
Chapter 1A Me
hanized Hoare Logi
 ofState TransitionsMike Gordon
The �eld of programming logi
s stands on the foundation laid by C.A.R. Hoarein his seminal paper `An axiomati
 basis for 
omputer programming' [8℄. In thatpaper Hoare presented a 
al
ulus of formulae PfC gQ meaning \If assertion Pis true before initiation of a program C , then the assertion Q will be true on its
ompletion." 1 Sin
e 1969, resear
h into Hoare logi
s has been a major topi
 in thetheory of programming. Numerous variations and extensions of Hoare's originalideas have been developed. These have both been studied theoreti
ally [1℄ and putinto pra
ti
e [3, 9℄. This tradition is 
ontinued here. An interpretation of Hoarelogi
 is des
ribed that is intended for the analysis of programs implementing real-time rea
tive systems. Versions of Hoare's original rules have been derived and formthe basis for a prototype 
omputer assisted program veri�er. The aim has been toprodu
e an automated system that uses `Hoare-style' reasoning to establish bothtotal 
orre
tness and `�ne grain' timing properties of programs. There alreadyexist extensions of Hoare logi
 that enable the running time of programs to beanalysed [11℄. The work here extends and automates these. Formulae of theform fPg C fQg [I ℄ hti are introdu
ed where P , Q and I are assertions, C is a
ommand (i.e. a program) and t is a number. These meaning of su
h formulae is\If P is true and the instru
tions 
ompiled from C are exe
uted, then in at mostt ma
hine 
y
les the exe
ution of C will terminate in a state satisfying Q and allintermediate states will satisfy I ."1.1 An introdu
tory exampleThe simple example given in this se
tion aims to 
onvey the `look and feel' of theveri�
ation method presented in subsequent se
tions. Some notations and 
on
eptsappear before they are properly introdu
ed and as a result some of the details maybe obs
ure.1From now on fPg C fQg will written instead of Hoare's original PfCgQ .1



2 Mike GordonConsider the spe
i�
ation of the form fPg C fQg [I ℄ shown in box 1 below. Cis an annotated 
ommand and P , Q , I are 
onditions on the values of programvariables. The 
ondition I is intended to hold throughout the 
omputation (i.e.in the �nal state and all intermediate states), whereas Q is only intended to holdin the �nal state. The annotations in the 
ommand are an assertion after the�rst assignment and a variant [x℄ and invariant for the while-loop. Ea
h timearound the loop the invariant holds and the value of the variant de
reases (valuesare assumed to be positive integers). Variables like x in teletype font are pro-gram variables; variables like x in itali
s are logi
al variables (also 
alled `ghost' or`auxiliary' variables). 1fx = x ^ y = ygout := 0; fout = 0 ^ x = x ^ y = ygif :(x = 0 _ y = 0)then while x > 0do [x℄ fout + (x � y) = x � y ^ y = ygout := out + y;x := x � 1fout = x � y g[y = y ℄The veri�er initially generates eleven veri�
ation 
onditions. Ten of these are solvedby the 
urrently implemented simpli�er leaving the following one for the user: 2(out + (x � y) = x � y) ):(x = 0) )((out + y) + ((x � 1) � y) = x � y)This is proved manually and then the veri�er generates the theorem shown in box 3below, whi
h has the form ` fPg C fQg [I ℄ hti, where C is the unannotated multi-pli
ation program, MultProg say. Su
h augmented Hoare spe
i�
ations mean thatfPg C fQg holds (interpreted as a total 
orre
tness spe
i�
ation), the exe
utionof C requires at most t 
y
les and all intermediate states satisfy I . 3` fx = x ^ y = ygout := 0;if :(x = 0 _ y = 0)then while x > 0doout := out + y;x := x � 1fout = x � y g[y = y ℄h15 + (13�x )iThus the multipli
ation takes at most 15+ (13� x ) ma
hine 
y
les, where x is theinitial value of x and the value of program variable y remains stable throughout



A Me
hanized Hoare Logi
 of State Transitions 3the 
omputation. This bound on the number of 
y
les is 
omputed (and veri-�ed) automati
ally. The semanti
s of fPg C fQg [I ℄ hti is formulated dire
tly interms of state transitions made by ma
hine instru
tions 
ompiled from C. Thema
hine MultMa
hine in box 4 is de�ned by the sequen
e of instru
tion obtainedby 
ompiling MultProg (see 1.4). The instru
tion numbers %n% are 
omments. 4MultMa
hine = Ma
hine [OP0 0; %0 %PUT out; %1 %GET x; %2 %OP1 :; %3 %GET y; %4 %OP1 :; %5 %OP2 _; %6 %OP1 :; %7 %JMZ 22; %8 %GET x; %9 %OP0 0; %10%OP2 >; %11%JMZ 22; %12%GET out; %13%GET y; %14%OP2 +; %15%PUT out; %16%GET x; %17%OP0 1; %18%OP2 �; %19%PUT x; %20%JMP 9℄ %21%Expanding the theorem of the form fPg C fQg [I ℄ hti into its semanti
s yieldsthe state transition assertion (or STA) [6℄ in box 5. State transition assertions arede�ned in 1.7. They are formulae of the form:M j= A I > Bwhi
h means \If ma
hine M is in a state satisfying A then a state satisfying Bwill be rea
hed and the sequen
e of intermediate states will satisfy I."In the STA in box 5, verti
al sta
king means 
onjun
tion, At m is true when theprogram 
ounter is m, [I ℄ is true of a sequen
e if I is true of all elements in thesequen
e and By m is true of any sequen
e of length less than m. 5MultMa
hine j= At 0x = xy = y By(15 + (13� x ))[y = y ℄ > At 22out = x � yThis says that if 
ontrol is at instru
tion number 0 and the values in lo
ations xand y are x and y , respe
tively, then within 15+ (13� x ) 
y
les 
ontrol will rea
hinstru
tion 22 and the value of out will then be x � y and the value of y will haveremained stable throughout the 
omputation. A similar state transition assertiongoing from instru
tion n to instru
tion n + 22 
ould be dedu
ed if the 
ompiledinstru
tions from MultProg were loaded at position n in memory.



4 Mike GordonThis result is a worst 
ase analysis. If further information is known about thestarting state, then a tighter time bound may be provable. For example, in thefollowing annotated spe
i�
ation the pre
ondition has the extra assumption x = 0and the 
onditional has been annotated with [F℄ (whi
h is ne
essary for the veri-�
ation 
ondition generator { see 1.6). 6fx = x ^ y = y ^ x = 0gout := 0; fout = 0 ^ x = x ^ y = y ^ x = 0gif :(x = 0 _ y = 0) [F℄then while x > 0do [x℄ fout + (x � y) = x � y ^ y = ygout := out + y;x := x � 1fout = x � y g[y = y ℄The �ve veri�
ation 
onditions (see 1.6.5) from this are all solved automati
allyand the resulting STA follows: 7MultMa
hine j= At 0x = xy = yx = 0 By 11[y = y ℄> At 22out = x � yThis shows that if x is initially 0 then the 
omputation takes at most 11 
y
les.The STAs in boxes 5 and 7 
an be 
ombined into a single STA 
overing both 
ases:8MultMa
hine j= At 0x = xy = y By(x = 0 ! 11 j 15 + (13 � x ))[y = y ℄ > At 22out = x � ywhere b ! p j q is the 
onditional if b then p else q .1.2 OverviewThe veri�er illustrated in the previous se
tion is built on top of a version of Hoarelogi
 for judgements of the form fPg C fQg [I ℄ hti. This, in turn, is built on top ofthe theory of state transition assertions and a 
ompiler for a simple programminglanguage. Finally, these are de�ned dire
tly in higher order logi
. Here's a diagram:Veri�
ation 
onditionsHoare logi
 of STAsTheory of STAs CompilerHigher order logi




A Me
hanized Hoare Logi
 of State Transitions 5The approa
h is purely de�nitional in that ea
h layer is de�ned in terms of the
on
epts of a lower one. The theory of STAs and their use in reasoning about ma-
hine instru
tions is des
ribed elsewhere [6℄. To make this paper self-
ontained, asimpli�ed version of the theory is outlined in 1.7. The general idea of me
hanisingHoare logi
s by generating veri�
ation 
onditions and then feeding them to a theo-rem prover is standard [3, 5, 13℄. The parti
ular approa
h used here was originallydeveloped for non-timed Hoare logi
s [4℄. Veri�
ation 
onditions are des
ribed in1.6. The main 
ontribution of this paper is to make the use of STAs for reasoningabout data-pro
essing algorithms mu
h easier by de�ning a Hoare logi
 on top ofthem.1.3 Timed Hoare spe
i�
ationsThe syntax of expressions E and 
ommands C is given by the following BNF, whereN ranges over the natural numbers, V ranges over the set Var of program variables,U ranges over unary operators and B ranges over binary operators.E ::= N j V j U E j E1 B E2C ::= V := Ej C1 ; C2j if E then Cj if E then C1 else C2j while E do CThis BNF syntax is ambiguous; if ne
essary, bra
kets will be used to disambiguateparti
ular examples.Expressions and 
ommands are exe
uted by translating them to sequen
es ofinstru
tions for a simple sta
k ma
hine and then running the resulting ma
hine
ode programs. The state of the target ma
hine is a triple (p
; stk ;mem) 
onsistingof a program 
ounter p
 : N , a sta
k stk : seq N and a memory mem : Var ! N .The meaning of timed Hoare spe
i�
ations fPg C fQg [I ℄ hti is de�ned in termsof the exe
ution of instru
tions 
ompiled from C.The spe
i�
ation fPg C fQg [I ℄ hti is true i� 2 whenever the program 
ounterpoints to the beginning of the instru
tions 
ompiled from C and P is true then thetarget ma
hine goes through a sequen
e of states satisfying I and rea
hes withint steps a state in whi
h Q is true and the program 
ounter points to the end ofinstru
tions 
ompiled from C .This informal de�nition is re�ned and formalized in 1.7 using state transitionassertions.2\i�" abbreviates \if and only if".



6 Mike Gordon1.4 A simple ma
hine and 
ompilerPrograms are 
ompiled to sequen
es of instru
tions from the following instru
tionset:JMP n un
onditional jump to instru
tion nJMZ n pop sta
k then jump to instru
tion n if the result is zeroJMN n pop sta
k then jump to instru
tion n if the result is non-zeroPOP pop the top of the sta
kOP0 v push v onto the sta
kOP1 U pop one value from sta
k, perform unary operation U , push resultOP2 B pop two values from sta
k, perform binary operation B, push resultGET x push the 
ontents of memory lo
ation x onto the sta
kINP i push the input from i onto the sta
kPUT x pop the top of the sta
k and store the result in memory lo
ation xLet [[E ℄℄ denote the instru
tions that expression E 
ompiles to and let s1a s2 denotethe 
on
atenation of sequen
es s1 and s2, then:[[N ℄℄ = OP0 N[[V ℄℄ = GET V[[U E ℄℄ = [[E ℄℄a OP1 U[[E1 B E2℄℄ = [[E1℄℄a [[E2℄℄a OP2 BIt is easy to prove that if jEj is the number of instru
tions in [[E ℄℄ then:jN j = 1jVj = 1jU Ej = jEj + 1jE1 B E2j = jE1j + jE2j + 1Let [[C℄℄ n be the sequen
e of instru
tions that 
ommand C 
ompiles to if the �rstinstru
tion is pla
ed at position n. Let jCj be the number of instru
tions in [[C℄℄,then:jV := Ej = jEj+ 1jC1 ; C2j = jC1j+ jC2jjif E then Cj = jEj+ jCj+ 1jif E then C1 else C2j = jEj+ jC1j+ jC2j+ 2jwhile E do Cj = jEj+ jCj+ 2and



A Me
hanized Hoare Logi
 of State Transitions 7[[V := E ℄℄ n = [[E ℄℄a PUT V[[C1 ; C2℄℄ n = [[C1℄℄ n a [[C2℄℄(n+jC1j)[[if E then C℄℄ n = [[E ℄℄a JMZ(n+jEj+jCj+1)a [[C℄℄(n+jEj+1)[[if E then C1 else C2℄℄ n = [[E ℄℄a JMZ(n+jEj+jC1j+2)a [[C1℄℄(n+jEj+1)a JMP(n+jEj+jC1j+jC2j+2)a [[C2℄℄(n+jEj+jC1j+2)[[while E do C℄℄ n = [[E ℄℄a JMZ(n+jEj+jCj+2)a [[C℄℄(n+jEj+1)a JMP n1.5 A timed Hoare logi
The axioms and rules in this se
tion 
an all be derived from the de�nition offPg C fQg [I ℄ hti given in 1.7 below.1.5.1 The assignment axiomThe notation P[E=V℄ denotes the result of substituting E for V in P . The assign-ment axiom states:` fP[E=V℄g V:=E fPg [P _ P[E=V℄℄ hjEj+ 1iThe assignment takes one more 
y
le than the evaluation of E and during itsexe
ution the value of V is either its initial value or the value of E.1.5.2 The sequen
ing rule` fPg C1 fQg [I1℄ ht1i ` fQg C2 fRg [I2℄ ht2i` fPg C1; C2 fRg [I1 _ I2℄ ht1 + t2iThe time taken to exe
ute C1;C2 is the sum of the times taken by C1 and C2 andthroughout the 
ombined 
omputation either I1 or I2 holds of the memory. Theinvariant 
ould probably be strengthened to say that �rst I1 and then I2 holds; this
ould be expressed with a `
hop' operator from interval temporal logi
 [10℄. So farthis strengthening has not been needed and the rule above has been suÆ
ient.1.5.3 The 
onditional rulesThe one-armed 
onditional rule is:



8 Mike Gordon` fP ^ Eg C fQg [I ℄ hti ` P ^ :E ) Q ` P ) I` fPg if E then C fQg [I ℄ hjEj+ t + 1iThe time taken by if E then C is at most the time taken to evaluate E plus thetime taken to exe
ute C plus 1. If the invariant I is initially true and its truth ismaintained by C, then it is true throughout the entire 
omputation of the 
ondi-tional.If it is known that the test E is false, then the time bound 
an be improved andthe invariant strengthened to the pre
ondition (sin
e expression evaluations 
annot
hange the memory). ` P ) :E` fPg if E then C fPg [P ℄ hjEj+ 1iThe two-armed 
onditional rule is:` fP ^ Eg C1 fQg [I1℄ ht1i` fP ^ :Eg C2 fQg [I2℄ ht2i` P ^ E ) I1` P ^ :E ) I2` fPg if E then C1 else C2 fQg [I1 _ I2℄ hjEj+Max(t1; t2) + 2iThe time taken to exe
ute if E then C1 else C2 is at most the time taken to eval-uate E plus the maximum of the times taken to exe
ute C1 and C2 plus 2. If whenC1 is exe
uted then I1 holds throughout the 
omputation and when C2 is exe
utedI2 holds, then I1 _ I2 holds no matter what arm of the 
onditional is taken.If the pre
ondition P determines the value of E, then a tighter time bound 
anbe derived. In the 
ase that P for
es E to be true:` fPg C1 fQg [I ℄ hti ` P ) E ` P ) I` fPg if E then C1 else C2 fQg [I ℄ hjEj+ t + 2iIn the 
ase that P for
es E to be false:` fPg C2 fQg [I ℄ hti ` P ) :E ` P ) I` fPg if E then C1 else C2 fQg [I ℄ hjEj+ t + 1iThe reason for \2" in the time bound when E is true, but \1" when it is false isthat the 
ompiler generates a jump instru
tion from after the 
ode for C1 to theend of the 
onditional. This jump is not exe
uted if the else-arm is taken.



A Me
hanized Hoare Logi
 of State Transitions 91.5.4 The while ruleIn the rule that follows V is a variant, i.e. a variable whose value stri
tly de
reasesea
h time around the loop; note that all values are natural numbers, so the valueof V 
annot be negative. The fun
tion WhileTime is de�ned by:WhileTime(e; t ; n) =def e + 1 + n � (e + t + 2)WhileTime(e; t ; n) is an upper bound on the number of 
y
les taken to exe
ute niterations of while E do C, where e is an upper bound on the number of 
y
les toevaluate E and t is an upper bound on the number of 
y
les to exe
ute C.` 8 v : fP ^ E ^ V = vg C fP ^ V < vg [I ℄ hti ` P ) I` 8 v : fP ^ V = vg while E do C fP ^ :Eg [I ℄ hWhileTime(jEj; t ; v)iIf it is known that E is false, then the body of the while loop is never exe
uted.This is re
e
ted in the following rule.` P ) :E` fPg while E do C fPg [P ℄ hjEj+ 1i1.5.5 The 
onsequen
e rulePre
onditions 
an be strengthened and post
onditions, invariants and time-boundsweakened: ` fPg C fQg [I ℄ hti` P 0 ) P` Q ) Q 0` I ) I 0` t � t 0` fP 0g C fQ 0g [I 0℄ ht 0i1.5.6 The 
ases rule ` fP1g C fQg [I ℄ hti` fP2g C fQg [I ℄ hti` fP1 _ P2g C fQg [I ℄ hti



10 Mike Gordon1.5.7 An example proofThe following proof establishes the spe
i�
ation in box 6 on page 4.1. By the assignment axiom:` fx = x ^ y = y ^ x = 0 ^ 0 = 0gout := 0fx = x ^ y = y ^ x = 0 ^ out = 0g[(x = x ^ y = y ^ x = 0 ^ out = 0) _ (x = x ^ y = y ^ x = 0 ^ 0 = 0)℄h2i2. By the 
onsequen
e rule this entails:` fx = x ^ y = y ^ x = 0gout := 0fx = x ^ y = y ^ x = 0 ^ out = 0g[y = y ℄h2i3. Sin
e (x = x ^ y = y ^ x = 0 ^ out = 0) ) :(:(x = 0 _ y = 0)) andj:(x = 0 _ y = 0)j = 8, it follows by the se
ond one-armed 
onditional rule(the one for when the test is false) that:` fx = x ^ y = y ^ x = 0 ^ out = 0gif :(x = 0 _ y = 0) then Cfx = x ^ y = y ^ x = 0 ^ out = 0g[x = x ^ y = y ^ x = 0 ^ out = 0℄h9i4. This simpli�es by the 
onsequen
e rule to:` fx = x ^ y = y ^ x = 0 ^ out = 0gif :(x = 0 _ y = 0) then Cfout = x � yg[y = y ℄h9i5. Applying the sequen
ing rule to 2 and 4 yields:` fx = x ^ y = y ^ x = 0 ^ out = 0gout := 0;if :(x = 0 _ y = 0)then Cfout = x � yg[y = y ℄h11i



A Me
hanized Hoare Logi
 of State Transitions 111.6 Veri�
ation 
onditionsThe proof in the previous se
tion was a sequen
e of lines ea
h of whi
h was anaxiom or followed from earlier lines by a rule of inferen
e. Su
h forward proofsare tedious to produ
e. An alternative is to pro
eed ba
kwards, by starting fromthe goal to be proved and then splitting this into subgoals, subsubgoals et
. untilinstan
es of axioms are rea
hed. A traditional way of organizing su
h goal-dire
tedproofs is to use veri�
ation 
onditions [3, 13℄. The idea is to generate from a goalfPg C fQg a set of purely logi
al formulae { the veri�
ations 
onditions { that havethe property that if they are true then the Hoare spe
i�
ation from whi
h theywere generated is also true. To enable veri�
ation 
onditions to be easily generated,the 
ommand C needs to be annotated with hints; in parti
ular the variant andinvariants for while loops need to be supplied (though attempts have been madeto generate this information automati
ally [14℄). The veri�
ation 
onditions aregenerated by a straightforward re
ursion on the stru
ture of C.Veri�
ation 
onditions are related to Dijkstra's weakest pre
onditions [2℄, thoughthey predate it. Dijkstra's idea was to repla
e fPg C fQg by the purely logi
al for-mula P ) wp(C;Q), where wp(C;Q) is the weakest pre
ondition for C to establishQ . The rules for 
al
ulating P ) wp(C;Q) are similar to the rules for generatingveri�
ation 
onditions from fPg C fQg.The veri�er des
ribed here requires the variant and invariant of all while loops tobe supplied, as well as an assertion before ea
h 
ommand in a sequen
e that is notan assignment. These assertions should be statements that are true when 
ontrolrea
hes the point at whi
h they o

ur. Additional optional assertions of the form[T℄ or [F℄ may also be added after the test in 
onditional and while 
ommands;these indi
ate the truth value of the test.A goal has the form fPg C fQg [I ℄, where C is an annotated 
ommand. It isassumed that ea
h while 
ommand has a distin
t variant v (and asso
iated auxiliaryvariable v) and that for ea
h su
h variant there is a 
onjun
t v = v in P . Theannotations in C enable an expression Time C to be 
omputed synta
ti
ally thatgives a bound on the running time of C in terms of the initial values of the variants.Time(V := E) = jE j+ 1Time(C1 ; C2) = Time C1 + Time C2Time(C1 ; fRg C2) = Time C1 + Time C2Time(if E then C) = jE j+ Time C + 1Time(if E [F℄ then C) = jE j+ 1Time(if E then C1 else C2) = Time E +Max(Time C1;Time C2) + 2Time(if E [T℄ then C1 else C2) = Time E + Time C1 + 2Time(if E [F℄ then C1 else C2) = Time E + Time C2 + 1Time(while E do [v℄ fRg C) = WhileTime (jEj;Time C; v)Time(while E [F℄ do [v℄ fRg C) = jE j+ 1For example, Time(out := out+ y; x := x� 1) simpli�es to 8 and Time MultProg(where MultProg is the 
ommand in box 1 on page 2) simpli�es to 15 + (13� x ).



12 Mike GordonWhen the veri�er is invoked with a goal fPg C fQg [I ℄, it tries to prove thespe
i�
ation fPg C fQg [I ℄ hTime Ci using a set of derived rules `ba
kwards'. Itmat
hes the spe
i�
ation with the 
on
lusions of these rules (whi
h are given below)and then generates subgoals 
onsisting of the hypotheses of the (unique) rule thatmat
hed. 3 This pro
ess is repeated on the subgoals until they are all redu
ed topurely logi
al formulae. These formulae are then me
hani
ally simpli�ed and thosethat do not redu
e to true are returned as the veri�
ation 
onditions. It is 
learthat if the veri�
ation 
onditions are proved then the rules may be applied in the`forward' dire
tion to establish the original goal. A more detailed dis
ussion of thispro
ess 
an be found elsewhere [4, 5℄.The following rules generate the veri�
ation 
onditions; they 
an be derived fromthe axioms and rules given in 1.5.1.6.1 Assignments` P ) Q[E=V℄ Q _ Q[E=V℄ ) I` fPg V:=E fQg [I ℄ hTime(V := E)i1.6.2 Sequen
ing` fPg C1 fRg [I ℄ hTime C1i ` fRg C2 fQg [I ℄ hTime C2i` fPg C1; fRg C2 fQg [I ℄ hTime(C1 ; C2)i` fPg C fQ[E=V℄g [I ℄ hTime Ci` fPg C; V := E fQg [I ℄ hTime(C ; V := E)i1.6.3 Conditionals` fP ^ Eg C fQg [I ℄ hTime Ci ` P ^ :E ) Q ` P ) I` fPg if E then C fQg [I ℄ hTime(if E then C)i` P ) :E ` P ) Q ` P ) I` fPg if E [F℄ then C fQg [I ℄ hTime(if E [F℄ then C)i3Mat
hing is 
urrently done by an ad ho
 pro
edure whi
h has the de�nition of Time built in.A more general approa
h would use Prolog-style metavariables to synthesize running times byuni�
ation. Theorem provers su
h as Isabelle [12℄ provide built-in fa
ilities to support this.



A Me
hanized Hoare Logi
 of State Transitions 13` fP ^ Eg C1 fQg [I ℄ hTime C1i` fP ^ :Eg C2 fQg [I ℄ hTime C2i` P ) I` fPg if E then C1 else C2 fQg [I ℄ hTime(if E then C1 else C2)i` fP ^ Eg C1 fQg [I ℄ hTime C1i ` P ) E ` P ) I` fPg if E [T℄ then C1 else C2 fQg [I ℄ hTime(if E [T℄ then C1 else C2)i` fP ^ :Eg C2 fQg [I ℄ hTime C2i ` P ) :E ` P ) I` fPg if E [F℄ then C1 else C2 fQg [I ℄ hTime(if E [F℄ then C1 else C2)i
1.6.4 While loops` 8 v : fR(v) ^ E ^ v = vg while E do [v℄ fR(v)g C fR(v) ^ v < vg [I ℄ hTime Ci` 8 v : P(v) ) R(v) ^ v = v` 8 v : R(v) ) I` 8 v : fP(v)g while E do [v℄ fR(v)g C fQg [I ℄ hTime(while E do [v℄ fR(v)g C)i` P ) :E ` P ) Q ` P ) I` fPg while E [F℄ do [v℄ fRg C fQg [I ℄ hTime(while E [F℄ do [v℄ fRg C)i1.6.5 ExampleConsider the goal in box 6 on page 4. Using the de�nition of Time the veri�er
omputes that 11 
y
les are needed. It thus tries to show:fx = x ^ y = y ^ x = 0gout := 0; fout = 0 ^ x = x ^ y = y ^ x = 0gif :(x = 0 _ y = 0) [F℄then while x > 0do [x℄ fout + (x � y) = x � y ^ y = ygout := out + y;x := x � 1fout = x � y g[y = y ℄h11i



14 Mike GordonBa
k
haining with the �rst rule in 1.6.2 yields two subgoals:(1) fx = x ^ y = y ^ x = 0gout := 0fout = 0 ^ x = x ^ y = y ^ x = 0g[y = y ℄h2i(2) fout = 0 ^ x = x ^ y = y ^ x = 0gif :(x = 0 _ y = 0) [F℄then while x > 0do [x℄ fout + (x � y) = x � y ^ y = ygout := out + y;x := x � 1fout = x � y g[y = y ℄h9iThe assignment rule in 1.6.1 redu
es (1) to two purely logi
al veri�
ation 
ondi-tions; both are trivial.(3) (x = x ^ y = y ^ x = 0) )(0 = 0 ^ x = x ^ y = y ^ x = 0)(4) (0 = 0 ^ x = x ^ y = y ^ x = 0) _(out = 0 ^ x = x ^ y = y ^ x = 0) )(y = y)The se
ond 
onditional rule 1.6.3 redu
es (2) to three purely logi
al veri�
ation
onditions; all three are trivial.(5) (out = 0 ^ x = x ^ y = y ^ x = 0) ):(:(x = 0 _ y = 0))(6) (out = 0 ^ x = x ^ y = y ^ x = 0) )(out = x � y)(7) (out = 0 ^ x = x ^ y = y ^ x = 0) )(y = y)The veri�
ation 
onditions from the original goal are (3), (4), (5), (6) and (7).They 
an all be solved automati
ally.



A Me
hanized Hoare Logi
 of State Transitions 151.7 State transition assertionsA state transition assertion (STA) has the form:M j= A I > Bwhere M is a ma
hine, A and B are predi
ates on states and I is a predi
ate onsequen
es of states. In general, a ma
hine is a fun
tion from states and inputs tostates [6℄, but as inputs are not 
onsidered here, a ma
hine will be represented bya fun
tion from states to states. If M : state ! state is su
h a ma
hine, then one
y
le is a step s 7! M s. A tra
e of M is a sequen
e:s a (M s)a (M(M s))a (M(M(M s))) : : :The STA above is true i� for all tra
es s0 a s1 a : : : of M, if A is true of si thenthere is a later state sj (where i < j ) for whi
h B is true and I is true of allsubsequen
es si+1 a : : :a sk , where i < k � j .A ma
hine 
ode program O determines a ma
hine Ma
hine O that maps a state(p
; stk ;mem) to the state resulting from exe
uting the instru
tion pointed to bythe program 
ounter p
. For example, the program in box 4 on page 3 determinesa ma
hine that maps the state (8; stk ;mem) to the su

essor state (22; stk ;mem),sin
e the program 
ounter (viz. 8) points to the instru
tion JMP 22 (the program
ounter starts at 0, so 8 points to the 9th instru
tion).The predi
ate At n is true of a state (p
; stk ;mem) i� p
 = n. The predi
ateBy t is true of a sequen
e of states i� its length is at most t .If the obje
t 
ode for a 
ommand C is loaded into program memory starting atlo
ation n, then the resulting ma
hine 
ode program, O say, will 
ontain instru
-tions [[C℄℄n from position n to position n+ jCj. The notation Loaded(O; C; n) meansthat this is the 
ase.If F is a formula then fFg is the predi
ate on states de�ned by:fFg(p
; stk ;mem) = F [mem x1; : : : ;mem xn=x1; : : : ; xn ℄where x1, : : :, xn are the teletype font variables in F and F [v1; : : : ; vn=x1; : : : ; xn ℄denotes the result of textually substituting vi for xi (for 1 � i � n) in F . Forexample:fout + (x� y) = x � y ^ y = yg(p
; stk ;mem) =(mem out) + ((mem x)� (mem y)) = x � y ^ (mem y) = yThis notation formalizes the 
onvention that teletype font variables are programvariables (i.e. names bound by the memory) and itali
 variables are logi
al (orauxiliary) variables.If P is a predi
ate on states then [P℄ is the predi
ate on sequen
es of states thatis true i� P is true of ea
h individual state in the sequen
e.The 
onjun
tion of predi
ates on states and sequen
es of states will be indi
atedby verti
al sta
king.



16 Mike GordonArmed with all this notation, the timed Hoare formula fPg C fQg [I ℄ hti 
annow be de�ned to mean:8O n: Loaded(O; C; n) ) Ma
hine O j= At nfPg By t[fI g℄> At(n + jCj)fQgIn pra
ti
e, the 
urley bra
kets f g are omitted. For example, if O is the sequen
eof instru
tions in box 4 on page 3 and Loaded(O;MultProg; 0), then the meaningof the timed Hoare formula in box 3 on page 2 entails the STA in box 5 on page 3.1.8 Me
hanizationThe prototype veri�er is implemented in HOL [7℄. First STAs are de�ned and variousderived rules for them are proved. Next the sta
k ma
hine, programming language and
ompiler are de�ned. Timed Hoare formulae are then de�ned in terms of STAs and thevarious laws in 1.5 are proved. Finally, ta
ti
s are programmed to generate veri�
ation
onditions from goals; the justi�
ation part of these ta
ti
s are the derived rules [4℄.1.9 Con
lusionsThe work des
ribed here is just the beginning of an attempt to provide theorem provingsupport for spe
ifying and verifying timed rea
tive systems. Su
h systems alternatebetween waiting for input events in the environment and pro
essing the data asso
iatedwith these events. This paper 
on
entrates on the data pro
essing aspe
ts (anotherpaper [6℄ dis
usses waiting states and rea
tion times). Although some theorem-provingte
hnology has been developed for reasoning about STAs, it is still not 
lear how usefulthe STA formalism is as a spe
i�
ation method for `real' real-time systems.1.10 A
knowledgementsThis work was 
arried out as part of the safemos proje
t; a SERC/DTI funded 
ollabo-ration between inmos, SRI International, the Oxford University Programming Resear
hGroup and the Cambridge University Computer Laboratory. I am grateful to my 
ol-laborators on this proje
t: Jonathan Bowen, Juanito Camilleri, Ra
hel Cardell-Oliver,Roger Hale, John Herbert and David Shepherd. In addition, I have had useful feedba
kon STAs from Vi
tor Carreno, Nan
y Day and Neil Viljoen.



Referen
es

[1℄ Apt, K.R., `Ten years of Hoare's logi
: a survey { part 1', ACM Trans. on ProgrammingLanguages and Systems, 3, pp. 431-483, 1981.[2℄ Dijkstra, E.W., A Dis
ipline of Programming , Prenti
e-Hall, 1976.[3℄ Good, D.I., `Me
hani
al proofs about 
omputer programs', in Hoare, C.A.R. and Shepherd-son, J.C. (Eds), Mathemati
al Logi
 and Programming Languages, Prenti
e Hall, 1985.[4℄ Gordon, M.J.C., `Me
hanizing Programming Logi
s in Higher Order Logi
', G. Birtwistleand P.A. Subrahmanyam, (Eds), Current Trends in Hardware Veri�
ation and AutomatedTheorem Proving , Springer-Verlag, 1989.[5℄ Gordon, M.J.C., Programming Language Theory and its Implementation, Prenti
e-Hall In-ternational Series in Computer S
ien
e, 1988.[6℄ Gordon, M.J.C., `State transition assertions: a 
ase study', in Jonathan Bowen (Ed.), To-wards System Veri�
ation, Real-Time Safety-Criti
al Systems series, Elsevier, 1993.[7℄ Gordon, M.J.C. and Melham, T.F., Introdu
tion to HOL: a theorem-proving environmentfor higher-order logi
, Cambridge University Press, 1993.[8℄ Hoare, C.A.R., `An axiomati
 basis for 
omputer programming', Communi
ations of theACM , 12, pp. 576-583, O
tober 1969.[9℄ Jones, C.B., Systemati
 Software Development Using VDM, Prenti
e Hall, 1986.[10℄ J. Halpern, Z. Manna and B. Moszkowski., `A Hardware Semanti
s based on TemporalIntervals', In the pro
eedings of the 10-th International Colloquium on Automata, Languagesand Programming , Bar
elona, Spain, 1983.[11℄ Nielson, H.R., `A Hoare-like proof system for run-time analysis of programs', S
ien
e ofComputer Programming , 9, 1987.[12℄ Paulson, L.C., `Isabelle: The Next 700 Theorem Provers', in Odifreddi, P. (Ed) Logi
 andComputer S
ien
e, pp. 361{386, A
ademi
 Press, 1990.[13℄ von Henke, F.W. and Lu
kham, `Automati
 Program Veri�
ation III: A Methodology forVerifying Programs', Stanford University Computer S
ien
e Department, Report No. STAN-CS-74-474, 1974.[14℄ Wegbreit, B., `The synthesis of loop predi
ates', Comm. ACM , 17, pp 102{112, 1974.
17


