Paulson, [15]) and also Paulson [14].

A Proof of Correctness of the Viper Microprocessor 51

This is an example of forward proof: the user supplies a general ML procedure
with the definitions it will need (and the bit string #00011 in this case), and
HOL unfolds definitions and lets and does routine inferences until there is no
more to do. The user does not necessarily have to know in advance what the
final term will be; the procedure computes it, and proves it equal to the initial
term. This is one mode in which HOL may be used; the other is discussed in
Section 5.4.

5.2 Stepping through the Graph of the Host Machine

5.2.1 Node to Node

Using the same procedure, the new state, transient and node that HOST_NEXT
gives for DUMMY, STOP, FETCH and PERFORM can also be produced.

For DUMMY all choice can be limited (by properties of conditionals) to the node
component.

Theorem 8: HOST~EXT for Node 16
1- HOST_NEXT«(ram,p,a,x,y,b,stop) ,t,rsf,msf,dsf,csf,fsf) ,#10 000)

«ram,p,a,x,y,b,stop) ,t,rsf,msf,dsf,csf,fsf) ,(stop => #010001#00001)

For STOP there is no choice.

Theorem 9: HOST~EXT for Node 8
1- HOST_NEXT«(ram,p,a,x,y,b,stop) ,t,rsf,msf,dsf,csf,fsf) ,#0 1000)

«ram,p,a,x,y,b,T) ,t,rsf,msf,dsf,csf,fsf) ,#10000

For FETCH, the new stop flag is set if an illegal condition has arisen, and the next
node (if not STOP) is selected by FMOVE. The transient receives parts of the new
instruction. The choice can be limited to the stop and node components. The
procedure uses Theorem 0 as a rewrite rule at the appropriate point. (Theorem
10 is easier to read with some of the let-expressions not unfolded.)

Theorem 10: HOST ~EXT for Node 1
1- HOST_NEXT«(ram,p,a,x,y,b,stop) ,t,rsf,msf,dsf,csf,fsf) ,#0 0001)

let fetched = INSTFETCH(ram,p) in

let new_msf = M fetched in
let new_dsf = D fetched in
let new_csf = C fetched in
let new_fsf = FF fetched in
«ram,TRIM32T020(INCP32 p),a,x,y,b,

(INVALID(INCP32 p» \/
«ILLEGALCALL(new_dsf,new_csf,new_fsf» \/
«SPAREFUNC(new_dsf,new_csf,new_fsf» \/
«ILLEGALPDEST(new_dsf,new_csf,new_fsf» \/

52 A Proof of Correctness of the Viper Microprocessor

(ILLEGALVRITE(new_dsf,new_csf,new_msf»»»,
PAD20T032(A(INSTFETCH(ram,p»),R(INSTFETCH(ram,p»,new_msf,new_dsf,
new_csf,new_fsf) ,

«INVALID(INCP32 p» \/
«ILLEGALCALL(new_dsf,new_csf,new_fsf» \/

«SPAREFUNC(new_dsf,new_csf,new_fsf» \/
«ILLEGALPDEST(new_dsf,new_csf,new_fsf» \/
(ILLEGALVRITE(new_dsf,new_csf,new_msf»») =>

#01000 I
«VALl new_csf = 1) =>

«VAL2 new_msf = 0) => ... I
«VAL2 new_msf 1) => ... I ... » I

«VAL3 new_dsf = 7) =>
«VAL2 new_msf = 0) => ... I

«VAL2 new_msf - 1) => ... I ... » I
«VAL3 new_dsf = 6) =>

«VAL2 new_msf = 0) => ... I
«VAL2 new_msf = 1) => ... I ... » I

«VALl new_csf = 0) /\
«(VAL3 new_dsf = 5) /\ b) \/

«VAL3 new_dsf - 4) /\ (NOT b») => #10000 I
«VAL2 new_msf = 0) =>
«VALl new_csf = 0) /\ (VAL4 new_fsf = 1) => #00011 I ...) I
«VAL2 new_msf = 1) =>
«VALl new_csf = 0) /\ (VAL4 new_fsf = 2) => ...

«VALl new_csf = 0) /\ (VAL4 new_fsf = 12) =>
... I ... » I

«VALl new_csf = 0) /\ (VAL4 new_fsf = 12) =>
... I ... »»»»

For PERFORM, only the memory component and the transient involve no choice.

Theorem 11: HOST ...NEXT for Node 4

1- HOST_NEXT«(ram,p,a,x,y,b,stop),t,rsf,msf,dsf,csf,fsf),#00100)
«ram,

«VALl csf = 1) => '" I
«VAL3 dsf = 0) => p I

«VAL3 dsf = 1) => p I
«VAL3 dsf = 2) => p I
TRIM32T020(VALUE(ALU(fsf,msf,dsf,REG(rsf,a,x,y,p),t,b»»»),

«VALl csf = 1) => '" I
«VAL3 dsf = 0) =>
VALUE(ALU(fsf,msf,dsf,REG(rsf,a,x,y,p),t,b» I a»,

«VALl csf = 1) => ... I

A Proof of Correctness of the Viper Microprocessor 53

«VAL3 dsf = 0) => x 1
«VAL3 dsf = 1) =>
VALUE(ALU(fsf,msf,dsf,REG(rsf,a,x,y,p),t,b» 1 x»),

«VALl csf = 1) => ... 1
«VAL3 dsf = 0) => y 1

«VAL3 dsf = 1) => y 1

«VAL3 dsf = 2) =>
VALUE(ALU(fsf,msf,dsf,REG(rsf,a,x,y,p),t,b» 1 y»»,

«VALl csf = 1) =>
••• 1 BVAL(ALU(fsf,msf,dsf,REG(rsf,a,x,y,p),t,b»),

«VALl csf = 1) =>
F 1 SVAL(ALU(fsf,msf,dsf,REG(rsf,a,x,y,p),t,b»»,

t,rsf,msf,dsf,csf,fsf),
«VALl csf = 1) => ... 1
(SVAL(ALU(fsf,msf,dsf,REG(rsf,a,x,y,p),t,b» -> #01000 1 #10000»

5.2.2 Making Time Explicit

We now consider making time explicit. Times are represented as numbers.
Signals are functions from times to registers:

ram_sig:num->mem21_32
a_sig:num->vord32
y_sig:num->vord32

stop_sig:num->bool
rsf_sig:num->vord2
dsf_sig:num->vord3
fsf_sig:num->vord4

p_sig:num->vord20
x_sig:num->vord32
b_sig:num->bool
t_sig:num->vord32

msf_sig:num->vord2
csf_sig:num->vordl

ram_sig n means the value of ram at time n, and so on. A theorem of the
following form expresses the behaviour of HOST_NEXT as it steps through a node
..... ; a time unit is the time it takes for one event to happen at the host level.

1- (!n.

«ram_sig(n+l),p_sig(n+l) ,a_sig(n+l) ,x_sig(n+l) ,
y_sig(n+l) ,b_sig(n+l),stop_sig(n+l»,t_sig(n+l) ,

rsf_sig(n+l),msf_sig(n+l),dsf_sig(n+l),csf_sig(n+l),
fsf_sig(n+l»,node_sig(n+l) =

HOST_NEXT

«(ram_sig n,p_sig n,a_sig n,x_sig n,y_sig n,b_sig n,stop_sig n),
t_sig n,rsf_sig n,msf_sig n,dsf_sig n,csf_sig n,fsf_sig n),

node_sig n»
==>

(node_sig n = #)
==>

54 A Proof of Correctness of the Viper Microprocessor

«(ram_sig(n+1) K ••• n .•.) /\
(p_sig(n+1) n ..•) /\
(a_sig(n+1) ... n ...) /\
(x_sig(n+1) ... n ...) /\
(y_sig(n+1) - ... n ...) /\
(b_sig(n+1) - ..• n ...) /\
(stop_sig(n+1) = ... n ..• » /\

(t_sig(n+1) = ... n ...) /\
(rsf_sig(n+1) - ... n ..•) /\
(msf_sig(n+1) n .•.) /\
(dsf_sig(n+l) = .•. n •..) /\
(csf_sig(n+l) '" ••• n •.•) /\
(fsf_sig(n+l) = ... n ..• » /\

(node_sig(n+1) = ...)

The first antecedent could be abbreviated by use of HOST_NEXT_SIG as in Sec
tion 1.3. It gives a sequence of 14-tuples of signals such that HOST_NEXT applied
to the fourteen signals at any time gives the fourteen signals at the next time.
The second antecedent fixes a particular event (a node in the graph) at some
time n. The fourteen equations then give the value of the signals at time n+1 in
terms of the signals at time n, after that node is traversed. For PRECALL (event
3, node #00011), the theorem is:

TheoreIn 12: TiIned HOST~EXT for Node 3

1- (!n.

«ram_sig(n+l) ,p_sig(n+l) ,a_sig(n+1),x_sig(n+l) ,
y_sig(n+1) ,b_sig(n+1) ,stop_sig(n+1»,t_sig(n+l) ,

rsf_sig(n+l),msf_sig(n+l) ,dsf_sig(n+l) ,csf_sig(n+l) ,
fsf_sig(n+l»,node_sig(n+1) =

HOST_NEXT

«(ram_sig n,p_sig n,a_sig n,x_sig n,y_sig n,b_sig n,stop_sig n),
t_sig n,rsf_sig n,msf_sig n,dsf_sig n,csf_sig n,fsf_sig n),

node_sig n» ==>
(node_sig n '" #00011) ==>
«(ram_sig(n+1) - ram_sig n) /\

(p_sig(n+l) '" p_sig n) /\
(a_sig(n+1) - a_sig n) /\
(x_sig(n+l) K x_sig n) /\
(y_sig(n+1) = PAD20T032(p_sig n» /\
(b_sig(n+1) = b_sig n) /\
(stop_sig(n+1) = F» /\

(t_sig(n+1) = t_sig n) /\
(rsf_sig(n+1) = rsf_sig n) /\
(msf_sig(n+1) = msf_sig n) /\

A Proof of Correctness of the Viper Microprocessor 55

(dsf_sig(n+1) • dsf_sig n) /\
(csf_sig(n+1) = csf_sig n) /\
(fsf_sig(n+1) = fsf_sig n» /\

(node_sig(n+1) = #00100)

This gives the effect over one time unit of passing through the PRECALL node:
if the node signal at time n is #00011, then the y register at time n+1 holds the
(padded) value of the program counter at time n, and so on. The relation to
Theorem 7 is clear. To prove Theorem 12, it is assumed for some n that

1- node_sig n = #00011

The first antecedent is assumed and instantiated to that n:

Assumption 1: Sequence Assumption
1- «ram_sig(n+1),p_sig(n+1),a_sig(n+1),x_sig(n+1),

y_sig(n+1) ,b_sig(n+1) ,stop_sig(n+1»,t_sig(n+1) ,
rsf_sig(n+1) ,msf_sig(n+1) ,dsf_sig(n+1) ,csf_sig(n+1) ,
fsf_sig(n+1»,node_sig(n+1) =

HOST_NEXT
«(ram_sig n,p_sig n,a_sig n,x_sig n,y_sig n,b_sig n,stop_sig n),

t_sig n,rsf_sig n,msf_sig n,dsf_sig n,csf_sig n,fsf_sig n),
node_sig n)

Assumption 1 is unfolded using the first assumption and then by uSIng The
orem 7 (which says what HOST_NEXT does at node #00011). The result can be
expressed (using properties of tuples) as fourteen pairwise equalities with all
assumptions discharged. This gives Theorem 12.

The same ML procedure which generates the proof of Theorem 12 also gen
erates theorems for DUMMY, STOP, FETCH and PERFORM, which are not shown here
but bear a similar relation to Theorems 8-11 (respectively) as Theorem 12 does
to Theorem 7.

This is another example of a general procedure being used to generate a
forward proof (in the case of Theorem 12, a pr~of of about 2,200 inferences);
one does not have to know in advance the theorem being proved, but only its
form.

5.2.3 End Results of Sequences in the Host Machine

Finally, the result of the whole sequence DUMMY, FETCH, PRECALL, PERFORM can be
produced. To do this, it is assumed again that for some n, node_sig n = #10000
(we start at DUMMY at time n). The assumption is made which asserts that the
signals at any time are the result of HOST_NEXT at the previous time. The three
conditions (el, c3 and c17) are assumed to hold of the state signals at time
n, to ensure that the correct choices are made at each node. Then the path

56 A Proof of Correctness of the Viper Microprocessor

is traversed by referring at each node to the corresponding theorem (Theorem
12 for node 3, etc) which describes the effects over the one time unit taken to
traverse that node. That causes certain changes in the fourteen components,
which are compounded with the changes at the previous node (if there was
one). At each stage, the assumed conditions are used to help make decisions
about the node signal, i. e. the next event. For each node, a theorem follows,
describing the accumulated changes at that time.

Again, an ML procedure is written to generate the proof. It is a recursive pro
cedure which refers initially to the theorem (analagous to Theorem 12) for node
#10000, dismisses the antecedents because these have already been assumed, and
then uses the pairwise equalities to rewrite the components and select the next
node. Successive theorems are generated by examining the node, and referring
to the theorem about HOST_NEXT for that node. The process continues until the
first appearance of node #10000 as the next node. At each stage, more complex
simplifications must also be done; for example, where there is a choice of next
node, the conditional expression denoting the next node has to be reduced to
a particular bit string by using assumed facts such as the fact that c17 holds
of the state at time n. At some stages, the procedure must also use lemmas;
for example, in the final stage of the literal call path, Theorem 6 is required to
avoid choices involving a destination of 0, 1 or 2. Under the assumptions

1. !n.
«ram_sig(n+1),p_sig(n+1),a_sig(n+1),x_sig(n+1),

y_sig(n+1),b_sig(n+1),stop_sig(n+1»,t_sig(n+1),
rsf_sig(n+l),msf_sig(n+1),dsf_sig(n+1),csf_sig(n+1),
fsf_sig(n+l»,node_sig(n+l) =

HOST_NEXT
«(ram_sig n,p_sig n,a_sig n,x_sig n,y_sig n,b_sig n,stop_sig n),

t_sig n,rsf_sig n,msf_sig n,dsf_sig n,csf_sig n,fsf_sig n),
node_sig n)

2. node_sig n = #10000
3. c1(ram_sig n,p_sig n,a_sig n,x_sig n,y_sig n,b_sig n,stop_sig n)
4. c3(ram_sig n,p_sig n,a_sig n,x_sig n,y_sig n,b_sig n,stop_sig n)
5. c17(ram_sig n,p_sig n,a_sig n,x_sig n,y_sig n,b_sig n,stop_sig n)

four theorems are proved. These, conjoined, are called Theorem 13.
At time n+1, DUMMY has been executed without having to stop.

1- ««ram_sig(n+l) = ram_sig n) /\
(p_sig(n+l) = p_sig n) /\
(a_sig(n+l) = a_sig n) /\
(x_sig(n+l) = x_sig n) /\
(y_sig(n+l) = y_sig n) /\
(b_sig(n+l) = b_sig n) /\
(stop_sig(n+l) = F» /\

(t_sig(n+l) = t_sig n) /\
(rsf_sig(n+l) = rsf_sig n) /\

A Proof of Correctness of the Viper Microprocessor 57

(msf_sig(n+l) = msf_sig n) /\
(dsf_sig(n+l) = dsf_sig n) /\
(csf_sig(n+l) = csf_sig n) /\
(fsf_sig(n+l) = fSf_sig n» /\

(node_sig(n+1) = #00001»

At time n+2 FETCH has been executed, so the program counter is incremented,
the transient fields contains the fields of the new instruction, and the t register
holds the new address.

1- ««r~sig(n+2) = ram_sig n) /\
(p_sig(n+2) = TRIK32T020(INCP32(p_sig n») /\
(a_sig(n+2) = a_sig n) /\
(x_sig(n+2) = x_sig n) /\
(y_sig(n+2) = y_sig n) /\
(b_sig(n+2) = b_sig n) /\
(stop_sig(n+2) = F» /\

(t_sig(n+2) = PAD20T032(A(INSTFETCH(ram_sig n,p_sig n»» /\
(rsf_sig(n+2) = R(INSTFETCH(ram_sig n,p_sig n») /\
(msf_sig(n+2) = K(INSTFETCH(ram_sig n,p_sig n») /\
(dsf_sig(n+2) = D(INSTFETCH(ram_sig n,p_sig n») /\
(csf_sig(n+2) = C(INSTFETCH(ram_sig n,p_sig n») /\
(fsf_sig(n+2) = FF(INSTFETCH(ram_sig n,p_sig n»» /\

(node_sig(n+2) = #00011»

At time n+3 PRECALL has been executed, so the y register holds the last value
of the program counter.

1- ««ram_sig(n+3) = ram_sig n) /\
(p_sig(n+3) = TRIK32T020(INCP32(p_sig n») /\
(a_sig(n+3) - a_sig n) /\
(x_sig(n+3) = x_sig n) /\
(y_sig(n+3) = INCP32(p_sig n» /\
(b_sig(n+3) = b_sig n) /\
(stop_sig(n+3) = F» /\

(t_sig(n+3) =
PAD20T032(A(INSTFETCH(ram_sig n,p_sig n»» /\

(rsf_sig(n+3) = R(INSTFETCH(ram_sig n,p_sig n») /\
(msf_sig(n+3) = K(INSTFETCH(ram_sig n,p_sig n») /\
(dsf_sig(n+3) = D(INSTFETCH(ram_sig n,p_sig n») /\
(csf_sig(n+3) = C(INSTFETCH(ram_sig n,p_sig n») /\
(fsf_sig(n+3) = FF(INSTFETCH(ram_sig n,p_sig n»» /\

(node_sig(n+3) = #00100»

At time n+4 PERFORM has been executed. By the definition of PERFORM, the
program counter now holds the result (the first value) computed by the ALU if

58 A Proof of Correctness of the Viper Microprocessor

the compare field of the new instruction does not hold 1 (which it doesn't) and
if the destination field of the new instruction is not 0, 1 or 2 (which it is not).
The b flag holds the b value (the second value) computed by the ALU, and the
stop flag the stop value (the third). Based on Theorem 11, the memory source
supplied to the ALU comes from the t register, which at time n+3 on this path
held the (padded) new address. The other arguments are likewise dictated by
Theorem 11 and the state and transient at time n+3. The whole ALU expression
IS:

ALU
(FF(INSTFETCH(raa_sig n,p_sig n»,
K(INSTFETCH(raa_sig n,p_sig n»,
D(INSTFETCH(raa_sig n,p_sig n»,
REG
(R(INSTFETCH(raa_sig n,p_sig n»,a_sig n,x_sig n,
PAD20T032(TRIK32T020(INCP32(p_sig n»),
TRIK32T020(INCP32(p_sig n»),

PAD20T032(A(INSTFETCH(raa_sig n,p_sig n»),b_sig n)

For convenience this is abbreviated by a new constant, ALU_ABBR6 (one of eight
needed for the twenty-four cases). For any raa, p, a, x, y and b:

1- ALU_ABBR6(raa,p,a,x,y,b) =
ALU
(FF(INSTFETCH(raa,p»,K(INSTFETCH(raa,p»,D(INSTFETCH(raa,p»,

REG
(R(INSTFETCH(raa,p»,a,x,PAD20T032 (TRIK32T020(INCP32 p»,
TRIK32T020(INCP32 p»,PAD20T032(A(INSTFETCH(raa,p»),b)

Since it has been assumed that VAL4(FF(INSTFETCH(raa_sig n,p_sig n») • 1,
Theorem 5 can be used to compute the result of the ALU operation:

PAD20T032(A(INSTFETCH(raa_sig n,p_sig n»),b_sig n,
NOT

«VAL3(D(INSTFETCH(ram_sig n,p_sig n») = 3) \/
«VAL3(D(INSTFETCH(ram_sig n,p_sig n») = 4) \/
(VAL3(D(INSTFETCH(ram_sig n,p_sig n») = 5»» \/

(INVALID(PAD20T032(A(INSTFETCH(ram_sig n,p_sig n»»

The padded address cannot be invalid (Theorem 4), and the destination of the
new instruction must be 3, 4 or 5 (Theorem 6), so the ALU returns:

PAD20T032(A(INSTFETCH(ram_sig n,p_sig n»),b_sig n,F

Thus at time n+4 PERFORK has been executed:

A Proof of Correctness of the Viper Microprocessor 59

1- «(ram_sig(n+4) - ram_sig n) /\
(p_sig(n+4) - A(INSTFETCH(ram_sig n,p_sig n») /\
(a_sig(n+4) = a_sig n) /\
(x_sig(n+4) = x_sig n) /\
(y_sig(n+4) = INCP32(p_sig n» /\
(b_sig(n+4) = b_sig n) /\
(stop_sig(n+4) = F» /\

(t_sig(n+4) =
PAD20T032(A(INSTFETCH(ram_sig n,p_sig n»» /\

(rsf_sig(n+4) = R(INSTFETCH(ram_sig n,p_sig n») /\
(msf_sig(n+4) - M(INSTFETCH(ram_sig n,p_sig n») /\
(dsf_sig(n+4) = D(INSTFETCH(ram_sig n,p_sig n») /\
(csf_sig(n+4) = C(INSTFETCH(ram_sig n,p_sig n») /\
(fsf_sig(n+4) =
FF(INSTFETCH(ram_sig n,p_sig n»» /\

(node_sig(n+4) = #10000)

The next node is #10000, so the sequence is ended. The program counter now
holds the address of the procedure to be called, and the y register stores the
return address (the original program counter's value plus one).

These four theorems provide the basis for proving Theorem 2. The fourth
is part of the proof of Theorem 3. (See Section 1.3). (Here, the theorems are
stated in terms of the fourteen components. Various properties of n-tuples are
required to formulate them as in Section 1.3.)

5.3 The Equivalence Proof

Now the high-level specification, NEXT (Section 3.2) is considered in relation to
the results of the graph traversal. We wish to prove:

Theorem 14: Result of Specification for Call
c1(ram,p,a,x,y,b,stop) /\
c3(ram,p,a,x,y,b,stop) /\
c17(ram,p,a,x,y,b,stop) ==>
(NEXT(ram,p,a,x,y,b,stop) = ram,A(INSTFETCH(ram,p»,a,x,INCP32 p,b,F)

That is, for any state, NEXT specifies the same changes as have accumulated
in the registers at the end of the sequence produced by the host machine (dis
regarding time).

The proof consists in reducing the conditional in the definition of NEXT. Obvi
ously, stop is false (c1 holds). The five illegal conditions mentioned in c3 are all
false. Furthermore, the new address cannot be illegal: the new memory address
control field holds 0, so OFFSET gives a padded 20-bit address. Since the new
compare field also holds 0, comp is false; vriteop and skip are also obviously
false. The new destination field is neither 0, 1 or 2 (by Theorem 6) and so the

60 A Proof of Correctness of the Viper Microprocessor

call branch is arrived at. The program counter, the b flag and the stop flag of
the new state in this case depend on the result (aluout) computed by ALU. The
new state is:

(ram,TRIM32T020(VALUE aluout),a,x,INCP32 p,BVAL aluout,SVAL aluout)

In the fully unfolded definition of NEXT, aluout is

ALU
(FF(INSTFETCH(ram,p»,M(INSTFETCH(ram,p»,D(INSTFETCH(ram,p)),
REG(R(INSTFETCH(ram,p»,a,x,y,TRIM32T020(INCP32 p»,
MEMREAD
(ram,M(INSTFETCH(ram,p»,A(INSTFETCH(ram,p»,x,y,

«VAL1(C(INSTFETCH(ram,p») = 0) /\
(VAL3(D(INSTFETCH(ram,p») = 6» \/

«VAL1(C(INSTFETCH(ram,p») = 0) /\
NOT«VAL3(D(INSTFETCH(ram,p») - 7) \/

(VAL3(D(INSTFETCH(ram,p») - 6» /\
(VAL4(FF(INSTFETCH(ram,p») = 2»,

«VAL1(C(INSTFETCH(ram,p») = 0) /\
(NOT(VAL3(D(INSTFETCH(ram,p») = 7) /\
NOT(VAL3(D(INSTFETCH(ram,p») = 6» /\

(VAL4(FF(INSTFETCH(ram,p») = 12»),b)

which is abbreviated by a new constant ALU_ABBR2, so that the new state spec
ified by NEXT is

(ram,TRIM32T020(VALUE(ALU_ABBR2(ram,p,a,x,y,b»),a,x,
INCP32 p,BVAL(ALU_ABBR2(ram,p,a,x,y,b»,
SVAL(ALU_ABBR2(ram,p,a,x,y,b»)

Since VAL4(FF(INSTFETCH(ram,p») = 1, the reasoning is as for ALU_ABBR6 in
Section 5.2.3: Theorem 5 is used to conclude that ALU in this case returns
MEMREAD(...) as its result, b for the b flag, and

NOT«VAL3(D(INSTFETCH(ram,p») = 3) \/
«VAL3(D(INSTFETCH(ram,p») - 4) \/

(VAL3(D(INSTFETCH(ram,p») = 5») \/
(INVALID(MEMREAD(... »)

for the stop flag, where " ... " stands for the arguments to MEMREAD.
The value of the new destination field is 3 or 4 or 5, so the stop flag becomes F

\I (INVALID (MEMREAD(. .. »). It remains to work out the value ofMEMREAD(. •.).
Its sixth argument is a boolean value which distinguishes main from peripheral
memory, and the seventh, a boolean which indicates whether no memory source
is required. The seventh works out to be false, since the value of the function

A Proof of Correctness of the Viper Microprocessor 61

field is not 12 (but rather 1). The sixth also works out to be false, since the
function field is not 2, nor is the destination field 6. Thus, since the memory
address control field is 0, MEMREAD returns just PAD20T032(A(INSTFETCH(ram,p»).
This cannot be invalid (Theorem 4). Therefore the ALU returns:

PAD20T032(A(INSTFETCH(ram,p»),b,F

so the state returned by NEXT is

(ram,TRIM32T020(PAD20T032(A(INSTFETCH(ram,p»»,a,x,INCP32 p,b,F)

which by Axiom 1 is just

(ram,A(INSTFETCH(ram,p»,a,x,INCP32 p,b,F)

which is what was wanted.
In this case, the memory component (ram) and the a, x and y components of

the state given by NEXT agree immediately with the end results of HOST_NEXT.
That the other three registers agree depends on an argument about the ALU.
The essence of the argument can be expressed by a theorem relating the two
values computed by the ALU: the one referring to MEMREAD, in the case of the
specification, and the one determined one by Theorem 11 for the PERFORM node
(at the correct point in the sequence), in the case of the host machine.

Theorem 15: Equivalence of ALU in Specification and Host

1- «VAL2(M(INSTFETCH(ram,p») = 0) /\
(VAL1(C(INSTFETCH(ram,p») = 0) /\
NOT(VAL3(D(INSTFETCH(ram,p») = 7) /\
NOT(VAL3(D(INSTFETCH(ram,p») = 6) /\
(VAL4(FF(INSTFETCH(ram,p») = 1» ==>

(ALU_ABBR2(ram,p,a,x,y,b) = ALU_ABBR6(ram,p,a,x,y,b»

5.4 A Digression on Goal-Oriented Proof

For the HOL proof of Theorem 14, we are starting for a change with a goal.
We know that NEXT should unfold to the state specified by the host machine, in
the circumstances; but do not know whether it really does, nor how to attempt
to prove that it does. Here, a goal oriented proof is called for. One starts with
a goal (a term with an associated list of assumptions), and applies strategies or
tactics to the goal to produce subgoals; then tactics are applied to the subgoals,
and so on, until subgoals are reached which are known to be true (that is, which
correspond to previously proved theorems or axioms). The tactics justify each
decomposition into sub goals so that a proof can be assembled in the end. The
proof is built up by inferences, starting with the theorems corresponding to the
final set of subgoals. For example, if a tactic T is applied to a goal (A, t) (term
t and assumptions A) to produce two subgoals

62 A Proof of Correctness of the Viper Microprocessor

then the ML procedure which justifies that decomposition expects two theorems

o I-tl with no assumptions beyond Ai, and

o l-t2 with no assumptions beyond A2

and infers a theorem I-t (with no assumptions beyond A). Tactics can be se
quenced and combined in various ways to form compound tactics. In this way,
arbitrarily complex proof strategies can be expressed as procedures which gen
erate proofs.

This style of proof revolves around the list of current assumptions in a nat
ural way. Tactics use the same rewriting mechanism as forward proof. One
frequently-used tactic generates a subgoal by rewriting the goal using all cur
rent assumptions of that goal as rewrite rules. Each rewrite is justified by a
chain of inferences which is used used later in assembling the proof.

Sometimes groups of assumptions can logically imply a new assumption; a
useful tactic finds new conclusions and adds them to the assumption list. This
provides a simple kind of resolution in HOL. For example, it follows from the
definition of invalidity (Section 3.1) that

1- !pl. NOT (INVALID pl) ==> (PAD20T032(TRIK32T020 pl) = pl)

This has an instance

1- NOT(INVALID(INCP32 p» ==> (PAD20T032(TRIK32T020(INCP32 p»=INCP32 p)

which can be used to simplify the expression

PAD20T032(TRIK32T020(INCP32 p»

during the proof of Theorem 14. The instance can be identified and its con
clusion added as an assumption as soon as its antecedent, NOT(INVALID(INCP32
p», joins the assumptions. The conclusion is not a new assumption because it
can always be dismissed by a series of simple inference steps.

5.5 The Equivalence Proof in HOL

To prove Theorem 14 in HOL, first the definitions of el, e3 and e17 are unfolded.
The definition of HEXT is unfolded, using a version of the definition without the
let and lambda expressions (analagous to the version of the definition of PRE CALL

A Proof of Correctness of the Viper Microprocessor 63

in Section 5.1). (Part of this unfolding has been seen in the form of the ALU
expression, Section 5.3.) The assumptions are "resolved" with Theorem 6, all
of whose antecedents are by this point among the assumptions. This adds new
members to the list of current assumptions of the subgoal, including:

o NOT(VAL3(D(INSTFETCH(ram,p») = 0)

o NOT(VAL3(D(INSTFETCH(ram,p») - 1)

o NOT(VAL3(D(INSTFETCH(ram,p») • 2)

The subgoal can now be rewritten using all of its current assumptions as well
as facts such as Axiom 1 and Theorem 5 (to reduce the ALU expressions). By
this process the NEXT expression (a conditional with ten branches) reduces to
the correct case, and the state in that case to the desired state: both sides of
the subgoal are equal.

A sub goal with a term t=t is known to correspond to an axiom: namely,
reflexivity. From this point HOL starts with the axiom of reflexivity and builds
up the proof by using the justification of each decomposition into subgoals. The
book-keeping is all done by HOL, the user only supplying the tactics. The whole
proof can be generated with one command, given the correct (compound) tactic.
The point about forward proof is that it would be very difficult to structure a
forward proof effort starting from I-t=t and applying inference rules to produce
a theorem as complex as Theorem 14.

The only real tricks in this process are supplying the lemmas needed, and
causing the rewriting to happen in an efficient way so the proof can be done in
a reasonable amount of time. The former requires the proof effort to be planned
and structured sensibly. The latter is discussed further in Section 8.

6 The Rest of the Proof
So far, the specification and host machine have only been revealed insofar as
they concern the literal call instruction. This in fact gives a good idea of what
is claimed and proved in the other cases, and how it is stated and proved in
HOL. The literal call proofs are about average in length and difficulty among
the twenty-four cases. The other four paths suggested in Figure 2 are for states
in which the stop flag is set; call instructions for which the ALU sets the stop
flag; states for which fetching produces an illegal instruction; and states for
which the new fetched instruction is a non-operation. The other nineteen paths
are for call instructions with indirect or offset addresses; ALU operations with
the a, l[or y register as destination; write operations to memory or output; read
operations from memory or input; and variations of the above with differents
sorts of addressing and in which illegal situations arise and the machine stops.
The tree of all possible paths can be seen in [5].

In fact, the definitions of NEXT and the host machines in the example proofs
have been unfolded to their maximum depth, but that is not necessary for doing

64 A Proof of Correctness of the Viper Microprocessor

the proof. As soon as they are unfolded sufficiently, the host and specification
are seen to be equal (by means of Theorem 15 and so on), and the proof is
completed.

A large number of other lemmas and intermediate results were proved en route
to the main theorems and not mentioned here; no one is very complicated, but
they add up to a certain amount of unseen effort. Other results have been
mentioned only in passing (see tables in Section 8).

7 Errors Found in the Viper Specifications
Aside from certain HOL conventions, such as consistently currying or uncurry
ing a function, and some corrections of typographical errors, the HOL versions
of the functional specification and the host differ from the definitions in [4] at a
few places where we found errors in the host and high-level specification. There
was a type error in the function FMOVE which was passed a boolean b by FETCH
when FMOVE was expecting a I-bit string. More seriously, there were some other
errors in FETCH, and one in NEXT. The function for FETCH had read:

1- FETCH«ram,p,a,x,y,b,stop),t,rsf,msf,dsf,csf,fsf)
let fetched = INSTFETCH(ram,p) in
let newp = TRIM32T020(INCP32 p) in
let newr = R fetched in
let newm = M fetched in
let newd = D fetched in
let newc = C fetched in
let newf - FF fetched in
let newt - PAD20T032(A fetched) in
let not inc = INVALID(INCP32 newp) in
let illegalcl = ILLEGALCALL(dsf,csf,fsf) in
let illegalsp = SPAREFUNC(dsf,csf,fsf) in
let illegalonp = ILLEGALPDEST(dsf,csf,fsf)in
let illegalwr - ILLEGALWRlTE(dsf,csf,msf) in
let stopstate E WORDS 8 in
let b' = WORD1(V[b]) in
(notinc \I
(illegalcl \/ (illegalsp \/ (illegalonp \/ illegalwr») =>
«(ram,newp,a,x,y,b,T),newt,newr,newm,newd,newc,newf),stopstate)
«(ram,newp,a,x,y,b,F),newt,newr,newm,newd,newc,newf),
FMOVE(newm,newd,newc,newf,b'»)

so that the phase of fetch cycle was confused: it is actually the incremented
program counter one wants to check for validity, not the twice incremented
counter, and it is the new instruction one wants to check for legality, not the
instruction that rested in the transient before the FETCH operation. This error

A Proof of Correctness of the Viper Microprocessor 65

became apparent in the course of doing the proof because the host's results
disagreed with the specification's results.

The original specification had an incomplete check for illegal instructions; the
possibility of the instruction being a non-operation was neglected. The relevant
part read:

... in let illegaladdr = (NOT(NILM(dsf,csf,fsf» /\
(INVALID(OFFSET(msf,addr,x,y»» in

This naturally caused a problem with interpreting non-operations whose fields
met the two conditions above but which were meant to be legal instuctions.

Finally, we added definitions to form a complete problem statement: the sim
ple definition of HOST_NEXT to traverse the graph and the formal definitions of
the conditions cl and so on. There were more conditions than forseen in the
informal proof ([5]), similar to c17; these conditions always decide whether to
stop because of an abnormality after an ALU operation, or whether to end the
sequence naturally, depending on the stop value returned by the ALU. However,
the inputs to the ALU are different in different paths through the graph, depend
ing on which nodes have come before. In the literal call path the ALU expression
was:

ALU
(FF(INSTFETCH(ram_sig n,p_sig n»,
M(INSTFETCH(ram_sig n,p_sig n»,
D(INSTFETCH(ram_sig n,p_sig n»,
REG
(R(INSTFETCH(ram_sig n,p_sig n»,a_sig n,x_sig n,
PAD20T032(TRIM32T020(INCP32(p_sig n»),
TRIM32T020(INCP32(p_sig n»),

PAD20T032(A(INSTFETCH(ram_sig n,p_sig n»),b_sig n)

but this instance was a result of having been through the DUMMY, FETCH and
in particular the PRECALL node, and no others. In fact, there are seven other
similar conditions for the twenty-four total paths.

Furthermore, the conditions suggested did not make a distinction between
the contents of the transient before and after a FETCH event. For example, in
[5], c3 was defined to be something like

c3(p,dsf,csf,fsf,msf,b) =
(NOT

«INVALID(INCP32 p» \/
«ILLEGALCALL(dsf,csf,fsf» \/

«SPAREFUNC(dsf,csf,fsf» \/
«ILLEGALPDEST(dsf,csf,fsf» \/
(ILLEGALWRITE(dsf,csf,msf»»») /\

66 A Proof of Correctness of the Viper Microprocessor

«NOT(VALl csf • 1» /\
«NOT«VAL3 dsf = 7) \/ (VAL3 dsf • 6») /\
«NOT(NOOP(dsf,csf,b») /\ «VAL2 .sf - 0) /\

«VALl csf • 0) /\ (VAL4 fsf = 1»»»

This is not what is required for traversing the graph (see Section 4.2) and in
fact does not make sense; it is not a function of the state and so has no meaning
at the higher level.

8 Performing the Proof
We have tried to present the proof as simply as possible in this paper, but the
actual proof effort deserves some discussion.

The process of typing the definitions in [4] and [5] into HOL took about a
week; it was straightforward since the definitions were written in a notation
called LCF -LSM, a predecessor of HOL.

The generation of the proof took about six person-months of work. (It was
done on a Sun 3 workstation with eight megabytes of memory.) This may seem
a long time for a proof which is not conceptually difficult, but it should be borne
in mind what was actually generated: a sequence of over a million inferences
which ensures that the correctness statement is really true (see Section 1.1).
The hand proof done by Cullyer ([5]) took only about three weeks but did not
detect the errors described in Section 7.

The generation of the theorems about HOST_NEXT (Sections 5.1, 5.2.1, 5.2.2
and 5.2.3) was relatively quick and easy, as they were done by forward proof,
i.e. letting HOL continuously unfold and simplify a definition to compute an
unforseen theorem by a known method.

Most of the time was spent in proving the theorems about NEXT, for which
the desired result was known in advance but the way to prove it was not.
The latter is a more typical sort of HOL or LCF proof effort, and it is a very
interactive process. One typically tries a tactic, examines the subgoals, backs
up, tries another, and so on, until a successful structure of tactics is discovered.
The proof effort has to be planned carefully and the proof well understood
in advance. Lemmas have to be anticipated and supplied in a useful form.
The difficulty is partly because HOL (and LCF) are really just frameworks
for performing proofs; the only proof tool which is in any sense automatic is
rewriting (either forward or goal oriented) and the mechanism which justifies it.
Any proof tool or strategy one thinks of can be expressed in the programming
language ML and then applied, but designing these is a research problem. One
hopes that large proof efforts such as the present one suggest new possible proof
tools.

The proofs are difficult also because of the sheer size of the theorems (for
example, the versions of Theorem 13 before it is fully simplified are several
pages long when printed in the style shown). A certain amount of the proof

A Proof of Correctness of the Viper Microprocessor 67

effort was directed toward structuring theorems into smaller ones, and defin
ing abbreviations to control the expansion of theorems (such as ALU_ABBR6 and
ALU_ABBR2).

The proofs are also large in terms of the computation time; rewriting in
particular can be costly of time, and can be avoided in various ways by in
vesting more of the user's time in doing explicit local replacements or other
ad hoc methods. Large theorems are even time-consuming to fetch from files
or to pretty-print. This problem can probably be attacked both by increased
computing resources, and research into efficient proof strategies. Computation
time can also be reduced by identifying large inference steps which are com
puted more than once and proving them as lemmas. For example, in computing
the end results of the host machine sequences, certain conditional subexpres
sions recur for choosing the next node. The reductions of these are proved once
as lemmas rather than being computed several times in the course of the proof.
This is also often more convenient than doing a proof within a larger proof.

To give a very rough idea of the magnitude of by the proof, the following tables
give the number of primitive inference steps and the CPU time in seconds for
the main theorems of the proof. (Garbage collection time has been ignored.)
The remarks in Section 5.1 about HOL proofs all apply here; in particular,
the apparent sizes and times of proofs can be greatly (and rather misleadingly)
inflated by reliance on powerful, general rewriting strategies where more specific
and local strategies could be found. Theorem 1, for example, has a large proof
which is generated by a strategy which simply rewrites according to previously
proved theorems; Theorem 14 has a relatively small proof which is generated
by laborious instantiations and carefully specified substitutions. We mention
this so that these figures are not taken too seriously.

The last six theorems in the first table are referred to but not shown in this
paper. "Unfolded NEXT" is the fully unfolded definition of NEXT with no lets;
likewise for ALU. "Covering" refers to the theorem stating that at each node, the
conditions for choosing the next node cover all possibilities. "Numbers" refers
collectively to all the properties of numbers involved in reasoning about the
numbers of steps in paths. "Tuples" refers collectively to properties of n-tuples
required to transform theorems in phrased in terms of the fourteen components
into theorems phrased in terms of a state, transient and node.

68 A Proof of Correctness of the Viper Microprocessor

Theorems used for All 24 Paths
Theorem Steps CPU Seconds

Section 3.1 Theorem 4 215 3
Section 5.1 Theorem 7 7,664 230
Section 5.2.1 Theorem 8 8,474 315
Section 5.2.1 Theorem 9 7,649 280
Section 5.2.1 Theorem 10 19,587 456
Section 5.2.1 Theorem 11 24,428 649
Section 5.2.2 Theorem 12 2,195 64
Similar for DUMMY 2,259 66
Similar for STOP 2,179 57
Similar for FETCH 10,291 232
Similar for PERFORM 8,019 213
Section 5.5 Unfolded NEXT 7,486 292
Unfolded ALU 4,492 82
Total 104,938 2,939

Theorems Just for the Literal Call Path
Theorem Steps CPU Seconds

Section 3.1 Theorem 5 233 43
Section 4.2 Theorem 6 1,836 35
Section 5.3 Theorem 15 2,545 81
Section 5.2.3 Theorem 13 14,037 312
Section 5.3Theorem 14 8,626 237
Section 1.3 Theorem 2 8,586 213
Section 1.3 Theorem 3 8,620 230
Total 44,483 1,151

Theorems tying the 24 Cases Together
Theorem Steps CPU Seconds

Section 1.3 Covering 19,772 364
Section 1.3 Numbers 20,173 222
Section 5.2.3 Tuples 5,116 120
Section 1.3 Theorem 1 35,554 384
Total 80,615 1,090

A Proof of Correctness of the Viper Microprocessor 69

9 Conclusions

As the reader can tell, the machine-checked proof described in this paper was
a very large and somewhat tedious project. Proofs of this sort, while perfectly
feasible, require experts in theorem-proving rather than electrical engineers, and
such experts are at present scarce. It is the experts' time rather than computa
tion time which makes verification expensive!. At present, formal verification
is only appropriate in selected applications where the cost can be justified.

One clear conclusion of this work is that very much more basic research
must be done before formal verification becomes practical and commonplace
in real-life applications. Work to date shows that verification of real examples
is still too time-consuming and tedious, and requires too much user guidance,
for routine use. We believe that HOL is an excellent framework in which to
research the problems: to design more automatic proof tactics, better ways to
abstract and describe proofs, and more efficient and flexible rewriting strategies.
Experimental proofs of real hardware like the Viper chip suggest many research
areas which must be addressed before larger applications can be attempted.

A second conclusion is that for theorem-proving experts to undertake hard
ware proofs, documentation is vital; the experts will not be knowledgeable in
engineering matters, and informal explanations of the function of the systems
will save a lot of time spent working out connections which are perhaps obvious
to the engineer.

Viper is to be manufactured and sold by two companies, for both civil and
military applications. As we have shown, the HOL methodology can detect
design errors at a certain level of abstraction from the actual hardware. We
feel it necessary to warn against a false sense of security afforded by an HOL
proof; there are many classes of errors not even visible in the models used. In
particular, we would caution against a false sense of security in such hazardous
applications as nuclear reactor control systems. The art of formal verification
is in its early days. We believe that years of basic research are needed before
the techniques can be reliably applied to life-critical systems; even then they
can only be applied with an understanding of their limitations.

Further, a proof that a design meets a specification is only as good as the
specification, which, for a complex system, can be very difficult to produce. A
perfectly correct proof may relate to a specification which misses some essential
behaviour of the design, and so may not give much security. For an example,
see [12] regarding the problems of specifying a simple computer design.

Finally, for verification to be effective, we must first move to a situation in
which the same sources are used by designers, verifiers and manufacturers. For
example, as mentioned in Section 1, the errors we found in Viper's specification

IThe first level of the Viper proof, for example, takes several hours of CPU time to run,
and that is using an inefficient prototype system. It took six months, however, to organize
the proof and carry it out. We expect that subsequent lower-level stages will be much more
complex.

70 A Proof of Correctness of the Viper Microprocessor

and host machine are apparently not present in the actual chip; hence the
manufacturers cannot have used the specification which we have started to
verify. Uniting these various communities is the aim of the research at RSRE,
but there is a long way to go.

Acknowledgements

Theorems 1, 2 and 3, which tie together the body of the proof (the twenty-four
cases), and the basic lemmas about numbers and tuples were generated in HOL
by Mike Gordon. The author is grateful to Elsa Gunter for assistance with
typesetting and suggestions about the paper. The work described here was
supported by a grant from RSRE, Research Agreement 2029/205(RSRE), and
has been placed under Crown Copyright © HMSO London 1987. This paper
has also appeared under the same title as a University of Cambridge Computer
Laboratory Technical Report, No. 104, 1987.

A Proof of Correctness of the Viper Microprocessor 71

References
[1] A. Church, "A Formulation of the Simple Theory of Types", Journal of

Symbolic Logic 5, 1940

[2] A. Cohn and M. Gordon, "A Mechanized Proof of Correctness of a Simple
Counter", University of Cambridge, Computer Laboratory, Tech. Report
No. 94, 1986

[3] W. J. Cullyer and C. H. Pygott, "Hardware Proofs using LCFJ,SM and
ELLA", RSRE Memo. 3832, Sept. 1985

[4] W. J. Cullyer, "Viper Microprocessor: Formal Specification", RSRE Re
port 85013, Oct. 1985

[5] W. J. Cullyer, "Viper - Correspondence between the Specification and
the 'Major State Machine' ", RSRE report No. 86004, Jan. 1986

[6] W. J. Cullyer, "Implementing Safety-Critical Systems: The Viper Micro
processor", In: VLSI Specification, Verification and Synthesis, Edited by
G. Birtwistle and P. A. Subrahmanyam, (this volume)

[7] M. Gordon, R. Milner and C. P. Wadsworth, "Edinburgh LCF, Lecture
Notes in Computer Science", Springer-Verlag, 1979

[8] M. Gordon, "Proving a Computer Correct", University of Cambridge,
Computer Laboratory, Tech. Report No. 42, 1983

[9] M. Gordon, "HOL: A Machine Oriented Formulation of Higher-Order
Logic", University of Cambridge, Computer Laboratory, Tech. Report No.
68, 1985

[10] M. Gordon, "HOL: A Proof Generating System for Higher-Order Logic",
In: VLSI Specification, Verification and Synthesis, Edited by G. Birtwistle
and P. A. Subrahmanyam (this volume), Also: University of Cambridge,
Computer Laboratory, Tech. Report No. 103, 1987

[11] W. A. Hunt Jr., "FM8501: A Verified Microprocessor", University of
Texas, Austin, Tech. Report 47, 1985

[12] J. J. Joyce, "Verification and Implementation of a Microprocessor", In:
VLSI Specification, Verification and Synthesis, Edited by G. Birtwistle
and P. A. Subrahmanyam, (this volume)

[13] J. Kershaw, "Viper: A Microprocessor for Safety-Critical Applications" ,
RSRE Memo. No. 3754, Dec. 1985

[14] L. Paulson, "A Higher-Order Implementation of Rewriting", Science of
Computer Programming 3, 119-149, 1983

[15] L. Paulson, "Interactive Theorem Proving with Cambridge LCF", Cam
bridge University Press, To Appear 1987

