
Towards Veri�ed SystemsOVERVIEW
Jonathan Bowen (Ed.)

Otober 7, 1993DRAFT CHAPTER BY MJCG

Contents
1 State transition assertions: a ase study 31.1 An example: Mult : 41.1.1 Overview : 41.1.2 Informal spei�ation of Mult : 51.1.3 MultProg: an implementation of Mult : : : : : : : : : : : : : : : : 61.2 More detailed spei�ation of Mult : 71.3 Determining a mahine from a program : 71.4 State transition assertions : 101.4.1 Holding states : 111.5 Formal spei�ation of Mult : 121.6 Corretness of MultProg : 141.7 Generating atomi STAs : 141.8 Laws for ombining STAs : 171.8.1 The onsequene rule : 171.8.2 The sequening rule : 171.8.3 Cases rules : 181.8.4 The wait loop rule : 181.8.5 The while rule : 201.9 Conlusions : 22Bibliography 24

1

2 CONTENTS

Chapter 1State transition assertions:a ase studyM.J.C. GordonOverviewThe temporal behaviour of programs that interat with their environment depends onthe ompiler used and the timing harateristis of the host proessor. Working out thedetails an be messy. As part of the safemos projet, an approah to managing thisomplexity based on speial-purpose theorem proving tools, has been developed. Spei-�ations are written in a state transition notation annotated with real-time onstraints.Implementations are programs oded in a simple imperative language with assignments,sequening, onditionals, asynhronous inputs, wait-statements, while-ommands andforever-loops. The meaning of programs is de�ned by a translation to sequenes of ma-hine instrutions, but automated tools an derive behavioural abstrations, alled statetransition assertions (or STAs) that enable reasoning to be onduted near the soureprogram level.At the ore of the approah are a number of `laws' for ombining STAs. These arederived from the de�nition of state transition assertions and are thus theorems rather thanaxioms. These laws ombine aspets of Hoare logi [4℄ and interval temporal logi [3℄. Aspeialized theorem prover automatially generates STAs that desribe the behaviour ofa program onsidered as a sequene of assignments and jumps (see Setion 1.3). Semi-automati tools then ombine these `atomi STAs' to derive STAs for straight line odesegments and ertain looping strutures, inluding wait loops. Finally, a user interativelyombines these derived STAs to establish properties of the andidate implementation.The mahine used in the semantis is idealized: it has an unbounded stak and un-spei�ed word-size. Some mehanized tools have been implemented to enable the atualresoures required by a given program to be analysed (e.g. to determine the maximumstak depth). After suh an analysis has been arried out, a �nite mahine ustomizedto the program and suitable for physial realization an be omputed. It is intended thatsuh mahines will implemented diretly in hardware (e.g. with �eld programmable gate3

4 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYarrays) or via a software emulation; in both ases it is neessary to prove that the abstratmahine used as a semanti base is orretly implemented. The physial realization ofabstrat mahines is not onsidered here.1.1. An example: MultThe example program studied here implements a reative system whih is required tomeet hard real-time onstraints. It is also required to be resettable from an arbitraryproessor state within a hard real-time bound; this is intended to support fault reoveryprotools. The approah adopted is to ount the number of mahine yles taken by theompiled ode. This very �ne-grained kind of analysis may be quite inappropriate insome situations; intended appliations inlude low-level ommuniation software, ritialsystems requiring very rapid responses and the software emulation of hardware funtions.The example in this hapter illustrates aspets of all of these.Programs use a very simple low-level input/output model. Inputs are `asynhronously'supplied by the environment, outputs are `memory mapped'. When an input is read, theprogram gets whatever value the environment happens to be o�ering at the time of theread. For example, inputs might be provided diretly by a sensor. It is assumed inputs aredigitized, but not that they are lathed. Outputs, on the other hand, are identi�ed withpartiular program variables whose values are assumed to remain stable until hanged.Thus outputs are lathed. This partiular treatment of input/output was hosen fortwo reasons: it orresponds to a simple physial implementation and it an be used tomodel more omplex regimes. For example, a regime in whih inputs are lathed wouldbe modeled by requiring the environment to hold inputs stable between input events.The example in this hapter may be viewed as a study of the �ne detail underlying apartiular kind of synhronized ommuniation. Juanito Camilleri has studied this topimore generally, with the eventual aim of produing a veri�ed implementation of oam-style synhronized ommuniation in terms of the simple input/output model desribedhere [1℄.1.1.1. OverviewMult is a multiplier that reats with the environment via a four-phase handshake. The�rst phase is a request by the environment that two numbers be read from input lines;the seond phase is the reading of these by the program; the third phase is the initiation,by the environment, of the multipliation of the two numbers read in during the seondphase; the fourth phase is the omputation of the produt. At the end of suh a yle theprogram outputs the omputed produt whilst awaiting the �rst phase of a new yle.The �rst three phases all take plae within a �xed time bound; the duration of the fourthphase depends on the size of the numbers being multiplied.

1.1. AN EXAMPLE: MULT 51.1.2. Informal spei�ation of MultMult has two data inputs in1 and in2 that arry numbers.1 It has two ontrol inputsreq and reset that arry truthvalues (i.e. single bits). It has one numerial data outputout and one boolean2 ontrol output avail.In the normal operation of Mult there are just four possibilities, orresponding to thefour phases of the handshake: (i) it is waiting to engage in a handshake; (ii) it is readinginputs; (iii) it is waiting to start a multipliation; (iv) it is performing a multipliation.Both (i) and (iii) are `wait states': the waiting will ontinue inde�nitely until the environ-ment sends the appropriate signal via the req input (see below). The other possibilities,(ii) and (iv), are transitions between waiting states.It is required that no matter what state the host proessor is in, if the environmentholds reset at the value 1 ontinuously for Æ1 yles, then the system Mult will be resetto the state (i) of waiting to engage in a handshake. In this state the value output onavail is 1.The environment signals the start of a handhake by hanging the input req from 0 to 1.When this happens, it is required that the system will input the values, m and n say, oninputs in1 and in2 and move to a state in whih it is waiting to start the multipliationof m and n. This inputting transition is required to omplete within Æ2 proessor yles.The system will then wait, outputting 0 on avail, until the environment sets the inputreq to 0. When that happens the system will ompute m � n, output this value on out,and then return to the initial state. This multipliation transition is required to takeplae within Æ3(m) yles. The timing parameters Æ1 and Æ2 are given numbers and Æ3 isa given funtion.This spei�ation requires that if Mult is waiting to engage in a handshake, then theprodut m�n an be omputed in Æ2+Æ+Æ3(m) mahine yles, where Æ is the number ofmahine yles taken by the environment to set req to 0 after m and n have been input.But how an the environment know when Mult is in the state of waiting to engage in ahandshake? It is spei�ed that in this state avail has value 1, but the onverse is notneessarily the ase. For example, the value of avail will ontinue to be 1 for a short timeafter the environment sets req to 1, i.e. during the �rst part of phase (ii) of the handshake.It is tempting to require in the spei�ation that avail be 1 if and only if the system iswaiting to engage in a handshake, but suh a spei�ation would be unimplementable.This is beause there will always be time delays in sensing environmental hanges and thenommuniating the results to outputs, hene there will always be times at whih internalstate hanges have ourred, but not yet been signalled on outputs. In general, whentiming is onsidered, it is not possible to haraterize internal states by instantaneousvalues on outputs. However, if inputs and outputs are observed over a sequene of yles,then onlusions about internal states an be drawn. For example, if the input reset hasbeen 1 for Æ1 yles, then the spei�ation requires the system to be waiting to engage ina handshake.1For simpliity, arbitrary-preision (i.e. `mathematial') numbers are used here but, at the expense ofsome arithmetial messiness, �nite-preision numbers ould have been used instead.2The truthvalues T and F will be represented by the numbers 1 and 0, respetively, beause the program-ming language used only supports one data type: the natural numbers N.

6 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDY1.1.3. MultProg: an implementation of MultHere is a program that implements Mult.0: MultProg =1: FOREVER2: avail := 1;3: IF INPUT req4: THEN avail := 0;5: x := INPUT in1;6: y := INPUT in2;7: AWAIT[NOT(INPUT req); INPUT reset℄;8: out := 0;9: IF (x=0) OR (y=0)10: THEN SKIP11: ELSE WHILE (x > 0) AND NOT(INPUT reset)12: DO out := out + y;13: x := x - 114: OD15: avail := 116: ELSE SKIPThe ommand FOREVER C is an abbreviation for WHILE TRUE DO C . The ommandAWAIT[E1; : : : ; En ℄ loops until one of E1, : : :, En beomes true (i.e. has the value 1) andthen ontrol moves to the next ommand. Evaluating an expression INPUT i reads theurrent value o�ered by the environment at input i and returns the result. Outputsare identi�ed with program variables, so are set by assignment. The other onstruts inMultProg should be self-explanatory.Note that there is some arbitrariness in the plaement of assignments. The ourrene ofavail:=1 on line 2 ould be moved to before the FOREVER-loop. The assignment avail:=0is performed before the inputs in1 and in2 are read, however the spei�ation onlyrequires avail to be 0 when Mult is waiting to start the multipliation. The veri�ationgiven here also works if avail:=0 is performed after the two reads, or even between them(perhaps this indiates that the spei�ation is inadequate: maybe it should be requiredthat the inputs remain stable only as long as avail is 1).MultProg works as follows: initially it is waiting to engage in a handshake by loopingbetween lines 2, 3 and 16 in the outer FOREVER-loop. If the input req is 1 then eventuallythe test at line 3 will be reahed and then lines 4, 5 and 6 will be exeuted in sequeneresulting in avail being set to 0 and the values at inputs in1 and in2 being read intothe variables x and y, respetively. The program will then loop at the AWAIT-ommandat line 7. If either req is 0 or reset is 1 this ommand will terminate, ontrol will moveto line 8 and the multipliation will begin with out being initialized to 0. If either of thetwo numbers to be multiplied are 0, then nothing needs to be done (line 10), avail is setbak to 1 (line 15) and the system is ready again to engage in a handshake. However, ifeither of x or y is non-zero, then the produt is omputed in out by repeatedly adding yto out (lines 11|14). Note that eah time around this WHILE-loop, reset is tested and iffound to be 1 the loop is terminated. One the loop is terminated, whih (in the abseneof a 1 at reset) will be in a time proportional to the value read into x, avail is set to1 (line 15) and ontrol returns to the outer loop (lines 2, 3, and 16) and the system isready to engage in another handshake, i.e. is bak in phase (i).It is lear by inspetion, that if reset is held at 1 for suÆiently long then ontrol willeventually move to the outer FOREVER-loop. This is beause all loops test reset.

1.2. MORE DETAILED SPECIFICATION OF MULT 71.2. More detailed spei�ation of MultThe view of real-time systems taken here is that they are sequential mahines. Aspei�ation plaes requirements on the behaviour of a mahine and an implementationis an atual mahine that meets these requirements. The reason for this rather onreteapproah is to try to minimize the gap between abstrat models of behaviour and realmahines. The devie that ultimately runs programs implements a sequential mahine,so it helps tie the hardware and software veri�ations together if they both use the samekind of behavioural model.A mahine is a funtion M : inputs ! (state ! state). M should be thought of asan instrution proessor: if the environment o�ers an array of inputs � and the urrentstate is �, then exeuting the next instrution results in the state M � � . The state willinlude a program ounter and a memory that assoiates state variables with data values.This memory is a funtion from names to values (i.e. numbers). Inputs too are modelledby funtions from names to values. It is assumed that at eah moment the environmentspei�es a value � i for eah input i, i.e. it determines a mapping � : name ! N , thatvaries with time. For any partiular system there will only be a small �nite numberof inputs (in1, in2, req and reset for Mult), but this fat does not need to be built-in to the general theory. It will be assumed that some state variables are readable bythe environment (avail and out for Mult). During eah yle of exeution of M, aninstrution is seleted and exeuted, resulting in a new state. If the instrution is aninput, then this new state will depend on the inputs supplied by the environment.In what follows, it is �rst shown how the program MultProg in Setion 1.1.3 determinesa mahine and then how the informal spei�ation Mult in Setion 1.1.2 an be expressedas a prediate on mahines. Finally, a method is outlined for proving that programs meetspei�ations and it is illustrated using MultProg and Mult.1.3. Determining a mahine from a programIt is straightforward to de�ne a funtion that reursively translates a program to asequene of assignments and onditional jumps. For example, one partiular algorithmtranslates MultProg to:0: avail := 11: IF INPUT req THEN SKIP ELSE GOTO 182: avail := 03: x := INPUT in14: y := INPUT in25: IF NOT(INPUT req) THEN SKIP ELSE GOTO 76: GOTO 107: IF INPUT reset THEN SKIP ELSE GOTO 98: GOTO 109: GOTO 510: out := 011: IF NOT x OR NOT y THEN SKIP ELSE GOTO 1312: GOTO 1713: IF x > 0 AND NOT(INPUT reset) THEN SKIP ELSE GOTO 1714: out := out + y15: x := x - 116: GOTO 1317: avail := 118: GOTO 0

8 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYAssignments and onditional jumps require the evaluation of an expression, whih maybe arbitrarily large, and thus take an arbitrary amount of time to evaluate. It is thusnot immediately lear how a sequene of assignments or jumps an be diretly repre-sented by a mahine. Another triky issue onerns input. Consider the onditionaljump on line 13: the exat time at whih reset is read depends on how the expressionx > 0 AND NOT(INPUT reset) is evaluated.To speify the detailed semantis of expression evaluation, programs will be furthertranslated to sequenes of instrutions for a simple stak mahine with the followinginstrution set.JMP n unonditional jump to instrution nJMZ n pop stak then jump to instrution n if the result is zeroJMN n pop stak then jump to instrution n if the result is non-zeroPOP pop the top of the stakOP0 v push v onto the stakOP1 op1 pop one value from stak, perform unary operation op1, push resultOP2 op2 pop two values from stak, perform binary operation op2, push resultGET x push the ontents of memory loation x onto the stakINP i push the input from i onto the stakPUT x pop the top of the stak and store the result in memory loation xIt is straightforward to de�ne a translation of assignments and jumps to sequenes ofmahine instrutions. For example, the onditional jump at line 13 is translated to thefollowing sequene of stak mahine instrutions:GET xOP0 0OP2 >INP resetOP1 NOTOP2 ANDJMZ ...It will be assumed that the operations >, NOT and AND an be performed in one mahineyle, thus the stak mahine ode determines that x > 0 AND NOT(INPUT reset) takes7 yles, and the input ours on the 4th yle.The state of the stak mahine is a triple (p; stk ;mem) onsisting of a program ounterp : N , a stak stk : seq N and a memorymem : name ! N . The model given here does notspeify an upper bound on the length of the stak or size of data. Of ourse, real mahinesare �nite so any atual implementation will have a bounded stak and a partiular wordsize. The intension is to provide tools that `�t' a given program into a �nite re�nementof the mahine; this will not be disussed in detail here (though see the example statetransition assertion in Setion 1.4).The semantis of the instrutions of the stak mahine is de�ned by a funtion Step. Be-fore de�ning Step, some auxiliary notation is required. A onditional `if b then e1 else e2'will be written as (b ! e1 j e2). The empty sequene is denoted by h i, hx i denotesthe sequene with one member, x and hx1; x2; : : : ; xni denotes the sequene (of length n)ontaining x1, x2, : : :, xn . The length of a sequene s is denoted by #s. The nth element

1.3. DETERMINING A MACHINE FROM A PROGRAM 9of a sequene s will be denoted by s n and the tail of s will be denoted by ys. Thetail of h i is de�ned to be h i (sequenes will be used to represent staks and the stakmanipulating instrutions are spei�ed so that popping an empty stak leaves an emptystak). The onatenation of sequenes s1 and s2 will be denoted by s1 a s2. Note thatthe result of `onsing' x onto a sequene s is hx ia s. If mem is a funtion representing amemory (i.e. a funtion from names to values), then Store v x mem denotes the memoryidential to mem exept on argument x , whih it maps to v , i.e. the memory updatedwith value v at x .The funtion Step an now be de�ned. Its type is:Step : instrution ! (inputs ! state ! state)where:inputs = name ! Nstate = program�ounter � stak � memoryprogram�ounter = Nstak = seq Nmemory = name ! NStep is de�ned by:Step (JMP n) � (p; stk ;mem) = (n; stk ;mem)Step (JMZ n) � (p; stk ;mem) = ((stk 1 = 0 ! n j p+1); ystk ;mem)Step (JMN n) � (p; stk ;mem) = ((stk 1 = 1 ! n j p+1); ystk ;mem))Step (POP) � (p; stk ;mem) = (p+1; ystk ;mem)Step (OP0 v) � (p; stk ;mem) = (p+1; hvia stk ;mem)Step (OP1 op1) � (p; stk ;mem) = (p+1; hop1(stk 1)ia ystk ;mem)Step (OP2 op2) � (p; stk ;mem) = (p+1; hop2(stk 2; stk 1)ia yystk ;mem)Step (GET x) � (p; stk ;mem) = (p+1; hmem x ia stk ;mem)Step (INP i) � (p; stk ;mem) = (p+1; h� iia stk ;mem)Step (PUT x) � (p; stk ;mem) = (p+1; ystk ; Store (stk 1) x mem)The mahine Mahine instrs determined by a sequene of instrutions instrs is de�nedby:Mahine instrs � (p; stk ;mem) =(p < #instrs ! Step (instrs(p+1)) � (p; stk ;mem) j (0; stk ;mem))The reason for p+1 is beause the program ounter starts at 0 not 1. Note that if theprogram ounter p points outside the program (i.e. p � #instrs) then the mahinejumps to 0.If P is a program, let Compile P denote the translation of P to stak mahine in-strutions; this is the omposition of the translation to assignments and jumps withthe translation of these to mahine instrutions. The mahine determined by P is thusMahine(Compile P). For example, the mahine orresponding to MultProg is denoted byMahine(Compile MultProg); this will be alled MultMahine.

10 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDY1.4. State transition assertionsSpei�ations are formalized as prediates on mahines. The informal spei�ation ofMult given in Setion 1.1 involved a number of transitions between wait states. Thesean be represented using a kind of assertion, alled a state transition assertion (or STA),that ombines aspets of the `leads-to' and `until' operators of temporal logi and alsoresembles a state delta [5℄. The general form of an STA is:M j= A QP > Bwhere:� M : inputs ! state ! state is a mahine;� A : state ! B is alled the state preondition;� B : state ! B is alled the state postondition;� P : seq inputs ! B is alled the input preondition;� Q : seq state ! B is alled the output postondition.The intuition behind state transition assertions is straightforward: if M is in a statesatisfying A and a sequene of inputs arrives that satis�es P , then a state satisfying B willbe reahed and the sequene of intermediate states will satisfy Q . The formal de�nitionis slightly deliate as it has to over the possibility that inputs start to arrive satisfyingP , but then stop satisfying it before a state satisfying B is reahed. A trae of mahineM is an in�nite sequene h(�0; �0); (�1; �1); : : : ; (�n ; �n); : : :i suh that �m+1 = M �m �mfor all m. It is an A-trae i� A �0. Observe that the state entered by M after a sequene�0, : : : , �n of inputs have arrived is �n+1. Thus the mahine generates the sequeneh�1; : : : ; �n ; �n+1i of states from the inputs �0, : : : , �n . With this observation in mind, thefollowing auxiliary onepts are de�ned.� B sueeds at n in trae h(�0; �0); (�1; �1); : : : ; (�n ; �n); : : :i i� B �n+1.� P fails at n in trae h(�0; �0); (�1; �1); : : : ; (�n ; �n); : : :i i� :Ph�0; : : : ; �ni.� Q holds until n in trae h(�0; �0); (�1; �1); : : : ; (�n ; �n); : : :i i� Qh�1; : : : ; �mifor all m suh that 1 � m � n+1.The state transition assertion:M j= A QP > Bholds i� for every A-trae � of M there exists an n suh that (i) either B sueeds at nin � or P fails at n in � and (ii) Q holds until the �rst suh n in � .An example of a state transition assertion is shown below using a number of notationalonventions that are explained immediately afterwards. It is true of a mahine M if

1.4. STATE TRANSITION ASSERTIONS 11whenever the prediate Available is true and the variables x, y, z have the values x , y , zrespetively, then as long as the reset line keeps at 0, a sequene of steps of length lessthan Æ x will be traversed in whih y remains stable with value y , Available is false andthe length of the stak is less than d. Furthermore, the sequene ends in a state in whihAvailable is false, x is 0, y is y and z is x � y .
M j= Availablex � xy � yz � z

By(Æ x)264 y � y:AvailableStakMax d 375[reset � 0℄ > :Availablex � 0y � yz � x � yVertial staking means onjuntion. The notation v � x (where v is a name and x avalue) is overloaded; it is used both for prediates on states and for prediates on inputs:(v � x)(p; stk ;mem) =def mem(v) = x(v � x)� =def �(v) = xStakMax m is true of a state if the length of the stak is less than m.StakMax m (p; stk ;mem) =def #stk � mIf � is either a state or an input, M is either a prediate on states or a prediate on inputs,then:(:M)� =def :(M �)[M ℄h�1; : : : ; �ni =def M �1 ^ : : : ^M �n(By m)h�1; : : : ; �ni =def n � mThe notation [M ℄ asserts that M holds at all points in a sequene, so it is analogous tothe modal formula 2M . As a mnemoni, think of sawing the box operator 2 in two andwriting the �rst half before M and the other half after M .1.4.1. Holding statesPart of the spei�ation of Mult is that it remain waiting to engage in a handshake aslong as the request line req is 0. If `waiting to engage in a handshake' is represented bythe prediate Available, then this part of the spei�ation an be represented by:Mult j= Available By 1[req � 0℄> Availablewhih will be abbreviated to:Mult j= req � 0 Holds Availablenotie that \By 1" means \1 host mahine yle" not \1 program step" (whatever thatmight mean).

12 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYWhilst Mult is waiting to engage in a handshake it should be outputting the resultof the previous handshake on out and outputting 1 on avail. Therefore in the atualspei�ation given in Setion 1.5, instead of the prediate Available, a parameterizedprediate Ready z is used, with the interpretation \ready to engage in a handshake whilstoutputting z on out and 1 on avail". In general, waiting states are haraterized by aparameterized prediate (e.g. Ready z , see Setion 1.8.4), an invariant (e.g. avail � 1 andout � z) and a holding ondition (e.g. req � 0). In the diagram representing the formalspei�ation of Mult, the existene of suh a waiting state is represented graphially by:Ready zavail � 1out � zreq � 0This abbreviates the onjuntion of an STA representing the holding ondition and aformula expressing the invariant (whih uses the logial operators ^ and =) whih areexplained below).Mult j= req � 0 Holds (Ready z) ^ Ready z =) avail � 1 ^ out � zwhere, letting � range over states or inputs as before:(M1 ^ M2)� =def (M1 �) ^ (M2 �)(M1 =) M2) =def 8� : (M1 �)) (M2 �)Other similar notation used later inludes:True � =def T(M1) M2)� =def M1 �) M2 �(M1 _ M2)� =def M1 � _ M2 �(9x : M x)� =def 9 x : (M x)�(P1 ^ P2)h�1; : : : ; �ni =def P1h�1; : : : ; �ni ^ P2h�1; : : : ; �ni(P1 _ P2)h�1; : : : ; �ni =def P1h�1; : : : ; �ni _ P2h�1; : : : ; �niNotie that there are three di�erent kinds of impliation: ordinary logial impliation)and two relations between prediates) and =). The relations between prediates areonneted by M1 =) M2 = 8� : (M1) M2)�.1.5. Formal spei�ation of MultA program implementing Mult must be able to yle within two sets of states repre-senting waiting to engage in a handshake and waiting to start a multipliation. Thusthe formal spei�ation asserts the existene of two prediates representing these sets ofstates. In addition, an implementation must support various invariants and transitions,whih an be expressed using STAs. The omplete spei�ation an be represented bythe following diagram, whih represents a onjuntion of STAs (details below).

1.5. FORMAL SPECIFICATION OF MULT 13
True By Æ1[reset � 1℄> Ready zavail � 1out � zreq � 0 By Æ2[out � z ℄2664 req � 1reset � 0in1 � xin2 � y 3775>

Ak x y zavail � 0x � xy � yout � zreq � 1 By(Æ3 x)� req � 0reset � 0 �> Ready(x � y)avail � 1out � x � yreq � 0The prediate Ready z is true of states that are passed through whilst waiting to engagein a handshake. During this waiting, out has value z . The prediate Ak x y z is trueof states that are passed through whilst waiting to start a multipliation. During thiswaiting x, y, z have the values x , y , z , respetively. This diagram de�nes a prediateMultSpe(Æ1; Æ2; Æ3) on mahines M by the following formula (the abbreviations Reset,ReadyInv, ReadyHold, ReadyToAk, AkInv, AkHold, AkToReady are explained later).MultSpe (Æ1; Æ2; Æ3) M =9Ready Ak :(M j= Reset(Æ1;Ready)) ^(8 z : ReadyInv(Ready; z)) ^(8 z : M j= ReadyHold(Ready; z)) ^(8 x y z : M j= ReadyToAk(Æ2;Ready ;Ak ; x ; y ; z)) ^(8 x y z : AkInv(Ak ; x ; y ; z)) ^(8 x y z : M j= AkHold(Ak ; x ; y ; z)) ^(8 x y z : M j= AkToReady(Æ3;Ready;Ak ; x ; y ; z))The reset ondition Reset(Æ1;Ready) asserts that if reset is held equal to 1 for at leastÆ1 then the system will be in a state satisfying Ready z , for some z .Reset(Æ1;Ready) =def True By Æ1[reset � 1℄> 9z : Ready zStates satisfying Ready z should output 1 on avail and z on out.ReadyInv(Ready ; z) =def Ready z =) avail � 1 ^ out � zStates ontinue to satisfy Ready z as long as req is 0.ReadyHold(Ready ; z) =def req � 0 Holds (Ready z)If the system is in a state satisfying Ready z and for at least Æ2 yles req is held at 1,reset at 0, in1 at x and in2 at y , then the system will be in a state satisfying Ak x y z .ReadyToAk(Æ2;Ready ;Ak ; x ; y ; z) =def Ready z By Æ2" req � 1 ^ reset � 0in1 � x ^ in2 � y #> Ak x y z

14 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYStates satisfying Ak x y z should output 0 on avail and x , y , z on x, y, out, respetively.AkInv(Ak ; x ; y ; z) =def Ak x y z =) avail � 0 ^ x � x ^ y � y ^ out � zStates ontinue to satisfy Ak x y z as long as req is 1 and reset is 0.AkHold(Ak ; x ; y ; z) =def (req � 1 ^ reset � 0) Holds (Ak x y z)If the system is in a state satisfying Ak x y z and then for at least Æ3 x , req is held at0 and reset at 0 then the system will be in a state satisfying Ready(x�y).AkToReady(Æ3;Ready ;Ak ; x ; y ; z) =def Ak x y z By(Æ3 x)[req � 0 ^ reset � 0℄> Ready(x�y)1.6. Corretness of MultProgThe program MultProg is orret if the mahine, MultMahine, that it de�nes satis�esthe prediate MultSpe(Æ1; Æ2; Æ3). In fat, it follows that:MultSpe (43; 13; � x : 30 + (15� x)) MultMahinewhih establishes orretness with the timing parameters Æ1 = 43, Æ2 = 13 and the funtionÆ3 de�ned by Æ3 x = 30 + (15� x).The rest of this hapter is devoted to outlining how suh orretness results an beproved. Mehanized theorem proving tools are used sine there is a large amount of detailin even small examples.31.7. Generating atomi STAsThe program is translated to a sequene of intermediate ommands that are either as-signments or jumps and then two STAs are generated for eah intermediate ommand.The �rst of these desribes transitions from the beginning of a omand to its end; the se-ond desribes transitions from anywhere inside the ommand to its end. Before explainingthis the formalization of \beginning", \inside" and \end" must be given.Figure 1.1 shows both the intermediate ommands and the �nal mahine instrutionsfor MultProg. Consider the intermediate ommand with number 13: the beginning ofthis is the mahine instrution numbered 27 (i.e. GET x) and the end of it is after themahine instrution numbered 33 (i.e. JMP 42). The exeution of MultProg is said to beinside intermediate ommand number 13 if it is exeuting a mahine instrution whosenumber is in the set f27; 28; 29; 30; 31; 32; 33g. Both intermediate ommands and ma-hine instrutions will be indexed by their position. A program P de�nes, via the om-piler, a mapping Positions(P) from ommand numbers to instrution numbers in whiheah ommand number is mapped to the number of its �rst instrution. For example,Positions(MultProg) is the following mapping.3383,547 primitive inferene steps were performed, mostly automatially, to verify MultProg.

1.7. GENERATING ATOMIC STAS 15
0: avail := 1 .. 0: OP0 11: PUT avail1: IF INPUT req THEN SKIP ELSE GOTO 18 2: INP req3: JMZ 442: avail := 0 .. 4: OP0 05: PUT avail3: x := INPUT in1 .. 6: INP in17: PUT x4: y := INPUT in2 .. 8: INP in29: PUT y5: IF NOT(INPUT req) THEN SKIP ELSE GOTO 7 10: INP req11: OP1 NOT12: JMZ 146: GOTO 10 ... 13: JMP 187: IF INPUT reset THEN SKIP ELSE GOTO 9 14: INP reset15: JMZ 178: GOTO 10 ... 16: JMP 189: GOTO 5 .. 17: JMP 1010: out := 0 .. 18: OP0 019: PUT out11: IF NOT x OR NOT y THEN SKIP ELSE GOTO 13 20: GET x21: OP1 NOT22: GET y23: OP1 NOT24: OP2 OR25: JMZ 2712: GOTO 17 ... 26: JMP 4213: IF x > 0 AND NOT(INPUT reset) THEN SKIP ELSE GOTO 17 .. 27: GET x28: OP0 029: OP2 >30: INP reset31: OP1 NOT32: OP2 AND33: JMZ 4214: out := out + y .. 34: GET out35: GET y36: OP2 +37: PUT out15: x := x - 1 .. 38: GET x39: OP1 pre40: PUT x16: GOTO 13 ... 41: JMP2717: avail := 1 .. 42: OP0 143: PUT avail18: GOTO 0 .. 44: JMP 0Figure 1.1. Intermediate ommands and mahine instrutions for MultProg

16 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYf0 7! 0; 1 7! 2; 2 7! 4; 3 7! 6; 4 7! 8; 5 7! 10; 6 7! 13;7 7! 14; 8 7! 16; 9 7! 17; 10 7! 18; 11 7! 20; 12 7! 26; 13 7! 27;14 7! 34; 15 7! 38; 16 7! 41; 17 7! 42; 18 7! 44gReall that the state of the stak mahine is a triple (p; stk ;mem) onsisting of a programounter p : N , a stak stk : seq N and a memory mem : name ! N . De�ne:At(P) n (p; stk ;mem) = (p = Positions(P)(n))In(P) n (p; stk ;mem) = (Positions(P)(n) � p < Positions(P)(n + 1)) .Then At(P)n is the prediate on states that is true of � i� � is at the beginning of theintermediate ommand numbered n in program P and In(P)n is the prediate on statesthat is true of � i� � is inside ommand n.Consider a program P ontaining an assignment at position n2::n1: : : :n2: x := ((INPUT in) + y)n3: : : ::Given a list of signi�ant state variables (e.g. x, y and z), the STA generator will auto-matially dedue two STAs for the ommand at n2:
Mahine(Compile P) j= At(P) n2x � xy � yz � z

By 4264 In(P) n2y � yz � z 375[in � in℄ > At(P) n3x � in+yy � yz � z
Mahine(Compile P) j= In(P) n2x � xy � yz � z

By 4264 In(P) n2y � yz � z 375True > At(P) n3y � yz � zThe �rst of these asserts that if the input in is held stable with value in, then thereis a transition taking at most four yles from the beginning of the omand at n2 to thebeginning of the ommand at n3. During this transition only states in n2 are passedthrough and the values of y and z are unhanged, but the value of x hanges to in+y ,where y is the value of the variable y.The seond of these asserts that under arbitary input onditions, there is a transitionfrom anywhere in n2 to the begining of n3. This transition takes at most four yles, onlypasses through states in n2 and doesn't hange the values of x and y.The implemented tool also automatially proves that the stak will grow by at mosttwo during the transition, but beause this feature is not used in the Mult example thedetails are not disussed here.

1.8. LAWS FOR COMBINING STAS 17The �rst stage in verifying MultProg is to generate two STAs for eah of the nineteenintermediate ommands. The result of this will not be shown here due to lak of spae.Note, however, that users of the veri�ation tool are not expeted to have to study theseatomi STAs in detail; they are fed into other tools that derive higher level results. Thesetools ombine the atomi STAs using various derived laws.1.8. Laws for ombining STAsSome of the laws for ombining STAs are analogous to rules of Hoare logi. In what fol-lows P , Q et. will range over prediates on sequenes, p, q et. will range over prediateson the elements of sequenes and A, B et. will range over prediates on states.Eah law applies to an arbitrary mahine. For oniseness, \M j=" has been omittedfrom STAs in the hypothesis and onlusion of the laws.1.8.1. The onsequene ruleThe following is similar to the rule of onsequene of Hoare logi. It allows preonditionsto be strengthened and postonditions to be weakenedA0 =) A P 0 =) P A QP > B B =) B 0 Q =) Q 0A0 Q 0P 0 > B 01.8.2. The sequening ruleThe sequening rule allows sequenes of transitions to be ombined into a single longtransition. A By Æ1 ^ [q1℄[p1℄ > B B By Æ2 ^ [q2℄[p2℄ > CA By(Æ1+Æ2) ^ [q1 _ q2℄[p1 ^ p2℄ > CThis rule requires that the input preonditions [p1℄ and [p2℄ are onjoined in the onlusion,so that both p1 and p2 are required to hold throughout the ombined transition. Thisis suÆient for the Mult example, but a stronger rule would have [p1℄;[p2℄ as the inputpreondition of the onlusion, where ; is a hop operator of interval temporal logi [3℄.

18 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDY1.8.3. Cases rulesThere are two ases rules. One for ase analysis of state preonditions:A1 QP > B A2 QP > BA1 _ A2 QP > Band the other for ase analysis of input preonditions:A QP1 > B A QP2 > BA QP1 _ P2> BA ombination of sequening and ases an be used to establish the resetting behaviour:MultMahine j= True By 43[reset � 1℄> At(MultProg) 0The argument proeeds by �rst splitting the universally true prediate True into a20-way disjuntion asserting that ontrol is either outside the program or is inside oneof the intermediate ommands. For eah ase, the sequening rule applied to atomiSTAs an be used to show that under the assumption of reset � 1 the postonditionAt(MultProg) 0 is eventually ahieved. Showing these amounts to symboli exeutionfrom an arbitrary starting position. The results of eah of these ases are ombined usinga ases rule. Although there is a substantial amount of detail, a reset-analysis tool hasbeen implemented that performs the proof automatially.1.8.4. The wait loop ruleThe next STA rule enables the existene of wait states to be dedued. Unfortunately therule is rather ompliated and ontains a number of hypotheses that are hard to motivatein a general way (their neessity only beomes apparent when the detailed derivation ofthe rule is onsidered, whih is not done here).To see why waiting states an be rather subtle onsider MultSpe. To meet this spei-�ation it is neessary to have a prediate, Ready z say, that satis�es bothReady z =) (avail � 1 ^ out � z)and req � 0 Holds (Ready z)Consider now the exeution of MultProg when it is waiting to start a handshake. It willbe yling between intermediate ommands 0, 1 and 18 waiting for req to beome 1 (seeFigure 1.1). Abbreviate In(MultProg) to In. Perhaps Ready z ould be de�ned by:Ready z =def ? (In 0 _ In 1 _ In 18) ^ (avail � 1 ^ out � z)

1.8. LAWS FOR COMBINING STAS 19Unfortunately this de�nition will not ensure req � 0 Holds (Ready z). To see thissuppose ontrol is at mahine instrution 3 (JMZ 44), avail is 1 and out is z . Theprediate In 1 will be true (sine mahine instrution 3 is part of intermediate ommand1) and hene Ready z is true. Suppose now that the environment makes input req be 0. Ifreq � 0 Holds (Ready z) then the next state of the mahine (i.e. the one after exeutingJMZ 44) must satisfy Ready z , however this will only be the ase if the top of the stakontains 0, whih will only be the ase if req were true on the previous yle (i.e. whenINP req was exeuted). Thus req being 0 at instrution 3 does not ensure that Ready zis held. It is neessary to assume that the top of the stak is 0 rather than that the inputreq is 0. Thus the de�nition of Ready given above will not work. The solution used bythe wait loop rule is to de�ne Ready z to be true of a state � if � is reahable from astate satisfying At 1 via a trae in whih all the intermediate states satisfy the invariantavail � 1 ^ out � z and all the intermediate inputs satisfy req � 0. If this is the asethen mahine instrution 3 will have been reahed from a preeding state in whih 0 wasread onto the top of the stak.In the ompliated looking rule that follows, the prediate A haraterizes the top ofa wait loop. If the environment maintains the holding ondition p1, then the waitingis maintained and A is true eah time the loop starts a new iteration. The invariant qholds during the wait loop. The prediate B is true of the �rst state not in the loop; itis reahed if the environment maintains the breakout ondition p2 for at least Æ1 mahineyles. The �rst and last hypotheses of the rule are neessary tehnial onditions. The�rst hypothesis says that the breakout state is not passed though during the wait loop.The last hypothesis says that if the loop is started then no matter what inputs arrive,within Æ2 yles ontrol will either return to the top of the loop or have left the loop.(q =) :B) ^ 0B�A [q ℄[p1℄ > A1CA ^ 0�A By Æ1[p2℄ > B1A ^ 0�A By Æ2True> A _ B1A9W : (p1 Holds W) ^ 0B�W By(Æ1+Æ2)[p2℄ > B1CA ^ (A =) W) ^ (W =) q)The appliation of this rule to MultProg is now shown. The hypotheses of the applia-tion are the following four fats. The �rst one follows diretly from de�nitions; the otherthree an be dedued from automatially generated atomi STAs.(In 0 _ In 1 _ In 18) ^ (avail � 1 ^ out � z) =) :(At 2 ^ avail � 1 ^ out � z)At 1avail � 1out � z " In 0 _ In 1 _ In 18avail � 1 ^ out � z #[req � 0℄ > At 1avail � 1out � zAt 1avail � 1out � z By 2[req � 1℄> At 2avail � 1out � z

20 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYAt 1avail � 1out � z By 5True> 0B� At 1avail � 1out � z _ At 2avail � 1out � z 1CAFrom these hypotheses, the wait loop rule diretly yields the existene of a prediate W zsuh that:(req � 0) Holds (W z)andW z By 7[req � 1℄> At 2avail � 1out � zandAt 1 ^ avail � 1 ^ out � z =) W zandW z =) (In 0 _ In 1 _ In 18) ^ (avail � 1 ^ out � z)The desired result is obtained by de�ning Ready to be W . The appliation of the waitloop rule has been fully automated and so most of the details just shown are generatedby a proedure and need not onern the user. The existene of a prediate Ak x y zan be dedued similarly.1.8.5. The while ruleThe while rule for STAs is analogous to the while rule of a Hoare logi of total orret-ness. It is formulated here in terms of prediates on stak mahine states, though it ouldbe expressed abstratly in terms of arbitrary prediates as was done for the wait loop rule.First some notation. A vetor of names hx1; : : : ; xni will be abbreviated to ~x and similarlya vetor hx1; : : : ; xni of values will be abbreviated to ~x . The prediate ~x � ~x abbreviatesthe onjuntion of prediates x1 � x1 ^ : : : ^ xn � xn . The prediate v � x is true ofa state (p; stk ;mem) i� mem v < x . If f is a funtion from vetors of values to vetorsof values and A, B are prediates on vetors of values, then the Hoare logi like notationfAgf fBg means 8~x : A ~x) B(f ~x).In the while rule for STAs that follows, Inv and B are arbitrary prediates on vetorsof values alled the invariant and test , respetively. The funtion f spei�ed the state-hange eah time around the loop (i.e. the `meaning' of the body of the `while loop').The �rst hypothesis of the rule says that Inv is an invariant and the value of xi dereaseseah time around the loop (i.e. xi is a variant). The seond hypothesis is that the loopstarts with the values ~x of ~x in the memory satisfying Inv . It is assumed that the topof a while loop is at itermediate ommand n. If the test B fails, the loop exits to theommand numbered n2, without hange of memory and taking Æ1 yles. If B sueedsthen ontrol transfers to n1, without hanging the memory and taking Æ1 yles, and thenbak to n with the memory hanged by f and taking another Æ2 yles.Thus while B remains true the program loops from n to n1 then bak to n takingÆ1+ Æ2 yles and transforming the values of the vetor of variables ~x by f eah time. Theonlusion of the rule is that the loop will terminate within Æ1+(Æ1+Æ2)�xi yles, where

1.8. LAWS FOR COMBINING STAS 21xi is the value of the variant xi when the loop started. On termination the invariant stillholds, but the test B is false. Here is the while rule for STAs.fInv ^ B ^ xi � xig f fInv ^ xi � xigInv ~x8~x : 0� At n~x � ~x By Æ1[p1℄> At(B ~x ! n1 j n2)~x � ~x 1A8~x : 0� At n1~x � ~x By Æ2[p2℄> At n~x � f ~x 1A9~x 0: 0B� At n~x � ~x By(Æ1 + (Æ1+Æ2)� xi)[p1 ^ p2℄ > At n2~x � ~x 0 1CA ^ Inv ~x 0 ^ :(B ~x 0)As an example of the STA while rule onsider the iteration:WHILE (x > O) AND NOT(INPUT reset)DO out := out + y;x := x - 1ODThis translates to the following intermediate form (see Figure 1.1).13: IF x > 0 AND NOT(INPUT reset) THEN SKIP ELSE GOTO 17 .. 27: GET x28: OP0 029: OP2 >30: INP reset31: OP1 NOT32: OP2 AND33: JMZ 4214: out := out + y .. 34: GET out35: GET y36: OP2 +37: PUT out15: x := x - 1 .. 38: GET x39: OP1 pre40: PUT x16: GOTO 13 ... 41: JMP27From whih the following two STAs an be generated (the free variables reset , x , y andout are assumed to be universally quanti�ed).At 13x � xy � yout � out By 7[reset � reset ℄> At(x > 0 ^ :(reset = 1) ! 14 j 17)x � xy � yout � outAt 14x � xy � yout � out By 8True> At 13x � x � 1y � yout � out + y

22 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYFor arbitary r take:Invrhx ; y ; outi = (out+(x�y) = r)Bhx ; y ; outi = x > 0 ^ :(reset = 1)f hx ; y ; outi = hx�1; y ; out+yiIt follows that fInvr ^ B ^ x � mg f fInvr ^ x < mg and hene by the while rule, ifout+(x�y) = r then there exists x 0, y 0 and out 0 suh that:0BBB� At 13x � xy � yout � out By(7 + (7+8)� x)[reset � reset ℄ > At 17x � x 0y � y 0out � out 0 1CCCA ^ Invrhx 0; y 0; out 0i ^ :Bhx 0; y 0; out 0iHene out 0+(x 0�y 0) = r (the invariant still holds) and :(x 0 > 0 ^ :(reset = 1)) (the testis false). If reset = 0 then it follows from the test being false that x 0 = 0 and then if r istaken to be x � y it follows from the invariant still holding that out 0 = x � y . Hene:At 13x � xy � yout � 0 By(7+15�x)[reset � 0℄> At 17x � 0y � y 0out � x�yBy hoosing a slightly more omplex invariant it ould also be shown that the value of yis unhanged by the iteration.1.9. ConlusionsThe analysis of real-time programs is notoriously omplex. The approah outlined heretightly ouples the formalism used (STAs) with theorem proving tools, the aim being toautomate away as muh detail as possible. The urrent mehanization requires the userto invoke tools, suh as the wait loop synthesizer and the while rule, on an intermediaterepresentation of the high-level program onsisting of sequenes of assignments and jumps.In the future, it is hoped to try to hide this level ompletely by guiding the veri�ationvia annotations in the program. The goal, only partially ahieved so far, is to requirethe user to manually prove `mathematial' veri�ation onditions, but to have all STAmanipulations performed automatially. Progress towards this goal appears in the paperentitled `A Hoare logi of state transitions' inluded in the Festshrift for Professor Hoare,edited by Bill Rosoe and published by Prentie-Hall in 1994. In that paper it is shownhow the while rule for STAs an be automatially invoked via annotations in the high-levelprogram. This is ahieved by de�ning a Hoare logi of state transitions.The approah taken here an be viewed as lying somewhere in the middle of a spetrumwith onventional veri�ation plus a veri�ed ompiler at one end, and pure mahine odeveri�ation at the other. Conventional veri�ation using a high-level semantis has manyadvantages: properties of programs an be proved that are independent of the ompilerused. If a veri�ed ompiler is available, then analysis an be onduted within an abstratsemantis and then applied, via a ompiler orretness statement, to mahine ode [2℄.

1.9. CONCLUSIONS 23At the other extreme, one an model the host mahine semantis and then verify mahineode programs (got, for example, by running prodution Ada ompilers) by reasoningabout proessor transitions. Impressive work of this sort has been done by Yuan andBoyer [6℄. Between these two extremes lies the work presented here. The tehniquesare in the spirit of Yuan and Boyer in that they are based on a semantis derived fromthe exeution of mahine instrutions (though Yuan and Boyer use a real mahine in the68000 family, whereas an enormously simpler abstrat mahine is used here). However, thereasoning is onduted through an abstrat view of the mahine ode provided by a highlevel programming language. Proofs are onduted using Hoare-style proof rules normallyassoiated with high-level languages; but the interpretation of the Hoare-sentenes is low-level.

24 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDY

BibliographyREFERENCES1 J. A. Camilleri. Symboli ompilation and exeution of programs by proof: A asestudy in HOL. Tehnial Report 240, Computer Laboratory, University of Cambridge,UK, Deember 1991.2 P. Curzon. Deriving orretness properties of ompiled ode. In L. Claesen andM. Gordon, editors, Proeedings of the International Workshop on Higher Order LogiTheorem Proving and its Appliations. North-Holland, 1992.3 J. Halpern, Z. Manna, and B. Moszkowski. A hardware semantis based on tempo-ral intervals. In Pro. 10th International Colloquium on Automata, Languages andProgramming, Barelona, Spain, 1983.4 C. A. R. Hoare. An axiomati basis for omputer programming. Communiations ofthe ACM, 12:576{583, Otober 1969.5 B. Levy, I. Filippenko, L. Marus, and T. Menas. Using the state delta veri�ationsystem. In Pro. IFIP TC10/WG 10.2 International Conferene on Theorem Proversin Ciruit Design, pages 337{360. North-Holland, June 1992.6 Y. Yu. Automated Proofs of Objet Code for a Widely Used Miroproessor. PhDthesis, The University of Texas at Austin, yuanyu�om.de.sr, 1992.

25

