
Towards Veri�ed SystemsOVERVIEW
Jonathan Bowen (Ed.)

O
tober 7, 1993DRAFT CHAPTER BY MJCG

Contents
1 State transition assertions: a
ase study 31.1 An example: Mult : 41.1.1 Overview : 41.1.2 Informal spe
i�
ation of Mult : 51.1.3 MultProg: an implementation of Mult : : : : : : : : : : : : : : : : 61.2 More detailed spe
i�
ation of Mult : 71.3 Determining a ma
hine from a program : 71.4 State transition assertions : 101.4.1 Holding states : 111.5 Formal spe
i�
ation of Mult : 121.6 Corre
tness of MultProg : 141.7 Generating atomi
 STAs : 141.8 Laws for
ombining STAs : 171.8.1 The
onsequen
e rule : 171.8.2 The sequen
ing rule : 171.8.3 Cases rules : 181.8.4 The wait loop rule : 181.8.5 The while rule : 201.9 Con
lusions : 22Bibliography 24

1

2 CONTENTS

Chapter 1State transition assertions:a
ase studyM.J.C. GordonOverviewThe temporal behaviour of programs that intera
t with their environment depends onthe
ompiler used and the timing
hara
teristi
s of the host pro
essor. Working out thedetails
an be messy. As part of the safemos proje
t, an approa
h to managing this
omplexity based on spe
ial-purpose theorem proving tools, has been developed. Spe
i-�
ations are written in a state transition notation annotated with real-time
onstraints.Implementations are programs
oded in a simple imperative language with assignments,sequen
ing,
onditionals, asyn
hronous inputs, wait-statements, while-
ommands andforever-loops. The meaning of programs is de�ned by a translation to sequen
es of ma-
hine instru
tions, but automated tools
an derive behavioural abstra
tions,
alled statetransition assertions (or STAs) that enable reasoning to be
ondu
ted near the sour
eprogram level.At the
ore of the approa
h are a number of `laws' for
ombining STAs. These arederived from the de�nition of state transition assertions and are thus theorems rather thanaxioms. These laws
ombine aspe
ts of Hoare logi
 [4℄ and interval temporal logi
 [3℄. Aspe
ialized theorem prover automati
ally generates STAs that des
ribe the behaviour ofa program
onsidered as a sequen
e of assignments and jumps (see Se
tion 1.3). Semi-automati
 tools then
ombine these `atomi
 STAs' to derive STAs for straight line
odesegments and
ertain looping stru
tures, in
luding wait loops. Finally, a user intera
tively
ombines these derived STAs to establish properties of the
andidate implementation.The ma
hine used in the semanti
s is idealized: it has an unbounded sta
k and un-spe
i�ed word-size. Some me
hanized tools have been implemented to enable the a
tualresour
es required by a given program to be analysed (e.g. to determine the maximumsta
k depth). After su
h an analysis has been
arried out, a �nite ma
hine
ustomizedto the program and suitable for physi
al realization
an be
omputed. It is intended thatsu
h ma
hines will implemented dire
tly in hardware (e.g. with �eld programmable gate3

4 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYarrays) or via a software emulation; in both
ases it is ne
essary to prove that the abstra
tma
hine used as a semanti
 base is
orre
tly implemented. The physi
al realization ofabstra
t ma
hines is not
onsidered here.1.1. An example: MultThe example program studied here implements a rea
tive system whi
h is required tomeet hard real-time
onstraints. It is also required to be resettable from an arbitrarypro
essor state within a hard real-time bound; this is intended to support fault re
overyproto
ols. The approa
h adopted is to
ount the number of ma
hine
y
les taken by the
ompiled
ode. This very �ne-grained kind of analysis may be quite inappropriate insome situations; intended appli
ations in
lude low-level
ommuni
ation software,
riti
alsystems requiring very rapid responses and the software emulation of hardware fun
tions.The example in this
hapter illustrates aspe
ts of all of these.Programs use a very simple low-level input/output model. Inputs are `asyn
hronously'supplied by the environment, outputs are `memory mapped'. When an input is read, theprogram gets whatever value the environment happens to be o�ering at the time of theread. For example, inputs might be provided dire
tly by a sensor. It is assumed inputs aredigitized, but not that they are lat
hed. Outputs, on the other hand, are identi�ed withparti
ular program variables whose values are assumed to remain stable until
hanged.Thus outputs are lat
hed. This parti
ular treatment of input/output was
hosen fortwo reasons: it
orresponds to a simple physi
al implementation and it
an be used tomodel more
omplex regimes. For example, a regime in whi
h inputs are lat
hed wouldbe modeled by requiring the environment to hold inputs stable between input events.The example in this
hapter may be viewed as a study of the �ne detail underlying aparti
ular kind of syn
hronized
ommuni
ation. Juanito Camilleri has studied this topi
more generally, with the eventual aim of produ
ing a veri�ed implementation of o

am-style syn
hronized
ommuni
ation in terms of the simple input/output model des
ribedhere [1℄.1.1.1. OverviewMult is a multiplier that rea
ts with the environment via a four-phase handshake. The�rst phase is a request by the environment that two numbers be read from input lines;the se
ond phase is the reading of these by the program; the third phase is the initiation,by the environment, of the multipli
ation of the two numbers read in during the se
ondphase; the fourth phase is the
omputation of the produ
t. At the end of su
h a
y
le theprogram outputs the
omputed produ
t whilst awaiting the �rst phase of a new
y
le.The �rst three phases all take pla
e within a �xed time bound; the duration of the fourthphase depends on the size of the numbers being multiplied.

1.1. AN EXAMPLE: MULT 51.1.2. Informal spe
i�
ation of MultMult has two data inputs in1 and in2 that
arry numbers.1 It has two
ontrol inputsreq and reset that
arry truthvalues (i.e. single bits). It has one numeri
al data outputout and one boolean2
ontrol output avail.In the normal operation of Mult there are just four possibilities,
orresponding to thefour phases of the handshake: (i) it is waiting to engage in a handshake; (ii) it is readinginputs; (iii) it is waiting to start a multipli
ation; (iv) it is performing a multipli
ation.Both (i) and (iii) are `wait states': the waiting will
ontinue inde�nitely until the environ-ment sends the appropriate signal via the req input (see below). The other possibilities,(ii) and (iv), are transitions between waiting states.It is required that no matter what state the host pro
essor is in, if the environmentholds reset at the value 1
ontinuously for Æ1
y
les, then the system Mult will be resetto the state (i) of waiting to engage in a handshake. In this state the value output onavail is 1.The environment signals the start of a handhake by
hanging the input req from 0 to 1.When this happens, it is required that the system will input the values, m and n say, oninputs in1 and in2 and move to a state in whi
h it is waiting to start the multipli
ationof m and n. This inputting transition is required to
omplete within Æ2 pro
essor
y
les.The system will then wait, outputting 0 on avail, until the environment sets the inputreq to 0. When that happens the system will
ompute m � n, output this value on out,and then return to the initial state. This multipli
ation transition is required to takepla
e within Æ3(m)
y
les. The timing parameters Æ1 and Æ2 are given numbers and Æ3 isa given fun
tion.This spe
i�
ation requires that if Mult is waiting to engage in a handshake, then theprodu
t m�n
an be
omputed in Æ2+Æ+Æ3(m) ma
hine
y
les, where Æ is the number ofma
hine
y
les taken by the environment to set req to 0 after m and n have been input.But how
an the environment know when Mult is in the state of waiting to engage in ahandshake? It is spe
i�ed that in this state avail has value 1, but the
onverse is notne
essarily the
ase. For example, the value of avail will
ontinue to be 1 for a short timeafter the environment sets req to 1, i.e. during the �rst part of phase (ii) of the handshake.It is tempting to require in the spe
i�
ation that avail be 1 if and only if the system iswaiting to engage in a handshake, but su
h a spe
i�
ation would be unimplementable.This is be
ause there will always be time delays in sensing environmental
hanges and then
ommuni
ating the results to outputs, hen
e there will always be times at whi
h internalstate
hanges have o

urred, but not yet been signalled on outputs. In general, whentiming is
onsidered, it is not possible to
hara
terize internal states by instantaneousvalues on outputs. However, if inputs and outputs are observed over a sequen
e of
y
les,then
on
lusions about internal states
an be drawn. For example, if the input reset hasbeen 1 for Æ1
y
les, then the spe
i�
ation requires the system to be waiting to engage ina handshake.1For simpli
ity, arbitrary-pre
ision (i.e. `mathemati
al') numbers are used here but, at the expense ofsome arithmeti
al messiness, �nite-pre
ision numbers
ould have been used instead.2The truthvalues T and F will be represented by the numbers 1 and 0, respe
tively, be
ause the program-ming language used only supports one data type: the natural numbers N.

6 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDY1.1.3. MultProg: an implementation of MultHere is a program that implements Mult.0: MultProg =1: FOREVER2: avail := 1;3: IF INPUT req4: THEN avail := 0;5: x := INPUT in1;6: y := INPUT in2;7: AWAIT[NOT(INPUT req); INPUT reset℄;8: out := 0;9: IF (x=0) OR (y=0)10: THEN SKIP11: ELSE WHILE (x > 0) AND NOT(INPUT reset)12: DO out := out + y;13: x := x - 114: OD15: avail := 116: ELSE SKIPThe
ommand FOREVER C is an abbreviation for WHILE TRUE DO C . The
ommandAWAIT[E1; : : : ; En ℄ loops until one of E1, : : :, En be
omes true (i.e. has the value 1) andthen
ontrol moves to the next
ommand. Evaluating an expression INPUT i reads the
urrent value o�ered by the environment at input i and returns the result. Outputsare identi�ed with program variables, so are set by assignment. The other
onstru
ts inMultProg should be self-explanatory.Note that there is some arbitrariness in the pla
ement of assignments. The o

urren
e ofavail:=1 on line 2
ould be moved to before the FOREVER-loop. The assignment avail:=0is performed before the inputs in1 and in2 are read, however the spe
i�
ation onlyrequires avail to be 0 when Mult is waiting to start the multipli
ation. The veri�
ationgiven here also works if avail:=0 is performed after the two reads, or even between them(perhaps this indi
ates that the spe
i�
ation is inadequate: maybe it should be requiredthat the inputs remain stable only as long as avail is 1).MultProg works as follows: initially it is waiting to engage in a handshake by loopingbetween lines 2, 3 and 16 in the outer FOREVER-loop. If the input req is 1 then eventuallythe test at line 3 will be rea
hed and then lines 4, 5 and 6 will be exe
uted in sequen
eresulting in avail being set to 0 and the values at inputs in1 and in2 being read intothe variables x and y, respe
tively. The program will then loop at the AWAIT-
ommandat line 7. If either req is 0 or reset is 1 this
ommand will terminate,
ontrol will moveto line 8 and the multipli
ation will begin with out being initialized to 0. If either of thetwo numbers to be multiplied are 0, then nothing needs to be done (line 10), avail is setba
k to 1 (line 15) and the system is ready again to engage in a handshake. However, ifeither of x or y is non-zero, then the produ
t is
omputed in out by repeatedly adding yto out (lines 11|14). Note that ea
h time around this WHILE-loop, reset is tested and iffound to be 1 the loop is terminated. On
e the loop is terminated, whi
h (in the absen
eof a 1 at reset) will be in a time proportional to the value read into x, avail is set to1 (line 15) and
ontrol returns to the outer loop (lines 2, 3, and 16) and the system isready to engage in another handshake, i.e. is ba
k in phase (i).It is
lear by inspe
tion, that if reset is held at 1 for suÆ
iently long then
ontrol willeventually move to the outer FOREVER-loop. This is be
ause all loops test reset.

1.2. MORE DETAILED SPECIFICATION OF MULT 71.2. More detailed spe
i�
ation of MultThe view of real-time systems taken here is that they are sequential ma
hines. Aspe
i�
ation pla
es requirements on the behaviour of a ma
hine and an implementationis an a
tual ma
hine that meets these requirements. The reason for this rather
on
reteapproa
h is to try to minimize the gap between abstra
t models of behaviour and realma
hines. The devi
e that ultimately runs programs implements a sequential ma
hine,so it helps tie the hardware and software veri�
ations together if they both use the samekind of behavioural model.A ma
hine is a fun
tion M : inputs ! (state ! state). M should be thought of asan instru
tion pro
essor: if the environment o�ers an array of inputs � and the
urrentstate is �, then exe
uting the next instru
tion results in the state M � � . The state willin
lude a program
ounter and a memory that asso
iates state variables with data values.This memory is a fun
tion from names to values (i.e. numbers). Inputs too are modelledby fun
tions from names to values. It is assumed that at ea
h moment the environmentspe
i�es a value � i for ea
h input i, i.e. it determines a mapping � : name ! N , thatvaries with time. For any parti
ular system there will only be a small �nite numberof inputs (in1, in2, req and reset for Mult), but this fa
t does not need to be built-in to the general theory. It will be assumed that some state variables are readable bythe environment (avail and out for Mult). During ea
h
y
le of exe
ution of M, aninstru
tion is sele
ted and exe
uted, resulting in a new state. If the instru
tion is aninput, then this new state will depend on the inputs supplied by the environment.In what follows, it is �rst shown how the program MultProg in Se
tion 1.1.3 determinesa ma
hine and then how the informal spe
i�
ation Mult in Se
tion 1.1.2
an be expressedas a predi
ate on ma
hines. Finally, a method is outlined for proving that programs meetspe
i�
ations and it is illustrated using MultProg and Mult.1.3. Determining a ma
hine from a programIt is straightforward to de�ne a fun
tion that re
ursively translates a program to asequen
e of assignments and
onditional jumps. For example, one parti
ular algorithmtranslates MultProg to:0: avail := 11: IF INPUT req THEN SKIP ELSE GOTO 182: avail := 03: x := INPUT in14: y := INPUT in25: IF NOT(INPUT req) THEN SKIP ELSE GOTO 76: GOTO 107: IF INPUT reset THEN SKIP ELSE GOTO 98: GOTO 109: GOTO 510: out := 011: IF NOT x OR NOT y THEN SKIP ELSE GOTO 1312: GOTO 1713: IF x > 0 AND NOT(INPUT reset) THEN SKIP ELSE GOTO 1714: out := out + y15: x := x - 116: GOTO 1317: avail := 118: GOTO 0

8 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYAssignments and
onditional jumps require the evaluation of an expression, whi
h maybe arbitrarily large, and thus take an arbitrary amount of time to evaluate. It is thusnot immediately
lear how a sequen
e of assignments or jumps
an be dire
tly repre-sented by a ma
hine. Another tri
ky issue
on
erns input. Consider the
onditionaljump on line 13: the exa
t time at whi
h reset is read depends on how the expressionx > 0 AND NOT(INPUT reset) is evaluated.To spe
ify the detailed semanti
s of expression evaluation, programs will be furthertranslated to sequen
es of instru
tions for a simple sta
k ma
hine with the followinginstru
tion set.JMP n un
onditional jump to instru
tion nJMZ n pop sta
k then jump to instru
tion n if the result is zeroJMN n pop sta
k then jump to instru
tion n if the result is non-zeroPOP pop the top of the sta
kOP0 v push v onto the sta
kOP1 op1 pop one value from sta
k, perform unary operation op1, push resultOP2 op2 pop two values from sta
k, perform binary operation op2, push resultGET x push the
ontents of memory lo
ation x onto the sta
kINP i push the input from i onto the sta
kPUT x pop the top of the sta
k and store the result in memory lo
ation xIt is straightforward to de�ne a translation of assignments and jumps to sequen
es ofma
hine instru
tions. For example, the
onditional jump at line 13 is translated to thefollowing sequen
e of sta
k ma
hine instru
tions:GET xOP0 0OP2 >INP resetOP1 NOTOP2 ANDJMZ ...It will be assumed that the operations >, NOT and AND
an be performed in one ma
hine
y
le, thus the sta
k ma
hine
ode determines that x > 0 AND NOT(INPUT reset) takes7
y
les, and the input o

urs on the 4th
y
le.The state of the sta
k ma
hine is a triple (p
; stk ;mem)
onsisting of a program
ounterp
 : N , a sta
k stk : seq N and a memorymem : name ! N . The model given here does notspe
ify an upper bound on the length of the sta
k or size of data. Of
ourse, real ma
hinesare �nite so any a
tual implementation will have a bounded sta
k and a parti
ular wordsize. The intension is to provide tools that `�t' a given program into a �nite re�nementof the ma
hine; this will not be dis
ussed in detail here (though see the example statetransition assertion in Se
tion 1.4).The semanti
s of the instru
tions of the sta
k ma
hine is de�ned by a fun
tion Step. Be-fore de�ning Step, some auxiliary notation is required. A
onditional `if b then e1 else e2'will be written as (b ! e1 j e2). The empty sequen
e is denoted by h i, hx i denotesthe sequen
e with one member, x and hx1; x2; : : : ; xni denotes the sequen
e (of length n)
ontaining x1, x2, : : :, xn . The length of a sequen
e s is denoted by #s. The nth element

1.3. DETERMINING A MACHINE FROM A PROGRAM 9of a sequen
e s will be denoted by s n and the tail of s will be denoted by ys. Thetail of h i is de�ned to be h i (sequen
es will be used to represent sta
ks and the sta
kmanipulating instru
tions are spe
i�ed so that popping an empty sta
k leaves an emptysta
k). The
on
atenation of sequen
es s1 and s2 will be denoted by s1 a s2. Note thatthe result of `
onsing' x onto a sequen
e s is hx ia s. If mem is a fun
tion representing amemory (i.e. a fun
tion from names to values), then Store v x mem denotes the memoryidenti
al to mem ex
ept on argument x , whi
h it maps to v , i.e. the memory updatedwith value v at x .The fun
tion Step
an now be de�ned. Its type is:Step : instru
tion ! (inputs ! state ! state)where:inputs = name ! Nstate = program�
ounter � sta
k � memoryprogram�
ounter = Nsta
k = seq Nmemory = name ! NStep is de�ned by:Step (JMP n) � (p
; stk ;mem) = (n; stk ;mem)Step (JMZ n) � (p
; stk ;mem) = ((stk 1 = 0 ! n j p
+1); ystk ;mem)Step (JMN n) � (p
; stk ;mem) = ((stk 1 = 1 ! n j p
+1); ystk ;mem))Step (POP) � (p
; stk ;mem) = (p
+1; ystk ;mem)Step (OP0 v) � (p
; stk ;mem) = (p
+1; hvia stk ;mem)Step (OP1 op1) � (p
; stk ;mem) = (p
+1; hop1(stk 1)ia ystk ;mem)Step (OP2 op2) � (p
; stk ;mem) = (p
+1; hop2(stk 2; stk 1)ia yystk ;mem)Step (GET x) � (p
; stk ;mem) = (p
+1; hmem x ia stk ;mem)Step (INP i) � (p
; stk ;mem) = (p
+1; h� iia stk ;mem)Step (PUT x) � (p
; stk ;mem) = (p
+1; ystk ; Store (stk 1) x mem)The ma
hine Ma
hine instrs determined by a sequen
e of instru
tions instrs is de�nedby:Ma
hine instrs � (p
; stk ;mem) =(p
 < #instrs ! Step (instrs(p
+1)) � (p
; stk ;mem) j (0; stk ;mem))The reason for p
+1 is be
ause the program
ounter starts at 0 not 1. Note that if theprogram
ounter p
 points outside the program (i.e. p
 � #instrs) then the ma
hinejumps to 0.If P is a program, let Compile P denote the translation of P to sta
k ma
hine in-stru
tions; this is the
omposition of the translation to assignments and jumps withthe translation of these to ma
hine instru
tions. The ma
hine determined by P is thusMa
hine(Compile P). For example, the ma
hine
orresponding to MultProg is denoted byMa
hine(Compile MultProg); this will be
alled MultMa
hine.

10 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDY1.4. State transition assertionsSpe
i�
ations are formalized as predi
ates on ma
hines. The informal spe
i�
ation ofMult given in Se
tion 1.1 involved a number of transitions between wait states. These
an be represented using a kind of assertion,
alled a state transition assertion (or STA),that
ombines aspe
ts of the `leads-to' and `until' operators of temporal logi
 and alsoresembles a state delta [5℄. The general form of an STA is:M j= A QP > Bwhere:� M : inputs ! state ! state is a ma
hine;� A : state ! B is
alled the state pre
ondition;� B : state ! B is
alled the state post
ondition;� P : seq inputs ! B is
alled the input pre
ondition;� Q : seq state ! B is
alled the output post
ondition.The intuition behind state transition assertions is straightforward: if M is in a statesatisfying A and a sequen
e of inputs arrives that satis�es P , then a state satisfying B willbe rea
hed and the sequen
e of intermediate states will satisfy Q . The formal de�nitionis slightly deli
ate as it has to
over the possibility that inputs start to arrive satisfyingP , but then stop satisfying it before a state satisfying B is rea
hed. A tra
e of ma
hineM is an in�nite sequen
e h(�0; �0); (�1; �1); : : : ; (�n ; �n); : : :i su
h that �m+1 = M �m �mfor all m. It is an A-tra
e i� A �0. Observe that the state entered by M after a sequen
e�0, : : : , �n of inputs have arrived is �n+1. Thus the ma
hine generates the sequen
eh�1; : : : ; �n ; �n+1i of states from the inputs �0, : : : , �n . With this observation in mind, thefollowing auxiliary
on
epts are de�ned.� B su

eeds at n in tra
e h(�0; �0); (�1; �1); : : : ; (�n ; �n); : : :i i� B �n+1.� P fails at n in tra
e h(�0; �0); (�1; �1); : : : ; (�n ; �n); : : :i i� :Ph�0; : : : ; �ni.� Q holds until n in tra
e h(�0; �0); (�1; �1); : : : ; (�n ; �n); : : :i i� Qh�1; : : : ; �mifor all m su
h that 1 � m � n+1.The state transition assertion:M j= A QP > Bholds i� for every A-tra
e � of M there exists an n su
h that (i) either B su

eeds at nin � or P fails at n in � and (ii) Q holds until the �rst su
h n in � .An example of a state transition assertion is shown below using a number of notational
onventions that are explained immediately afterwards. It is true of a ma
hine M if

1.4. STATE TRANSITION ASSERTIONS 11whenever the predi
ate Available is true and the variables x, y, z have the values x , y , zrespe
tively, then as long as the reset line keeps at 0, a sequen
e of steps of length lessthan Æ x will be traversed in whi
h y remains stable with value y , Available is false andthe length of the sta
k is less than d. Furthermore, the sequen
e ends in a state in whi
hAvailable is false, x is 0, y is y and z is x � y .
M j= Availablex � xy � yz � z

By(Æ x)264 y � y:AvailableSta
kMax d 375[reset � 0℄ > :Availablex � 0y � yz � x � yVerti
al sta
king means
onjun
tion. The notation v � x (where v is a name and x avalue) is overloaded; it is used both for predi
ates on states and for predi
ates on inputs:(v � x)(p
; stk ;mem) =def mem(v) = x(v � x)� =def �(v) = xSta
kMax m is true of a state if the length of the sta
k is less than m.Sta
kMax m (p
; stk ;mem) =def #stk � mIf � is either a state or an input, M is either a predi
ate on states or a predi
ate on inputs,then:(:M)� =def :(M �)[M ℄h�1; : : : ; �ni =def M �1 ^ : : : ^M �n(By m)h�1; : : : ; �ni =def n � mThe notation [M ℄ asserts that M holds at all points in a sequen
e, so it is analogous tothe modal formula 2M . As a mnemoni
, think of sawing the box operator 2 in two andwriting the �rst half before M and the other half after M .1.4.1. Holding statesPart of the spe
i�
ation of Mult is that it remain waiting to engage in a handshake aslong as the request line req is 0. If `waiting to engage in a handshake' is represented bythe predi
ate Available, then this part of the spe
i�
ation
an be represented by:Mult j= Available By 1[req � 0℄> Availablewhi
h will be abbreviated to:Mult j= req � 0 Holds Availablenoti
e that \By 1" means \1 host ma
hine
y
le" not \1 program step" (whatever thatmight mean).

12 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYWhilst Mult is waiting to engage in a handshake it should be outputting the resultof the previous handshake on out and outputting 1 on avail. Therefore in the a
tualspe
i�
ation given in Se
tion 1.5, instead of the predi
ate Available, a parameterizedpredi
ate Ready z is used, with the interpretation \ready to engage in a handshake whilstoutputting z on out and 1 on avail". In general, waiting states are
hara
terized by aparameterized predi
ate (e.g. Ready z , see Se
tion 1.8.4), an invariant (e.g. avail � 1 andout � z) and a holding
ondition (e.g. req � 0). In the diagram representing the formalspe
i�
ation of Mult, the existen
e of su
h a waiting state is represented graphi
ally by:Ready zavail � 1out � zreq � 0This abbreviates the
onjun
tion of an STA representing the holding
ondition and aformula expressing the invariant (whi
h uses the logi
al operators ^ and =) whi
h areexplained below).Mult j= req � 0 Holds (Ready z) ^ Ready z =) avail � 1 ^ out � zwhere, letting � range over states or inputs as before:(M1 ^ M2)� =def (M1 �) ^ (M2 �)(M1 =) M2) =def 8� : (M1 �)) (M2 �)Other similar notation used later in
ludes:True � =def T(M1) M2)� =def M1 �) M2 �(M1 _ M2)� =def M1 � _ M2 �(9x : M x)� =def 9 x : (M x)�(P1 ^ P2)h�1; : : : ; �ni =def P1h�1; : : : ; �ni ^ P2h�1; : : : ; �ni(P1 _ P2)h�1; : : : ; �ni =def P1h�1; : : : ; �ni _ P2h�1; : : : ; �niNoti
e that there are three di�erent kinds of impli
ation: ordinary logi
al impli
ation)and two relations between predi
ates) and =). The relations between predi
ates are
onne
ted by M1 =) M2 = 8� : (M1) M2)�.1.5. Formal spe
i�
ation of MultA program implementing Mult must be able to
y
le within two sets of states repre-senting waiting to engage in a handshake and waiting to start a multipli
ation. Thusthe formal spe
i�
ation asserts the existen
e of two predi
ates representing these sets ofstates. In addition, an implementation must support various invariants and transitions,whi
h
an be expressed using STAs. The
omplete spe
i�
ation
an be represented bythe following diagram, whi
h represents a
onjun
tion of STAs (details below).

1.5. FORMAL SPECIFICATION OF MULT 13
True By Æ1[reset � 1℄> Ready zavail � 1out � zreq � 0 By Æ2[out � z ℄2664 req � 1reset � 0in1 � xin2 � y 3775>

A
k x y zavail � 0x � xy � yout � zreq � 1 By(Æ3 x)� req � 0reset � 0 �> Ready(x � y)avail � 1out � x � yreq � 0The predi
ate Ready z is true of states that are passed through whilst waiting to engagein a handshake. During this waiting, out has value z . The predi
ate A
k x y z is trueof states that are passed through whilst waiting to start a multipli
ation. During thiswaiting x, y, z have the values x , y , z , respe
tively. This diagram de�nes a predi
ateMultSpe
(Æ1; Æ2; Æ3) on ma
hines M by the following formula (the abbreviations Reset,ReadyInv, ReadyHold, ReadyToA
k, A
kInv, A
kHold, A
kToReady are explained later).MultSpe
 (Æ1; Æ2; Æ3) M =9Ready A
k :(M j= Reset(Æ1;Ready)) ^(8 z : ReadyInv(Ready; z)) ^(8 z : M j= ReadyHold(Ready; z)) ^(8 x y z : M j= ReadyToA
k(Æ2;Ready ;A
k ; x ; y ; z)) ^(8 x y z : A
kInv(A
k ; x ; y ; z)) ^(8 x y z : M j= A
kHold(A
k ; x ; y ; z)) ^(8 x y z : M j= A
kToReady(Æ3;Ready;A
k ; x ; y ; z))The reset
ondition Reset(Æ1;Ready) asserts that if reset is held equal to 1 for at leastÆ1 then the system will be in a state satisfying Ready z , for some z .Reset(Æ1;Ready) =def True By Æ1[reset � 1℄> 9z : Ready zStates satisfying Ready z should output 1 on avail and z on out.ReadyInv(Ready ; z) =def Ready z =) avail � 1 ^ out � zStates
ontinue to satisfy Ready z as long as req is 0.ReadyHold(Ready ; z) =def req � 0 Holds (Ready z)If the system is in a state satisfying Ready z and for at least Æ2
y
les req is held at 1,reset at 0, in1 at x and in2 at y , then the system will be in a state satisfying A
k x y z .ReadyToA
k(Æ2;Ready ;A
k ; x ; y ; z) =def Ready z By Æ2" req � 1 ^ reset � 0in1 � x ^ in2 � y #> A
k x y z

14 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYStates satisfying A
k x y z should output 0 on avail and x , y , z on x, y, out, respe
tively.A
kInv(A
k ; x ; y ; z) =def A
k x y z =) avail � 0 ^ x � x ^ y � y ^ out � zStates
ontinue to satisfy A
k x y z as long as req is 1 and reset is 0.A
kHold(A
k ; x ; y ; z) =def (req � 1 ^ reset � 0) Holds (A
k x y z)If the system is in a state satisfying A
k x y z and then for at least Æ3 x , req is held at0 and reset at 0 then the system will be in a state satisfying Ready(x�y).A
kToReady(Æ3;Ready ;A
k ; x ; y ; z) =def A
k x y z By(Æ3 x)[req � 0 ^ reset � 0℄> Ready(x�y)1.6. Corre
tness of MultProgThe program MultProg is
orre
t if the ma
hine, MultMa
hine, that it de�nes satis�esthe predi
ate MultSpe
(Æ1; Æ2; Æ3). In fa
t, it follows that:MultSpe
 (43; 13; � x : 30 + (15� x)) MultMa
hinewhi
h establishes
orre
tness with the timing parameters Æ1 = 43, Æ2 = 13 and the fun
tionÆ3 de�ned by Æ3 x = 30 + (15� x).The rest of this
hapter is devoted to outlining how su
h
orre
tness results
an beproved. Me
hanized theorem proving tools are used sin
e there is a large amount of detailin even small examples.31.7. Generating atomi
 STAsThe program is translated to a sequen
e of intermediate
ommands that are either as-signments or jumps and then two STAs are generated for ea
h intermediate
ommand.The �rst of these des
ribes transitions from the beginning of a
omand to its end; the se
-ond des
ribes transitions from anywhere inside the
ommand to its end. Before explainingthis the formalization of \beginning", \inside" and \end" must be given.Figure 1.1 shows both the intermediate
ommands and the �nal ma
hine instru
tionsfor MultProg. Consider the intermediate
ommand with number 13: the beginning ofthis is the ma
hine instru
tion numbered 27 (i.e. GET x) and the end of it is after thema
hine instru
tion numbered 33 (i.e. JMP 42). The exe
ution of MultProg is said to beinside intermediate
ommand number 13 if it is exe
uting a ma
hine instru
tion whosenumber is in the set f27; 28; 29; 30; 31; 32; 33g. Both intermediate
ommands and ma-
hine instru
tions will be indexed by their position. A program P de�nes, via the
om-piler, a mapping Positions(P) from
ommand numbers to instru
tion numbers in whi
hea
h
ommand number is mapped to the number of its �rst instru
tion. For example,Positions(MultProg) is the following mapping.3383,547 primitive inferen
e steps were performed, mostly automati
ally, to verify MultProg.

1.7. GENERATING ATOMIC STAS 15
0: avail := 1 .. 0: OP0 11: PUT avail1: IF INPUT req THEN SKIP ELSE GOTO 18 2: INP req3: JMZ 442: avail := 0 .. 4: OP0 05: PUT avail3: x := INPUT in1 .. 6: INP in17: PUT x4: y := INPUT in2 .. 8: INP in29: PUT y5: IF NOT(INPUT req) THEN SKIP ELSE GOTO 7 10: INP req11: OP1 NOT12: JMZ 146: GOTO 10 ... 13: JMP 187: IF INPUT reset THEN SKIP ELSE GOTO 9 14: INP reset15: JMZ 178: GOTO 10 ... 16: JMP 189: GOTO 5 .. 17: JMP 1010: out := 0 .. 18: OP0 019: PUT out11: IF NOT x OR NOT y THEN SKIP ELSE GOTO 13 20: GET x21: OP1 NOT22: GET y23: OP1 NOT24: OP2 OR25: JMZ 2712: GOTO 17 ... 26: JMP 4213: IF x > 0 AND NOT(INPUT reset) THEN SKIP ELSE GOTO 17 .. 27: GET x28: OP0 029: OP2 >30: INP reset31: OP1 NOT32: OP2 AND33: JMZ 4214: out := out + y .. 34: GET out35: GET y36: OP2 +37: PUT out15: x := x - 1 .. 38: GET x39: OP1 pre40: PUT x16: GOTO 13 ... 41: JMP2717: avail := 1 .. 42: OP0 143: PUT avail18: GOTO 0 .. 44: JMP 0Figure 1.1. Intermediate
ommands and ma
hine instru
tions for MultProg

16 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYf0 7! 0; 1 7! 2; 2 7! 4; 3 7! 6; 4 7! 8; 5 7! 10; 6 7! 13;7 7! 14; 8 7! 16; 9 7! 17; 10 7! 18; 11 7! 20; 12 7! 26; 13 7! 27;14 7! 34; 15 7! 38; 16 7! 41; 17 7! 42; 18 7! 44gRe
all that the state of the sta
k ma
hine is a triple (p
; stk ;mem)
onsisting of a program
ounter p
 : N , a sta
k stk : seq N and a memory mem : name ! N . De�ne:At(P) n (p
; stk ;mem) = (p
 = Positions(P)(n))In(P) n (p
; stk ;mem) = (Positions(P)(n) � p
 < Positions(P)(n + 1)) .Then At(P)n is the predi
ate on states that is true of � i� � is at the beginning of theintermediate
ommand numbered n in program P and In(P)n is the predi
ate on statesthat is true of � i� � is inside
ommand n.Consider a program P
ontaining an assignment at position n2::n1: : : :n2: x := ((INPUT in) + y)n3: : : ::Given a list of signi�
ant state variables (e.g. x, y and z), the STA generator will auto-mati
ally dedu
e two STAs for the
ommand at n2:
Ma
hine(Compile P) j= At(P) n2x � xy � yz � z

By 4264 In(P) n2y � yz � z 375[in � in℄ > At(P) n3x � in+yy � yz � z
Ma
hine(Compile P) j= In(P) n2x � xy � yz � z

By 4264 In(P) n2y � yz � z 375True > At(P) n3y � yz � zThe �rst of these asserts that if the input in is held stable with value in, then thereis a transition taking at most four
y
les from the beginning of the
omand at n2 to thebeginning of the
ommand at n3. During this transition only states in n2 are passedthrough and the values of y and z are un
hanged, but the value of x
hanges to in+y ,where y is the value of the variable y.The se
ond of these asserts that under arbitary input
onditions, there is a transitionfrom anywhere in n2 to the begining of n3. This transition takes at most four
y
les, onlypasses through states in n2 and doesn't
hange the values of x and y.The implemented tool also automati
ally proves that the sta
k will grow by at mosttwo during the transition, but be
ause this feature is not used in the Mult example thedetails are not dis
ussed here.

1.8. LAWS FOR COMBINING STAS 17The �rst stage in verifying MultProg is to generate two STAs for ea
h of the nineteenintermediate
ommands. The result of this will not be shown here due to la
k of spa
e.Note, however, that users of the veri�
ation tool are not expe
ted to have to study theseatomi
 STAs in detail; they are fed into other tools that derive higher level results. Thesetools
ombine the atomi
 STAs using various derived laws.1.8. Laws for
ombining STAsSome of the laws for
ombining STAs are analogous to rules of Hoare logi
. In what fol-lows P , Q et
. will range over predi
ates on sequen
es, p, q et
. will range over predi
ateson the elements of sequen
es and A, B et
. will range over predi
ates on states.Ea
h law applies to an arbitrary ma
hine. For
on
iseness, \M j=" has been omittedfrom STAs in the hypothesis and
on
lusion of the laws.1.8.1. The
onsequen
e ruleThe following is similar to the rule of
onsequen
e of Hoare logi
. It allows pre
onditionsto be strengthened and post
onditions to be weakenedA0 =) A P 0 =) P A QP > B B =) B 0 Q =) Q 0A0 Q 0P 0 > B 01.8.2. The sequen
ing ruleThe sequen
ing rule allows sequen
es of transitions to be
ombined into a single longtransition. A By Æ1 ^ [q1℄[p1℄ > B B By Æ2 ^ [q2℄[p2℄ > CA By(Æ1+Æ2) ^ [q1 _ q2℄[p1 ^ p2℄ > CThis rule requires that the input pre
onditions [p1℄ and [p2℄ are
onjoined in the
on
lusion,so that both p1 and p2 are required to hold throughout the
ombined transition. Thisis suÆ
ient for the Mult example, but a stronger rule would have [p1℄;[p2℄ as the inputpre
ondition of the
on
lusion, where ; is a
hop operator of interval temporal logi
 [3℄.

18 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDY1.8.3. Cases rulesThere are two
ases rules. One for
ase analysis of state pre
onditions:A1 QP > B A2 QP > BA1 _ A2 QP > Band the other for
ase analysis of input pre
onditions:A QP1 > B A QP2 > BA QP1 _ P2> BA
ombination of sequen
ing and
ases
an be used to establish the resetting behaviour:MultMa
hine j= True By 43[reset � 1℄> At(MultProg) 0The argument pro
eeds by �rst splitting the universally true predi
ate True into a20-way disjun
tion asserting that
ontrol is either outside the program or is inside oneof the intermediate
ommands. For ea
h
ase, the sequen
ing rule applied to atomi
STAs
an be used to show that under the assumption of reset � 1 the post
onditionAt(MultProg) 0 is eventually a
hieved. Showing these amounts to symboli
 exe
utionfrom an arbitrary starting position. The results of ea
h of these
ases are
ombined usinga
ases rule. Although there is a substantial amount of detail, a reset-analysis tool hasbeen implemented that performs the proof automati
ally.1.8.4. The wait loop ruleThe next STA rule enables the existen
e of wait states to be dedu
ed. Unfortunately therule is rather
ompli
ated and
ontains a number of hypotheses that are hard to motivatein a general way (their ne
essity only be
omes apparent when the detailed derivation ofthe rule is
onsidered, whi
h is not done here).To see why waiting states
an be rather subtle
onsider MultSpe
. To meet this spe
i-�
ation it is ne
essary to have a predi
ate, Ready z say, that satis�es bothReady z =) (avail � 1 ^ out � z)and req � 0 Holds (Ready z)Consider now the exe
ution of MultProg when it is waiting to start a handshake. It willbe
y
ling between intermediate
ommands 0, 1 and 18 waiting for req to be
ome 1 (seeFigure 1.1). Abbreviate In(MultProg) to In. Perhaps Ready z
ould be de�ned by:Ready z =def ? (In 0 _ In 1 _ In 18) ^ (avail � 1 ^ out � z)

1.8. LAWS FOR COMBINING STAS 19Unfortunately this de�nition will not ensure req � 0 Holds (Ready z). To see thissuppose
ontrol is at ma
hine instru
tion 3 (JMZ 44), avail is 1 and out is z . Thepredi
ate In 1 will be true (sin
e ma
hine instru
tion 3 is part of intermediate
ommand1) and hen
e Ready z is true. Suppose now that the environment makes input req be 0. Ifreq � 0 Holds (Ready z) then the next state of the ma
hine (i.e. the one after exe
utingJMZ 44) must satisfy Ready z , however this will only be the
ase if the top of the sta
k
ontains 0, whi
h will only be the
ase if req were true on the previous
y
le (i.e. whenINP req was exe
uted). Thus req being 0 at instru
tion 3 does not ensure that Ready zis held. It is ne
essary to assume that the top of the sta
k is 0 rather than that the inputreq is 0. Thus the de�nition of Ready given above will not work. The solution used bythe wait loop rule is to de�ne Ready z to be true of a state � if � is rea
hable from astate satisfying At 1 via a tra
e in whi
h all the intermediate states satisfy the invariantavail � 1 ^ out � z and all the intermediate inputs satisfy req � 0. If this is the
asethen ma
hine instru
tion 3 will have been rea
hed from a pre
eding state in whi
h 0 wasread onto the top of the sta
k.In the
ompli
ated looking rule that follows, the predi
ate A
hara
terizes the top ofa wait loop. If the environment maintains the holding
ondition p1, then the waitingis maintained and A is true ea
h time the loop starts a new iteration. The invariant qholds during the wait loop. The predi
ate B is true of the �rst state not in the loop; itis rea
hed if the environment maintains the breakout
ondition p2 for at least Æ1 ma
hine
y
les. The �rst and last hypotheses of the rule are ne
essary te
hni
al
onditions. The�rst hypothesis says that the breakout state is not passed though during the wait loop.The last hypothesis says that if the loop is started then no matter what inputs arrive,within Æ2
y
les
ontrol will either return to the top of the loop or have left the loop.(q =) :B) ^ 0B�A [q ℄[p1℄ > A1CA ^ 0�A By Æ1[p2℄ > B1A ^ 0�A By Æ2True> A _ B1A9W : (p1 Holds W) ^ 0B�W By(Æ1+Æ2)[p2℄ > B1CA ^ (A =) W) ^ (W =) q)The appli
ation of this rule to MultProg is now shown. The hypotheses of the appli
a-tion are the following four fa
ts. The �rst one follows dire
tly from de�nitions; the otherthree
an be dedu
ed from automati
ally generated atomi
 STAs.(In 0 _ In 1 _ In 18) ^ (avail � 1 ^ out � z) =) :(At 2 ^ avail � 1 ^ out � z)At 1avail � 1out � z " In 0 _ In 1 _ In 18avail � 1 ^ out � z #[req � 0℄ > At 1avail � 1out � zAt 1avail � 1out � z By 2[req � 1℄> At 2avail � 1out � z

20 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYAt 1avail � 1out � z By 5True> 0B� At 1avail � 1out � z _ At 2avail � 1out � z 1CAFrom these hypotheses, the wait loop rule dire
tly yields the existen
e of a predi
ate W zsu
h that:(req � 0) Holds (W z)andW z By 7[req � 1℄> At 2avail � 1out � zandAt 1 ^ avail � 1 ^ out � z =) W zandW z =) (In 0 _ In 1 _ In 18) ^ (avail � 1 ^ out � z)The desired result is obtained by de�ning Ready to be W . The appli
ation of the waitloop rule has been fully automated and so most of the details just shown are generatedby a pro
edure and need not
on
ern the user. The existen
e of a predi
ate A
k x y z
an be dedu
ed similarly.1.8.5. The while ruleThe while rule for STAs is analogous to the while rule of a Hoare logi
 of total
orre
t-ness. It is formulated here in terms of predi
ates on sta
k ma
hine states, though it
ouldbe expressed abstra
tly in terms of arbitrary predi
ates as was done for the wait loop rule.First some notation. A ve
tor of names hx1; : : : ; xni will be abbreviated to ~x and similarlya ve
tor hx1; : : : ; xni of values will be abbreviated to ~x . The predi
ate ~x � ~x abbreviatesthe
onjun
tion of predi
ates x1 � x1 ^ : : : ^ xn � xn . The predi
ate v � x is true ofa state (p
; stk ;mem) i� mem v < x . If f is a fun
tion from ve
tors of values to ve
torsof values and A, B are predi
ates on ve
tors of values, then the Hoare logi
 like notationfAgf fBg means 8~x : A ~x) B(f ~x).In the while rule for STAs that follows, Inv and B are arbitrary predi
ates on ve
torsof values
alled the invariant and test , respe
tively. The fun
tion f spe
i�ed the state-
hange ea
h time around the loop (i.e. the `meaning' of the body of the `while loop').The �rst hypothesis of the rule says that Inv is an invariant and the value of xi de
reasesea
h time around the loop (i.e. xi is a variant). The se
ond hypothesis is that the loopstarts with the values ~x of ~x in the memory satisfying Inv . It is assumed that the topof a while loop is at itermediate
ommand n. If the test B fails, the loop exits to the
ommand numbered n2, without
hange of memory and taking Æ1
y
les. If B su

eedsthen
ontrol transfers to n1, without
hanging the memory and taking Æ1
y
les, and thenba
k to n with the memory
hanged by f and taking another Æ2
y
les.Thus while B remains true the program loops from n to n1 then ba
k to n takingÆ1+ Æ2
y
les and transforming the values of the ve
tor of variables ~x by f ea
h time. The
on
lusion of the rule is that the loop will terminate within Æ1+(Æ1+Æ2)�xi
y
les, where

1.8. LAWS FOR COMBINING STAS 21xi is the value of the variant xi when the loop started. On termination the invariant stillholds, but the test B is false. Here is the while rule for STAs.fInv ^ B ^ xi � xig f fInv ^ xi � xigInv ~x8~x : 0� At n~x � ~x By Æ1[p1℄> At(B ~x ! n1 j n2)~x � ~x 1A8~x : 0� At n1~x � ~x By Æ2[p2℄> At n~x � f ~x 1A9~x 0: 0B� At n~x � ~x By(Æ1 + (Æ1+Æ2)� xi)[p1 ^ p2℄ > At n2~x � ~x 0 1CA ^ Inv ~x 0 ^ :(B ~x 0)As an example of the STA while rule
onsider the iteration:WHILE (x > O) AND NOT(INPUT reset)DO out := out + y;x := x - 1ODThis translates to the following intermediate form (see Figure 1.1).13: IF x > 0 AND NOT(INPUT reset) THEN SKIP ELSE GOTO 17 .. 27: GET x28: OP0 029: OP2 >30: INP reset31: OP1 NOT32: OP2 AND33: JMZ 4214: out := out + y .. 34: GET out35: GET y36: OP2 +37: PUT out15: x := x - 1 .. 38: GET x39: OP1 pre40: PUT x16: GOTO 13 ... 41: JMP27From whi
h the following two STAs
an be generated (the free variables reset , x , y andout are assumed to be universally quanti�ed).At 13x � xy � yout � out By 7[reset � reset ℄> At(x > 0 ^ :(reset = 1) ! 14 j 17)x � xy � yout � outAt 14x � xy � yout � out By 8True> At 13x � x � 1y � yout � out + y

22 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYFor arbitary r take:Invrhx ; y ; outi = (out+(x�y) = r)Bhx ; y ; outi = x > 0 ^ :(reset = 1)f hx ; y ; outi = hx�1; y ; out+yiIt follows that fInvr ^ B ^ x � mg f fInvr ^ x < mg and hen
e by the while rule, ifout+(x�y) = r then there exists x 0, y 0 and out 0 su
h that:0BBB� At 13x � xy � yout � out By(7 + (7+8)� x)[reset � reset ℄ > At 17x � x 0y � y 0out � out 0 1CCCA ^ Invrhx 0; y 0; out 0i ^ :Bhx 0; y 0; out 0iHen
e out 0+(x 0�y 0) = r (the invariant still holds) and :(x 0 > 0 ^ :(reset = 1)) (the testis false). If reset = 0 then it follows from the test being false that x 0 = 0 and then if r istaken to be x � y it follows from the invariant still holding that out 0 = x � y . Hen
e:At 13x � xy � yout � 0 By(7+15�x)[reset � 0℄> At 17x � 0y � y 0out � x�yBy
hoosing a slightly more
omplex invariant it
ould also be shown that the value of yis un
hanged by the iteration.1.9. Con
lusionsThe analysis of real-time programs is notoriously
omplex. The approa
h outlined heretightly
ouples the formalism used (STAs) with theorem proving tools, the aim being toautomate away as mu
h detail as possible. The
urrent me
hanization requires the userto invoke tools, su
h as the wait loop synthesizer and the while rule, on an intermediaterepresentation of the high-level program
onsisting of sequen
es of assignments and jumps.In the future, it is hoped to try to hide this level
ompletely by guiding the veri�
ationvia annotations in the program. The goal, only partially a
hieved so far, is to requirethe user to manually prove `mathemati
al' veri�
ation
onditions, but to have all STAmanipulations performed automati
ally. Progress towards this goal appears in the paperentitled `A Hoare logi
 of state transitions' in
luded in the Fests
hrift for Professor Hoare,edited by Bill Ros
oe and published by Prenti
e-Hall in 1994. In that paper it is shownhow the while rule for STAs
an be automati
ally invoked via annotations in the high-levelprogram. This is a
hieved by de�ning a Hoare logi
 of state transitions.The approa
h taken here
an be viewed as lying somewhere in the middle of a spe
trumwith
onventional veri�
ation plus a veri�ed
ompiler at one end, and pure ma
hine
odeveri�
ation at the other. Conventional veri�
ation using a high-level semanti
s has manyadvantages: properties of programs
an be proved that are independent of the
ompilerused. If a veri�ed
ompiler is available, then analysis
an be
ondu
ted within an abstra
tsemanti
s and then applied, via a
ompiler
orre
tness statement, to ma
hine
ode [2℄.

1.9. CONCLUSIONS 23At the other extreme, one
an model the host ma
hine semanti
s and then verify ma
hine
ode programs (got, for example, by running produ
tion Ada
ompilers) by reasoningabout pro
essor transitions. Impressive work of this sort has been done by Yuan andBoyer [6℄. Between these two extremes lies the work presented here. The te
hniquesare in the spirit of Yuan and Boyer in that they are based on a semanti
s derived fromthe exe
ution of ma
hine instru
tions (though Yuan and Boyer use a real ma
hine in the68000 family, whereas an enormously simpler abstra
t ma
hine is used here). However, thereasoning is
ondu
ted through an abstra
t view of the ma
hine
ode provided by a highlevel programming language. Proofs are
ondu
ted using Hoare-style proof rules normallyasso
iated with high-level languages; but the interpretation of the Hoare-senten
es is low-level.

24 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDY

BibliographyREFERENCES1 J. A. Camilleri. Symboli

ompilation and exe
ution of programs by proof: A
asestudy in HOL. Te
hni
al Report 240, Computer Laboratory, University of Cambridge,UK, De
ember 1991.2 P. Curzon. Deriving
orre
tness properties of
ompiled
ode. In L. Claesen andM. Gordon, editors, Pro
eedings of the International Workshop on Higher Order Logi
Theorem Proving and its Appli
ations. North-Holland, 1992.3 J. Halpern, Z. Manna, and B. Moszkowski. A hardware semanti
s based on tempo-ral intervals. In Pro
. 10th International Colloquium on Automata, Languages andProgramming, Bar
elona, Spain, 1983.4 C. A. R. Hoare. An axiomati
 basis for
omputer programming. Communi
ations ofthe ACM, 12:576{583, O
tober 1969.5 B. Levy, I. Filippenko, L. Mar
us, and T. Menas. Using the state delta veri�
ationsystem. In Pro
. IFIP TC10/WG 10.2 International Conferen
e on Theorem Proversin Cir
uit Design, pages 337{360. North-Holland, June 1992.6 Y. Yu. Automated Proofs of Obje
t Code for a Widely Used Mi
ropro
essor. PhDthesis, The University of Texas at Austin, yuanyu�
om.de
.sr
, 1992.

25

