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1 Introduction

The original LCF system was a proof-checking program developed at Stanford
University by Robin Milner in 1972. Descendents of LCF now form a thriving
paradigm in computer assisted reasoning. Many of the developments of the last
25 years have been due to Robin Milner, whose influence on the field of auto-
mated reasoning has been diverse and profound. One of the descendents of LCF
is HOL, a proof assistant for higher order logic originally developed for reason-
ing about hardware.2 The multi-faceted contribution of Robin Milner to the
development of HOL is remarkable. Not only did he invent the LCF-approach
to theorem proving, but he also designed the ML programming language un-
derlying it and the innovative polymorphic type system used both by ML and
the LCF and HOL logics. Code Milner wrote is still in use today, and the
design of the hardware verification system LCF LSM (a now obsolete stepping
stone from LCF to HOL) was inspired by Milner’s Calculus of Communicating
Systems (CCS).

2 Stanford LCF

“LCF” abbreviates “Logic for Computable Functions”, Milner’s name for a logic
devised by Dana Scott in 1969, but not published until 1993 [46]. The LCF
logic has terms from the typed λ-calculus and formulae from predicate calculus.
Types are interpreted as Scott domains (CPOs) and the logic is intended for
reasoning, using fixed-point induction, about recursively defined functions of
the sort used in denotational semantic definitions.

The original LCF team at Stanford consisted of Robin Milner, assisted by Whit-
field Diffie (from whom Milner learnt Lisp). Diffie subsequently became in-
terested in cryptography, where he became well-known. A bit later Richard
Weyhrauch joined the team, soon followed by Malcolm Newey. All these people
collaborated on designing, implementing and using the original LCF system,
now known as Stanford LCF. The resulting system is a proof checker for Scott’s
logic and is described by Milner as follows [34]:

The proof-checking program is designed to allow the user
interactively to generate formal proofs about computable functions
and functionals over a variety of domains, including those of
interest to the computer scientist - for example, integers, lists and
computer programs and their semantics. The user’s task is
alleviated by two features: a subgoaling facility and a powerful
simplification mechanism.

1University of Cambridge Computer Laboratory, New Museums Site, Pembroke Street,
Cambridge CB2 3QG, U.K.

2“HOL” abbreviates “Higher Order Logic”.
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Proofs are conducted by declaring a main goal (a formula in Scott’s logic) and
then splitting it into subgoals using a fixed set of subgoaling commands (such
as induction to generate the basis and step). Subgoals are either solved using a
simplifier or split into simpler subgoals until they can be solved directly. Data
structures representing formal proofs in Scott’s logic are created when proof
commands are interpreted. These can consume a lot of memory.

Stanford LCF was used for a number of case studies. Weyhrauch worked on the
proof of correctness of a compiling algorithm for a simple imperative language
to a stack-based target language [36] and Newey on the generation of equational
theories of integers and lists.

3 Edinburgh LCF

Around 1973 Milner moved to Edinburgh University and established a project to
build a successor to Stanford LCF, which was subsequently dubbed Edinburgh
LCF. He initially hired Lockwood Morris and Malcolm Newey (both recent PhD
graduates from Stanford) as research assistants. Two problems with Stanford
LCF were (i) that the size of proofs was limited by available memory and (ii)
the fixed set of proof commands could not be easily extended. Milner set out to
correct these deficiencies in Edinburgh LCF. For (i) he had the idea that instead
of saving whole proofs, the system should just remember the results of proofs,
namely theorems. The steps of a proof would be performed but not recorded,
like a mathematics lecturer using a small blackboard who rubs out earlier parts
of proofs to make space for later ones. To ensure that theorems could only
be created by proof, Milner had the brilliant idea of using an abstract data
type whose predefined values were instances of axioms and whose operations
were inference rules. Strict typechecking then ensured that the only values that
could be created were those that could be obtained from axioms by applying
a sequence of inference rules – namely theorems. To enable the set of proof
commands to be extended and customised – (ii) above – Milner, ably assisted
by Morris and Newey, designed the programming language ML (an abbreviation
for “Meta Language”). This was strictly typed to support the abstract type
mechanism needed to ensure theorem security [35].

In Stanford LCF, the axioms and rules of inference of Scott’s logic were directly
encoded in the implementation of the simplification and subgoaling mechanism.
The user could only construct proofs ‘backwards’ from goals. In Scott’s unpub-
lished paper, his logic was presented in the conventional way by giving axiom
schemes and rules of inference. The direct notion of formal proof suggested by
this is a sequence, each member of which is either an axiom or follows from an
earlier member via a rule of inference (this notion of proof is sometimes called
‘forward’). By encoding the logic as an abstract type, Edinburgh LCF directly
supported forward proof. The design goal was to implement goal directed proof
tools by programs in ML. To make ML convenient for this, the language was
made functional so that subgoaling strategies could be represented as functions
(called “tactics” by Milner) and operations for combining strategies could be
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programmed as higher-order functions taking strategies as arguments and re-
turning them as results (called “tacticals”). It was anticipated that strategies
might fail (e.g. by being applied to inappropriate goals) so an exception handling
mechanism was included in ML. The needs of theorem proving very strongly in-
fluenced the design of the first version of ML. Many design details were resolved
by considering alternatives in the light of their use for programming proof tools.
This narrow design focus resulted in a simple and coherent language.

In 1975, Morris and Newey took up faculty positions at Syracuse University
and the Australian National University, respectively, and were replaced by
Chris Wadsworth and myself. The design and implementation of ML and Edin-
burgh LCF was finalised and the book “Edinburgh LCF” [15] was written and
published.3 In 1978, the first LCF project finished, Chris Wadsworth went off
trekking in the Andes (returning to a permanent position at the Rutherford
Appleton Laboratory) and I remained at Edinburgh supported by a postdoc-
toral fellowship and with a new research interest: hardware verification. After
the first LCF project finished, application studies using Edinburgh LCF contin-
ued. Milner’s student Avra Cohn did a PhD on verifying programming language
implementations with LCF and Brian Monahan did a PhD on the theory and
mechanisation (using LCF) of datatypes. Researchers who worked with LCF
included Jacek LeszczyÃlowski and Stefan SokoÃlowski.

4 Cambridge LCF

In 1981, I moved to a permanent position as Lecturer at the University of
Cambridge Computer Laboratory. Another LCF project was funded by SERC,
split between Edinburgh and Cambridge, with one research assistant at each
site. Larry Paulson, recently graduated with a PhD from Stanford, was hired
at Cambridge and David Schmidt followed by Lincoln Wallen at Edinburgh4.
About this time, and in parallel, Gérard Huet ported the Edinburgh LCF code
to Lelisp and MacLisp.5 Paulson and Huet then established a collaboration and
did a lot of joint development of LCF by sending each other magnetic tapes
in the post. Huet improved and extended ML (his group subsequently devel-
oped Caml) and optimised the implementation of LCF’s theory files. Paulson
improved and simplified much of the Lisp code, and removed some space opti-
misations that had been necessary to get Edinburgh LCF to run in the limited
amount of memory available on the Edinburgh DEC-10 system. Edinburgh LCF
ran interpretively, but during Paulson and Huet’s collaboration an ML compiler
was implemented that provided a speedup by a factor of about twenty.

As part of his LCF work at Cambridge, Paulson made dramatic improvements
both to our understanding of how to design and program proof tools and (in col-

3The author “Arthur J. Milner” of this book was the result of a bug in the way Springer-
Verlag created title pages: they asked for the author’s full name on a form and then used it
without properly checking its appropriateness.

4In the 1980s work at Edinburgh broadened its emphasis from LCF to generic logical
frameworks, and then to constructive type theory.

5Edinburgh LCF, including the ML interpreter, was implemented in Lisp.
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laboration with Gérard Huet) to the implementation of LCF. The now-standard
techniques of conversions [39] and theorem continuations [40, Section 8.7.2] were
devised by him and then used to implement a large collection of tools. Edinburgh
LCF had a monolithic simplifier provided as a primitive. Paulson redesigned
and reprogrammed this as a simple and clean derived rule. Inspired by an al-
gorithm from the book Artificial Intelligence Programming [3], he implemented
a data structure (discrimination nets) for efficiently indexing sets of equations
used in rewriting. This became an essential tool for efficiently handling large
sets of rules.

Paulson also upgraded the LCF logic to include all the standard constructs
of predicate calculus (Scott’s logic didn’t have disjunction or existential quan-
tification). He also implemented a simple package for managing subgoals on
a stack (users of Edinburgh LCF typically managed subgoals by hand by ex-
plicitly binding them to ML variables with cumbersome names like g_2_1_3).
These developments were driven and tested by a number of major case studies,
including the formalisation and checking, by Paulson [42], of a proof of correct-
ness of the unification algorithm. The resulting new LCF system was named
“Cambridge LCF” and completed around 1985. Paulson did little work on it af-
ter that. Mikael Hedlund (of the Rutherford Appleton Laboratory) then ported
Cambridge LCF to Standard ML (using a new implementation of ML that he
created). The resulting Standard ML based version of Cambridge LCF is doc-
umented (with supporting case studies and a tutorial of underlying theory) in
Paulson’s 1987 book Logic and Computation [40].

5 From LCF to HOL

Whilst Paulson was designing and implementing Cambridge LCF, I was mainly
concerned with hardware verification. I had been impressed by how the Ex-
pansion Theorem of Milner’s Calculus of Communicating Systems (CCS) [37]
enabled a direct description of the behaviour of a composite agent to be calcu-
lated from the parallel composition of its individual components. This seemed
like a good paradigm for deriving the behaviour of a digital system from its
structural description. I invented a rather ad hoc notation (called “LSM” for
Logic of Sequential Machines) for denoting sequential machine behaviour, to-
gether with a law manipulatively similar to CCS’s Expansion Theorem. To
provide a proof assistant for LSM, I lashed up a version of Cambridge LCF
(called LCF LSM) that added parsing and pretty-printer support for LSM and
provided the expansion-law as an additional axiom scheme [11]. This lash-up
worked quite well and even got used outside Cambridge. I used it to verify a
toy microprocessor [12], subsequently called Tamarack6 and the LSM notation
was used by a group in the Royal Signals and Radar Establishment (RSRE) to
specify the ill-fated Viper processor [5]. During this time Ben Moskowski, who
had recently graduated from Stanford, was doing a postdoc at Cambridge. He

6The name “Tamarack” is due to Jeff Joyce, who reverified it in HOL [27] and fabricated
a chip based on it whilst visiting Xerox Parc as a summer student.
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showed me how the terms of LSM could be encoded in predicate calculus in
such a way that the LSM expansion-law just becomes a derived rule (i.e. corre-
sponds to a sequence of standard predicate calculus inferences). This approach
is both more elegant and rests on a firmer logical foundation, so I switched to
it and HOL was born. Incidently, not only was CCS’s Expansion Theorem an
inspirational stepping stone from LCF via LSM to HOL, but recently things
have come ‘full circle’ and Monica Nesi has used HOL to provide proof support
for CCS, including the mechanisation of the Expansion Theorem [38]!

The logic supported by Cambridge LCF has the usual formula structure of pred-
icate calculus, and the term structure of the typed λ-calculus. The type system,
due to Milner, is essentially Church’s original one [4], but with type variables
moved from the meta-language to the object language (in Church’s system, a
term with type variables is actually a meta-notation – a term-schema – denot-
ing a family of terms, whereas in LCF it is a single polymorphic term). LCF’s
interpretation of terms as denoting members of Scott domains is overkill for
hardware verification where the recursion that arises is normally just primitive
recursion. For hardware verification, there is rarely the need for the extra so-
phistication of fixed-point (Scott) induction; ordinary mathematical induction
suffices. The HOL system retains the syntax of LCF, but reinterprets types as
ordinary sets, rather than Scott domains.

To enable existing LCF code to be reused, the axioms and rules of inference of
HOL were not taken to be the standard ones due to Church. For example, the
LCF logic has parallel substitution as a primitive rule of inference (a decision
taken after experimentation when Edinburgh LCF was designed), but Church’s
logic has a different primitive. HOL employs the LCF substitution because I
wanted to use the existing efficient code. As a result the HOL logic ended up
with a rather ad hoc formal basis. Another inheritance from LCF is the use of a
natural deduction logic (Church used a Hilbert-style formal system). However,
this inheritance is, in my opinion, entirely good.

5.1 The development of HOL

Originally HOL was created for hardware verification at the register transfer
level. The modelling technique to be supported represents hardware devices
as relations between input and output signals, with internal signals hidden by
existential quantification. Signals are represented by functions from time to
values (wire states), so that higher-order relations and quantification are neces-
sary. This immediately suggests higher-order logic as an appropriate formalism
[13] (the same idea occurred earlier to Keith Hanna [19], the designer of the
Veritas hardware verification system). The design of HOL was largely taken ‘off
the shelf’ the theory being classical higher order logic and the implementation
being LCF. The development of the system was, at first, primarily driven by
hardware verification case studies

The first version of the HOL system was created by modifying the Cambridge
LCF parser and pretty-printer to support higher order logic concrete syntax.
HOL terms were encoded as LCF constructs in a way designed to support
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maximum reuse of LCF code (the encoding did not represent any coherent
domain-theoretic semantics). Many aspects of LCF, e.g. typechecking and the-
ory management, were carried over unchanged to HOL. The LCF primitive
axioms and inference rules were modified to be correct for higher order logic,
and then the higher level theorem proving infrastructure (conversions, tactics,
tacticals, subgoal package etc.) was modified to work correctly.

5.2 Primitive definitional principles

The HOL system, unlike LCF, emphasises definition rather than axiom postu-
lation as the primary method of developing theories. Higher order logic makes
possible a purely definitional development of many mathematical objects (num-
bers, lists, trees etc.) and this is supported and encouraged.7

The definitional principles provided by HOL evolved during the 1980s. Initially,
constants could only be defined via equations of the form c = t, where c was a
new name and t a closed term. Types could be defined by a scheme, devised
by Mike Fourman, in which new types could be introduced as names for non-
empty subsets (specified by a predicate) of existing types. Somewhat later,
HOL users at ICL (Roger Jones et al.) proposed that ‘loose specifications’
of constants be allowed. This was implemented by a definitional principle that
allowed constants c1, . . ., cn to be introduced satisfying a property P (c1, . . . , cn),
as long as ∃x1 · · ·xn.P (x1, . . . , xn) could be proved. This principle is called
“constant specification” in HOL.

The first versions of the definitional principles seemed ‘obviously correct’, but
Mark Saaltink and Roger Jones independently noticed that in fact they were
unsound in the sense that making a definition did not necessarily preserve
consistency.8 It is easy to fix the problems by adding side conditions to the
definitional principles. With the support of DSTO Australia, Dr Andrew Pitts
was commissioned to validate HOL’s definitional principles. He produced infor-
mal proofs that they could not introduce inconsistency [14, Chapter 16].

7Axiomatic developments, like group theory, have been attempted with some success [18]
(though the LCF/HOL theory mechanism is not ideal for it and various improvements have
been proposed). The facilities inherited from LCF for declaring axioms are still available in
HOL.

8The problem was HOL’s treatement of type variables. In the HOL logic, constants can
have polymorphic types – i.e. types containing type variables. For example, the identity
function I has type α→α, where α is a type variable. Polymorphic constants are not explicitly
parameterised on type variables, so a constant definition c = t in which there is a free type
variable in the type of t but not in the type of c might lead to inconsistency. For example,
it is easy to devise [14, page 221] a closed boolean term (i.e. formula), t say, that contains a
type variable, α say, and is such that t is true for some instances of α, and false for others.
A constant definition c = t will then be inconsistent, because it will be possible to prove c

equals both true and false, by type-instantiating the definition with the two instances. In
future versions of HOL it is expected that there will be explicit type variable quantification
[31], i.e. terms of the form ∀α.t (where α is a type variable). The right hand side of definitions
will be required to be closed with respect to both term and type variables. Melham has shown
that this will make defining mechanisms much cleaner and also permit an elegant treatment
of type specifications.

6



5.3 Derived definitional principles

The primitive built-in definitional principles are low-level, but high-level de-
rived principles can be programmed in ML. These take a property one wants a
new constant or type to have and then automatically define constants and/or
types that have the property. For example, one early derived constant-definition
principle defined arithmetical functions to satisfy any user-supplied primitive
recursive equation by instantiating the primitive recursion theorem (which was
previously proved from the definition of numbers).

Building on ideas originally developed by Milner, Monahan and Paulson for
LCF, Melham implemented a derived type-definition principle that converts
descriptions of recursive datatypes into primitive definitions and then automat-
ically derives the natural induction and primitive recursion principles for the
datatype [29].9

It was probably this tool that was most responsible for changing the perception
of HOL from being purely a hardware verification system to being a general
purpose proof assistant. For example, it became dramatically easier to embed
languages inside HOL, by defining a recursive type of abstract syntax trees and
a primitive recursive semantic function. Another derived definitional principle,
also due to Melham [30], allows inductively defined relations to be specified by
a transition system, and then a rule-induction tactic to be automatically gener-
ated. This enables operational semantics to be easily defined inside HOL. Other
derived definitional principles have also been implemented, including a powerful
tool by Konrad Slind for making general recursive definitions of functions [47]
(which also runs in Isabelle/HOL) and at least two independent packages for
creating quotient types.

5.4 Simplification

Cambridge LCF had a powerful simplifier that dealt separately with term rewrit-
ing and formula simplification. In HOL, boolean terms played the role of formu-
lae, so a separate syntactic class of formulae was not needed and hence separate
sets of tools for formula and term simplification were no longer necessary. Un-
fortunately, when I modified Paulson’s simplifier for use in HOL, I never got
around to making the condition-handling (backchaining) parts of his code work,
so HOL ended up without conditional simplification. At the time I justified
my laziness with the thought that this would not be important, because in
LCF conditional simplification had mainly been used to manage definedness
and strictness assumptions arising from the bottom element (⊥) of domain the-
ory. Such assumptions do not arise in HOL. However, with hindsight, it is clear
that Paulson’s superior simplifier would have been very useful for HOL applica-
tions, and would have saved many people much low-level proof hacking. Over
the years several people have contributed conditional simplification packages as

9The various datatype packages in LCF were not definitional – LCF did not distinguish
definitions from arbitary axioms. In LCF, new constants and types were characterised by
asserting new axioms. Melham’s package for HOL automatically generates constant and type
definitions and then proves theorems corresponding to the characterising axioms used in LCF.

7



optional add-ons to HOL, but only recently has conditional simplification been
added to the core of the system. It is now part of a new simplifier that integrates
rewriting, conversions and decision procedures into a single tool.10

6 Versions of HOL

The HOL system has always been very open and many people have contributed
to its development. Several groups have built their own versions of the system,
essentially starting from scratch. This has good and bad aspects: perhaps some
effort has been wasted through duplication and there may be a bit of confusion
about which version to use, but on the other hand poor design decisions have
been rectified and new ideas (e.g. Mizar mode – see 7.3) have had an opportunity
to get incorporated. The latest versions of HOL incorporate ideas from other
successful systems, like Isabelle, PVS and Mizar.

6.1 HOL88

The core HOL system became stable in about 1988. A new release that consol-
idated various changes and enhancements called HOL88 was issued then.11 We
were fortunate to receive support from DSTO Australia to document HOL12 and
from Hewlett Packard to port it from Franz Lisp to Common Lisp (a job very
ably done by John Carroll). The current versions of HOL and its documentation
are public domain13 and available on the Internet14.

6.2 HOL90

In the late 1980’s Graham Birtwistle of the University of Calgary started a
project to reimplement HOL in Standard ML. The work was done by Konrad
Slind, under Birtwistle’s direction and with the collaboration of the HOL group
at Cambridge. The resulting system, called HOL90, was first released around
1990. It introduced much rationalisation to the legacy-code-based HOL88, and
provided a significant performance improvement. During the 1990’s Slind con-
tinued to develop HOL90 in collaboration with Elsa Gunter of AT&T Bell Lab-
oratories (which has recently become Bell Labs Innovations, Lucent Technolo-
gies). HOL90 is now the main version of HOL in use around the world, though
users of HOL88 still linger on.

10HOL’s new simplifier uses ideas from Isabelle and is being developed by Donald Syme.
11The release was prepared by Tom Melham and paid for by ICL.
12A documentation standard was designed and then each of the several hundred ML func-

tions comprising HOL was priced at £5 or £10. Members of the Cambridge HOL users
community were then invited to write documentation for money. The whole job was done
painlessly in a few weeks.

13A licence agreement for HOL is available, but signing it is optional.
14http://lal.cs.byu.edu/lal/hol-documentation.html
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6.3 ProofPower

In parallel with the development of HOL90, ICL created their own commer-
cial version of HOL, now called ProofPower15. This was targetted at in-house
and commercial use, especially for security applications. ProofPower supports
exactly the same logic as the other HOL systems, but has different proof infras-
tructure that evolved to meet the needs of the targetted applications (e.g. cus-
tomised theorem-proving support for the Z notation and a verification condition
generator for the Z - (SPARK) Ada compliance notation).

6.4 Isabelle/HOL

Besides HOL, several other LCF-style proof assistants were developed with ML
as their metalanguage (in some cases code from LCF was used as the starting
point). These include a proof system for the Calculus of Contructions [10, 9],
Nuprl [8], and a proof system for Martin Löf type theory [44]. These applied Mil-
ner’s LCF methodology to widely different logics. To try to provide a systematic
implementation methodology for ‘LCF-style’ systems, Paulson developed the
generic prover Isabelle [41, 43]. This provided a metalogic in which the proof
rules of object logics can be described declaratively (in LCF and HOL, rules are
represented as ML programs – i.e. they are implemented rather than specified).
At first sight Isabelle seems to provide a similar collection of proof tools as HOL,
but the way they work is quite different. Metalogic rules are composed using
a meta-inference rule based on higher order unification (resolution).16 Forward
and backward proof in HOL corresponds to special cases of rule composition in
Isabelle. However, Milner’s key idea of using ML’s abstract types to ensure that
theorems can only be obtained by allowable combinations of allowable rules is
retained, and lifted to the metalogic level. One of the object logics developed
for Isabelle by Paulson was the HOL logic. The resulting Isabelle/HOL system
has a somewhat different ‘look and feel’ to the original HOL system, due to
Isabelle’s different proof infrastructure. It provides better general logic automa-
tion than HOL (via its customisable simplifier and first-order theorem proving
tools)17 and some HOL users have migrated to it.

6.5 HOL Light

Recently John Harrison and Konrad Slind have entirely reworked the design
of HOL to, among other things, rationalise the primitive constants, axioms
and rules of inference. For example, the logic is initially taken to be construc-
tive, and only after considerable proof infrastructure has been defined are non-
constructive principles added. This new version of HOL is called “HOL Light”.
It is implemented in Caml Light and runs on modest platforms (e.g. standard
PCs). It is faster than the Lisp-based HOL88, but a bit slower than HOL90 run-

15http://www.to.icl.fi/ICLE/ProofPower/index.html
16Higher order unification is built into Isabelle, thus Isabelle’s ‘trusted core’ is considerably

more complex than HOL’s.
17Tools based on the Isabelle simplifier, and others comparable to its first order automation

facilities, are now part of HOL90 and HOL Light.
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ning in modern implementations of Standard ML. HOL Light contains many new
facilities, including automatic provers that separate proof search from checking.
It also provides ‘Mizar mode’ (see 7.3) as well as the normal goal-oriented proof
styles.

7 Features of HOL

HOL is characterised by a number of key features: a simple core logic, LCF-style
‘full expansiveness’, support for a growing diversity of proof styles and a large
corpus of user-supplied theories and proof tools.

7.1 The core logic

There are only four separate kinds of primitive terms: variables, constants, func-
tion applications and λ-abstractions. Using standard techniques, other useful
notations are supported on top of these by the parser and pretty-printer. For ex-
ample, quantifications Qx.t (where Q is ∀ or ∃) are encoded (following Church)
as the application of a constant to an abstraction – i.e. as Q(λx.t), and local
variable binding let x = t1 in t2 is equivalent (following Landin) to (λx.t2)t1.
Thus all variable binding is reduced to λ-binding.

Notations including infixes, conditional terms, set abstractions, restricted quan-
tifications (i.e. quantification over predicate subtypes), tuple notation, and tu-
pled variable binding (e.g. λ(x, y).t) are considered to be derived forms (i.e. ‘syn-
tactic sugar’). This strategy of translating away complex notations has worked
pretty well. It means that procedures designed to process all terms need often
only consider four cases (variables, constants, applications and abstractions)
and so can be short and semantically transparent.18 On the other hand, the
encoding of everything into just variables, constants, applications and abstrac-
tions makes the computation of the natural constituents of constructs expensive.
This makes writing interfaces (e.g. pretty-printing) quite complex.19 A partic-
ular danger with reducing complex notations to a simple core is that what the
user sees printed can be remote from what the inference mechanisms actually
process. Errors in the parsing and pretty printing interface can be just as dan-
gerous as errors in the infererence rules (e.g. consider an interface that translated
true to false with a pretty-printer that inverted this translation). This problem
has been worried about a lot. One approach to minimising the dangers is to use
trustworthy tools that generate parsers and pretty-printers from a declarative

18An example of this is Grundy’s window inference system for hierarchical transformational
reasoning (e.g. program refinement) [17]. This provides an environment on top of HOL for
pointing at subterms and then transforming them ‘in place’ (subject, of course, to context-
dependent side-conditions). Grundy was able to base his system on three primitives (one
each for the function and argument constituents of applications and one for the bodies of λ-
abstractions) and then have ML programs automatically compose guaranteed-sound window
rules for transforming arbitrarily complex terms as syntax-directed compositions of the three
primitives. If HOL had had different primitive terms for each user-level notation, then Grundy
would have had to hand-build a primitive window-rule for each of them.

19For example, it is more work than it looks to extract the constituents x, y, t1 and t2 from
let (x, y) = t1 in t2, which is actually parsed to LET(UNCURRY(λx.UNCURRY(λy.λz.t2)))t1.
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input. A recent example of such tool is CLaReT, due to Richard Boulton.

7.2 Full expansiveness

The LCF approach to theorem proving is “fully expansive” in that all proofs
are expanded into sequences of primitive inferences. At first sight this seems to
be very inefficient and it has been argued that it is incompatible with accept-
able performance. However, a whole programming methodology has evolved for
programming efficient derived rules and tactics. For example, decision proce-
dures for particular classes of problems have been developed. Although these
expand out to primitive inferences, they are surprisingly efficient. HOL has
such decision procedures for tautology checking (based on BDDs and due to
John Harrison) and for a subset of arithmetic (due to Richard Boulton) which
users find adequately fast and powerful for many applications. An important
efficiency improving technique is to exploit the expressive power of higher order
logic by encoding as single theorems facts that would have to be derived rules
of inference (e.g. theorem schemas) in first order logic. Thus time-consuming
repetitions of sequences of proof steps can often be avoided by proving a general
theorem once and then instantiating it many times. Another programming tech-
nique is to separate out proof search from proof checking. An ML program, or
even an external oracle (like a C-coded tautology checker or an algebra system
[22]), can be used to find a proof. The result is validated by formal inference
inside the HOL logic. One way of packaging (and automating) this separation
is Boulton’s technique of lazy theorems [2].20

There have been many developments in the implementation and use of tactics
over the last twenty years. It is remarkable that Milner’s original concept has
turned out to be sufficiently general to support them.

7.3 A diversity of proof styles

Current releases of HOL support forward proof and goal directed proof. The
latter via a stack-based subgoal package provided for Cambridge LCF by Paul-
son. Other styles are available as libraries (e.g. window inference and tree based
subgoal package due to Sara Kalvala). One way that HOL is expected to evolve
is as a tool with a fixed logic but with an ever growing variety of built-in proof
styles. For example, recently a lot of excitement has been generated by the re-
markable Mizar system21 in which proofs are constructed by refining arguments
expressed in a natural-language-like textbook style. It seems that this forward
style is better for some things and a goal-oriented style for others. In particular,
a goal-oriented style works well for verifying complex artifacts (e.g. microproces-

20A lazy theorem is a pair consisting of a term, together with a procedure for proving it.
Lazy theorems can be created using a (fast) non-expansive decision procedure, and supplying
a (slow) expansive procedure as the proof function. Such lazy theorems can be manipulated
(with some additional effort) much like proper theorems, by composing the proof functions. At
some point they need to be coerced into proper theorems (by running the proof part), but this
can be postponed to a convenient moment – e.g. coffee time. With lazy theorems one gets the
interactive speed of conventional decision procedures with the security of full-expansiveness.

21http://web.cs.ualberta.ca:80/~piotr/Mizar/
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sors) where the proof can be generated via specialised algorithms, whereas the
forward Mizar style seems better for developing general mathematical theories
(e.g. algebra, functional analysis, topology). Many applications (e.g. floating
point verification, cryptography, signal processing) require a general mathemat-
ical infrastructure to be brought to bear via problem-specific algorithms [20]. It
is thus useful to provide the option of using a Mizar style for developing theories
and a goal-oriented style for deploying them. To this end, John Harrison has
recently added support for ‘Mizar mode’ in HOL [21].

7.4 Libraries and other user supplied contributions

To enable theories (and other utility code) to be shared, HOL has a rudimen-
tary library facility. This provides a file structure and documentation format
for self contained HOL developments (usually a combination of theories and
theorem proving tools). Over the years many libraries were supplied by users
from around the world. Although the core HOL system remained fairly sta-
ble, the set of libraries grew. Libraries currently distributed with HOL include
arithmetic and tautology decision procedures, a development of group theory,
a package to support inductively defined relations, theories of integers and re-
als (only natural numbers are predefined in the core system) theories of n-bit
words, character strings, general lists and sets, well-ordered sets (transfinite in-
duction etc.), support for UNITY and Hoare-style programming logics, tools for
hardware verification and program refinement (window inference).

Libraries are intended to be fairly polished and documented to a high standard.
Also distributed with HOL are “contributions”, which are subject to minimal
quality control. Currently distributed contributions include: CSP trace theory,
proof tools for associative-commutative unification, tactics implementing Boyer
and Moore’s automatic proof heuristics (as described in the book A Compu-

tational Logic), the proof of a sequential multiplier (used as a benchmark for
HOL), theories of infinite state automata, rules for simplifying conditional ex-
pressions, the definition of fixedpoints and the derivation of Scott induction,
tools to support language embedding in higher order logic, Knuth-Bendix com-
pletion as a derived rule, various enhancements to the recursive types package
(e.g. for nested and mutual recursion), the formalisation of a significant part
of the definition of Standard ML, the application of a database query language
to HOL, a compiler for generating efficient conversions from sets of equations,
theories supporting partial functions and a hyperlinked guide to HOL theories.

Considering the way it was built, there have been relatively few bugs in HOL.
Because the system is completely open, early bugfixes were often done by in-
trepid users22 and then mailed to me for inclusion in future releases.

22Subtle Lisp bugs in early versions of HOL were fixed by David Shepherd of Inmos and
Ton Kalker of Philips.
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8 Conclusions

Over the last ten years the scale of what can be proved with HOL (as with other
provers) has increased dramatically. In the early 1980’s the verification of simple
systems with a few registers and gates was considered significant. By the late
1980s simple microprocessors [6, 7, 16, 49] and networking hardware [23] was
being verified and by the mid 1990s complex hardware structures (e.g. pipelines)
were being analysed and many non-hardware applications were being attempted,
including program and algorithm verification, support for process algebras and
the mechanisation of classical mathematical analysis (i.e. the theory of limits,
differentiation and integration). There are nearly 400 publications and 30 dis-
sertations listed in Tom Melham’s HOL bibliography23. There is no space to
summarise all the work that has been done with HOL here, but recent work can
be found in the proceedings of the conference now called24 Theorem Proving

in Higher Order Logics [28, 32, 45, 48] or in special issues of The Computer

Journal [26] and Formal Methods in System Design [24, 25].

One noteworthy niche has been the embedding of programming and hardware
description languages in HOL.25 This was opened up by Melham’s packages for
recursive types and inductive relations (and enhancements to these by David
Shepherd, Elsa Gunter and John Harrison). One result of this particular focus of
activity has been the accumulation of wisdom (and jargon) concerning language
embeddings and the development of syntax directed support tools. These tools
both automate the construction of embeddings and help reduce the dangers
discussed at the end of 7.1. An embedding that previously might have taken
weeks/months can now often be done in hours/days.

For a proof assistant, HOL has a large user community. There have been
nine HOL Users Workshops, which have gradually evolved from informal get-
togethers to elaborate international meetings with refereed papers. In the fu-
ture, these conferences will be targetted at the whole higher order logic theorem
proving community, rather than just HOL users.

To harvest the accumulated wisdom of the whole proof assistant community
and to position HOL for the results of ML200026, a public initiative called

23http://www.dcs.glasgow.ac.uk/~tfm/hol-bib.html
24Previous names include International Conference on Higher Order Logic Theorem Prov-

ing and Its Applications.
25The embedding of Standard ML has been extensively studied by Elsa Gunter, Myra Van-

Inwegen and Donald Syme, the embedding of a large subset of C is currently being undertaken
by Michael Norrish at Cambridge. Embeddings of subsets of the hardware description lan-
guages ELLA, NODEN, Silage, VHDL and Verilog have been done (or are in progress). Steve
Brackin has embedded a language of security assertions and provided a GUI that hides HOL,
all input and output being in terms of the security language. Flemming Andersen (partly sup-
ported by the Technical University at Lyngby in Denmark and partly by TFL) has embedded
the UNITY language and provided theorem proving support for it. Joakim Von Wright and
Thomas L̊angbacka have embedded Lamport’s Temporal Logic of Actions (TLA).

26Under the slogan “ML2000”, a cabal from the ML community have started investigating
ideas for a major revision of ML. Their aim is to design a language in the ML tradition that
builds on current experience with Standard ML and Caml as well as recent theoretical work
on language design and semantics (such as type systems for object oriented programming).
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“HOL2000” has been launched.27 Only time will tell how this evolves. The end
of the century should be an exciting time for HOL – and all thanks to Robin
Milner!
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