
Chapter 1A Mehanized Hoare Logi ofState TransitionsMike Gordon
The �eld of programming logis stands on the foundation laid by C.A.R. Hoarein his seminal paper `An axiomati basis for omputer programming' [8℄. In thatpaper Hoare presented a alulus of formulae PfC gQ meaning \If assertion Pis true before initiation of a program C , then the assertion Q will be true on itsompletion." 1 Sine 1969, researh into Hoare logis has been a major topi in thetheory of programming. Numerous variations and extensions of Hoare's originalideas have been developed. These have both been studied theoretially [1℄ and putinto pratie [3, 9℄. This tradition is ontinued here. An interpretation of Hoarelogi is desribed that is intended for the analysis of programs implementing real-time reative systems. Versions of Hoare's original rules have been derived and formthe basis for a prototype omputer assisted program veri�er. The aim has been toprodue an automated system that uses `Hoare-style' reasoning to establish bothtotal orretness and `�ne grain' timing properties of programs. There alreadyexist extensions of Hoare logi that enable the running time of programs to beanalysed [11℄. The work here extends and automates these. Formulae of theform fPg C fQg [I ℄ hti are introdued where P , Q and I are assertions, C is aommand (i.e. a program) and t is a number. These meaning of suh formulae is\If P is true and the instrutions ompiled from C are exeuted, then in at mostt mahine yles the exeution of C will terminate in a state satisfying Q and allintermediate states will satisfy I ."1.1 An introdutory exampleThe simple example given in this setion aims to onvey the `look and feel' of theveri�ation method presented in subsequent setions. Some notations and oneptsappear before they are properly introdued and as a result some of the details maybe obsure.1From now on fPg C fQg will written instead of Hoare's original PfCgQ .1



2 Mike GordonConsider the spei�ation of the form fPg C fQg [I ℄ shown in box 1 below. Cis an annotated ommand and P , Q , I are onditions on the values of programvariables. The ondition I is intended to hold throughout the omputation (i.e.in the �nal state and all intermediate states), whereas Q is only intended to holdin the �nal state. The annotations in the ommand are an assertion after the�rst assignment and a variant [x℄ and invariant for the while-loop. Eah timearound the loop the invariant holds and the value of the variant dereases (valuesare assumed to be positive integers). Variables like x in teletype font are pro-gram variables; variables like x in italis are logial variables (also alled `ghost' or`auxiliary' variables). 1fx = x ^ y = ygout := 0; fout = 0 ^ x = x ^ y = ygif :(x = 0 _ y = 0)then while x > 0do [x℄ fout + (x � y) = x � y ^ y = ygout := out + y;x := x � 1fout = x � y g[y = y ℄The veri�er initially generates eleven veri�ation onditions. Ten of these are solvedby the urrently implemented simpli�er leaving the following one for the user: 2(out + (x � y) = x � y) ):(x = 0) )((out + y) + ((x � 1) � y) = x � y)This is proved manually and then the veri�er generates the theorem shown in box 3below, whih has the form ` fPg C fQg [I ℄ hti, where C is the unannotated multi-pliation program, MultProg say. Suh augmented Hoare spei�ations mean thatfPg C fQg holds (interpreted as a total orretness spei�ation), the exeutionof C requires at most t yles and all intermediate states satisfy I . 3` fx = x ^ y = ygout := 0;if :(x = 0 _ y = 0)then while x > 0doout := out + y;x := x � 1fout = x � y g[y = y ℄h15 + (13�x )iThus the multipliation takes at most 15+ (13� x ) mahine yles, where x is theinitial value of x and the value of program variable y remains stable throughout



A Mehanized Hoare Logi of State Transitions 3the omputation. This bound on the number of yles is omputed (and veri-�ed) automatially. The semantis of fPg C fQg [I ℄ hti is formulated diretly interms of state transitions made by mahine instrutions ompiled from C. Themahine MultMahine in box 4 is de�ned by the sequene of instrution obtainedby ompiling MultProg (see 1.4). The instrution numbers %n% are omments. 4MultMahine = Mahine [OP0 0; %0 %PUT out; %1 %GET x; %2 %OP1 :; %3 %GET y; %4 %OP1 :; %5 %OP2 _; %6 %OP1 :; %7 %JMZ 22; %8 %GET x; %9 %OP0 0; %10%OP2 >; %11%JMZ 22; %12%GET out; %13%GET y; %14%OP2 +; %15%PUT out; %16%GET x; %17%OP0 1; %18%OP2 �; %19%PUT x; %20%JMP 9℄ %21%Expanding the theorem of the form fPg C fQg [I ℄ hti into its semantis yieldsthe state transition assertion (or STA) [6℄ in box 5. State transition assertions arede�ned in 1.7. They are formulae of the form:M j= A I > Bwhih means \If mahine M is in a state satisfying A then a state satisfying Bwill be reahed and the sequene of intermediate states will satisfy I."In the STA in box 5, vertial staking means onjuntion, At m is true when theprogram ounter is m, [I ℄ is true of a sequene if I is true of all elements in thesequene and By m is true of any sequene of length less than m. 5MultMahine j= At 0x = xy = y By(15 + (13� x ))[y = y ℄ > At 22out = x � yThis says that if ontrol is at instrution number 0 and the values in loations xand y are x and y , respetively, then within 15+ (13� x ) yles ontrol will reahinstrution 22 and the value of out will then be x � y and the value of y will haveremained stable throughout the omputation. A similar state transition assertiongoing from instrution n to instrution n + 22 ould be dedued if the ompiledinstrutions from MultProg were loaded at position n in memory.



4 Mike GordonThis result is a worst ase analysis. If further information is known about thestarting state, then a tighter time bound may be provable. For example, in thefollowing annotated spei�ation the preondition has the extra assumption x = 0and the onditional has been annotated with [F℄ (whih is neessary for the veri-�ation ondition generator { see 1.6). 6fx = x ^ y = y ^ x = 0gout := 0; fout = 0 ^ x = x ^ y = y ^ x = 0gif :(x = 0 _ y = 0) [F℄then while x > 0do [x℄ fout + (x � y) = x � y ^ y = ygout := out + y;x := x � 1fout = x � y g[y = y ℄The �ve veri�ation onditions (see 1.6.5) from this are all solved automatiallyand the resulting STA follows: 7MultMahine j= At 0x = xy = yx = 0 By 11[y = y ℄> At 22out = x � yThis shows that if x is initially 0 then the omputation takes at most 11 yles.The STAs in boxes 5 and 7 an be ombined into a single STA overing both ases:8MultMahine j= At 0x = xy = y By(x = 0 ! 11 j 15 + (13 � x ))[y = y ℄ > At 22out = x � ywhere b ! p j q is the onditional if b then p else q .1.2 OverviewThe veri�er illustrated in the previous setion is built on top of a version of Hoarelogi for judgements of the form fPg C fQg [I ℄ hti. This, in turn, is built on top ofthe theory of state transition assertions and a ompiler for a simple programminglanguage. Finally, these are de�ned diretly in higher order logi. Here's a diagram:Veri�ation onditionsHoare logi of STAsTheory of STAs CompilerHigher order logi



A Mehanized Hoare Logi of State Transitions 5The approah is purely de�nitional in that eah layer is de�ned in terms of theonepts of a lower one. The theory of STAs and their use in reasoning about ma-hine instrutions is desribed elsewhere [6℄. To make this paper self-ontained, asimpli�ed version of the theory is outlined in 1.7. The general idea of mehanisingHoare logis by generating veri�ation onditions and then feeding them to a theo-rem prover is standard [3, 5, 13℄. The partiular approah used here was originallydeveloped for non-timed Hoare logis [4℄. Veri�ation onditions are desribed in1.6. The main ontribution of this paper is to make the use of STAs for reasoningabout data-proessing algorithms muh easier by de�ning a Hoare logi on top ofthem.1.3 Timed Hoare spei�ationsThe syntax of expressions E and ommands C is given by the following BNF, whereN ranges over the natural numbers, V ranges over the set Var of program variables,U ranges over unary operators and B ranges over binary operators.E ::= N j V j U E j E1 B E2C ::= V := Ej C1 ; C2j if E then Cj if E then C1 else C2j while E do CThis BNF syntax is ambiguous; if neessary, brakets will be used to disambiguatepartiular examples.Expressions and ommands are exeuted by translating them to sequenes ofinstrutions for a simple stak mahine and then running the resulting mahineode programs. The state of the target mahine is a triple (p; stk ;mem) onsistingof a program ounter p : N , a stak stk : seq N and a memory mem : Var ! N .The meaning of timed Hoare spei�ations fPg C fQg [I ℄ hti is de�ned in termsof the exeution of instrutions ompiled from C.The spei�ation fPg C fQg [I ℄ hti is true i� 2 whenever the program ounterpoints to the beginning of the instrutions ompiled from C and P is true then thetarget mahine goes through a sequene of states satisfying I and reahes withint steps a state in whih Q is true and the program ounter points to the end ofinstrutions ompiled from C .This informal de�nition is re�ned and formalized in 1.7 using state transitionassertions.2\i�" abbreviates \if and only if".



6 Mike Gordon1.4 A simple mahine and ompilerPrograms are ompiled to sequenes of instrutions from the following instrutionset:JMP n unonditional jump to instrution nJMZ n pop stak then jump to instrution n if the result is zeroJMN n pop stak then jump to instrution n if the result is non-zeroPOP pop the top of the stakOP0 v push v onto the stakOP1 U pop one value from stak, perform unary operation U , push resultOP2 B pop two values from stak, perform binary operation B, push resultGET x push the ontents of memory loation x onto the stakINP i push the input from i onto the stakPUT x pop the top of the stak and store the result in memory loation xLet [[E ℄℄ denote the instrutions that expression E ompiles to and let s1a s2 denotethe onatenation of sequenes s1 and s2, then:[[N ℄℄ = OP0 N[[V ℄℄ = GET V[[U E ℄℄ = [[E ℄℄a OP1 U[[E1 B E2℄℄ = [[E1℄℄a [[E2℄℄a OP2 BIt is easy to prove that if jEj is the number of instrutions in [[E ℄℄ then:jN j = 1jVj = 1jU Ej = jEj + 1jE1 B E2j = jE1j + jE2j + 1Let [[C℄℄ n be the sequene of instrutions that ommand C ompiles to if the �rstinstrution is plaed at position n. Let jCj be the number of instrutions in [[C℄℄,then:jV := Ej = jEj+ 1jC1 ; C2j = jC1j+ jC2jjif E then Cj = jEj+ jCj+ 1jif E then C1 else C2j = jEj+ jC1j+ jC2j+ 2jwhile E do Cj = jEj+ jCj+ 2and



A Mehanized Hoare Logi of State Transitions 7[[V := E ℄℄ n = [[E ℄℄a PUT V[[C1 ; C2℄℄ n = [[C1℄℄ n a [[C2℄℄(n+jC1j)[[if E then C℄℄ n = [[E ℄℄a JMZ(n+jEj+jCj+1)a [[C℄℄(n+jEj+1)[[if E then C1 else C2℄℄ n = [[E ℄℄a JMZ(n+jEj+jC1j+2)a [[C1℄℄(n+jEj+1)a JMP(n+jEj+jC1j+jC2j+2)a [[C2℄℄(n+jEj+jC1j+2)[[while E do C℄℄ n = [[E ℄℄a JMZ(n+jEj+jCj+2)a [[C℄℄(n+jEj+1)a JMP n1.5 A timed Hoare logiThe axioms and rules in this setion an all be derived from the de�nition offPg C fQg [I ℄ hti given in 1.7 below.1.5.1 The assignment axiomThe notation P[E=V℄ denotes the result of substituting E for V in P . The assign-ment axiom states:` fP[E=V℄g V:=E fPg [P _ P[E=V℄℄ hjEj+ 1iThe assignment takes one more yle than the evaluation of E and during itsexeution the value of V is either its initial value or the value of E.1.5.2 The sequening rule` fPg C1 fQg [I1℄ ht1i ` fQg C2 fRg [I2℄ ht2i` fPg C1; C2 fRg [I1 _ I2℄ ht1 + t2iThe time taken to exeute C1;C2 is the sum of the times taken by C1 and C2 andthroughout the ombined omputation either I1 or I2 holds of the memory. Theinvariant ould probably be strengthened to say that �rst I1 and then I2 holds; thisould be expressed with a `hop' operator from interval temporal logi [10℄. So farthis strengthening has not been needed and the rule above has been suÆient.1.5.3 The onditional rulesThe one-armed onditional rule is:



8 Mike Gordon` fP ^ Eg C fQg [I ℄ hti ` P ^ :E ) Q ` P ) I` fPg if E then C fQg [I ℄ hjEj+ t + 1iThe time taken by if E then C is at most the time taken to evaluate E plus thetime taken to exeute C plus 1. If the invariant I is initially true and its truth ismaintained by C, then it is true throughout the entire omputation of the ondi-tional.If it is known that the test E is false, then the time bound an be improved andthe invariant strengthened to the preondition (sine expression evaluations annothange the memory). ` P ) :E` fPg if E then C fPg [P ℄ hjEj+ 1iThe two-armed onditional rule is:` fP ^ Eg C1 fQg [I1℄ ht1i` fP ^ :Eg C2 fQg [I2℄ ht2i` P ^ E ) I1` P ^ :E ) I2` fPg if E then C1 else C2 fQg [I1 _ I2℄ hjEj+Max(t1; t2) + 2iThe time taken to exeute if E then C1 else C2 is at most the time taken to eval-uate E plus the maximum of the times taken to exeute C1 and C2 plus 2. If whenC1 is exeuted then I1 holds throughout the omputation and when C2 is exeutedI2 holds, then I1 _ I2 holds no matter what arm of the onditional is taken.If the preondition P determines the value of E, then a tighter time bound anbe derived. In the ase that P fores E to be true:` fPg C1 fQg [I ℄ hti ` P ) E ` P ) I` fPg if E then C1 else C2 fQg [I ℄ hjEj+ t + 2iIn the ase that P fores E to be false:` fPg C2 fQg [I ℄ hti ` P ) :E ` P ) I` fPg if E then C1 else C2 fQg [I ℄ hjEj+ t + 1iThe reason for \2" in the time bound when E is true, but \1" when it is false isthat the ompiler generates a jump instrution from after the ode for C1 to theend of the onditional. This jump is not exeuted if the else-arm is taken.



A Mehanized Hoare Logi of State Transitions 91.5.4 The while ruleIn the rule that follows V is a variant, i.e. a variable whose value stritly dereaseseah time around the loop; note that all values are natural numbers, so the valueof V annot be negative. The funtion WhileTime is de�ned by:WhileTime(e; t ; n) =def e + 1 + n � (e + t + 2)WhileTime(e; t ; n) is an upper bound on the number of yles taken to exeute niterations of while E do C, where e is an upper bound on the number of yles toevaluate E and t is an upper bound on the number of yles to exeute C.` 8 v : fP ^ E ^ V = vg C fP ^ V < vg [I ℄ hti ` P ) I` 8 v : fP ^ V = vg while E do C fP ^ :Eg [I ℄ hWhileTime(jEj; t ; v)iIf it is known that E is false, then the body of the while loop is never exeuted.This is reeted in the following rule.` P ) :E` fPg while E do C fPg [P ℄ hjEj+ 1i1.5.5 The onsequene rulePreonditions an be strengthened and postonditions, invariants and time-boundsweakened: ` fPg C fQg [I ℄ hti` P 0 ) P` Q ) Q 0` I ) I 0` t � t 0` fP 0g C fQ 0g [I 0℄ ht 0i1.5.6 The ases rule ` fP1g C fQg [I ℄ hti` fP2g C fQg [I ℄ hti` fP1 _ P2g C fQg [I ℄ hti



10 Mike Gordon1.5.7 An example proofThe following proof establishes the spei�ation in box 6 on page 4.1. By the assignment axiom:` fx = x ^ y = y ^ x = 0 ^ 0 = 0gout := 0fx = x ^ y = y ^ x = 0 ^ out = 0g[(x = x ^ y = y ^ x = 0 ^ out = 0) _ (x = x ^ y = y ^ x = 0 ^ 0 = 0)℄h2i2. By the onsequene rule this entails:` fx = x ^ y = y ^ x = 0gout := 0fx = x ^ y = y ^ x = 0 ^ out = 0g[y = y ℄h2i3. Sine (x = x ^ y = y ^ x = 0 ^ out = 0) ) :(:(x = 0 _ y = 0)) andj:(x = 0 _ y = 0)j = 8, it follows by the seond one-armed onditional rule(the one for when the test is false) that:` fx = x ^ y = y ^ x = 0 ^ out = 0gif :(x = 0 _ y = 0) then Cfx = x ^ y = y ^ x = 0 ^ out = 0g[x = x ^ y = y ^ x = 0 ^ out = 0℄h9i4. This simpli�es by the onsequene rule to:` fx = x ^ y = y ^ x = 0 ^ out = 0gif :(x = 0 _ y = 0) then Cfout = x � yg[y = y ℄h9i5. Applying the sequening rule to 2 and 4 yields:` fx = x ^ y = y ^ x = 0 ^ out = 0gout := 0;if :(x = 0 _ y = 0)then Cfout = x � yg[y = y ℄h11i



A Mehanized Hoare Logi of State Transitions 111.6 Veri�ation onditionsThe proof in the previous setion was a sequene of lines eah of whih was anaxiom or followed from earlier lines by a rule of inferene. Suh forward proofsare tedious to produe. An alternative is to proeed bakwards, by starting fromthe goal to be proved and then splitting this into subgoals, subsubgoals et. untilinstanes of axioms are reahed. A traditional way of organizing suh goal-diretedproofs is to use veri�ation onditions [3, 13℄. The idea is to generate from a goalfPg C fQg a set of purely logial formulae { the veri�ations onditions { that havethe property that if they are true then the Hoare spei�ation from whih theywere generated is also true. To enable veri�ation onditions to be easily generated,the ommand C needs to be annotated with hints; in partiular the variant andinvariants for while loops need to be supplied (though attempts have been madeto generate this information automatially [14℄). The veri�ation onditions aregenerated by a straightforward reursion on the struture of C.Veri�ation onditions are related to Dijkstra's weakest preonditions [2℄, thoughthey predate it. Dijkstra's idea was to replae fPg C fQg by the purely logial for-mula P ) wp(C;Q), where wp(C;Q) is the weakest preondition for C to establishQ . The rules for alulating P ) wp(C;Q) are similar to the rules for generatingveri�ation onditions from fPg C fQg.The veri�er desribed here requires the variant and invariant of all while loops tobe supplied, as well as an assertion before eah ommand in a sequene that is notan assignment. These assertions should be statements that are true when ontrolreahes the point at whih they our. Additional optional assertions of the form[T℄ or [F℄ may also be added after the test in onditional and while ommands;these indiate the truth value of the test.A goal has the form fPg C fQg [I ℄, where C is an annotated ommand. It isassumed that eah while ommand has a distint variant v (and assoiated auxiliaryvariable v) and that for eah suh variant there is a onjunt v = v in P . Theannotations in C enable an expression Time C to be omputed syntatially thatgives a bound on the running time of C in terms of the initial values of the variants.Time(V := E) = jE j+ 1Time(C1 ; C2) = Time C1 + Time C2Time(C1 ; fRg C2) = Time C1 + Time C2Time(if E then C) = jE j+ Time C + 1Time(if E [F℄ then C) = jE j+ 1Time(if E then C1 else C2) = Time E +Max(Time C1;Time C2) + 2Time(if E [T℄ then C1 else C2) = Time E + Time C1 + 2Time(if E [F℄ then C1 else C2) = Time E + Time C2 + 1Time(while E do [v℄ fRg C) = WhileTime (jEj;Time C; v)Time(while E [F℄ do [v℄ fRg C) = jE j+ 1For example, Time(out := out+ y; x := x� 1) simpli�es to 8 and Time MultProg(where MultProg is the ommand in box 1 on page 2) simpli�es to 15 + (13� x ).



12 Mike GordonWhen the veri�er is invoked with a goal fPg C fQg [I ℄, it tries to prove thespei�ation fPg C fQg [I ℄ hTime Ci using a set of derived rules `bakwards'. Itmathes the spei�ation with the onlusions of these rules (whih are given below)and then generates subgoals onsisting of the hypotheses of the (unique) rule thatmathed. 3 This proess is repeated on the subgoals until they are all redued topurely logial formulae. These formulae are then mehanially simpli�ed and thosethat do not redue to true are returned as the veri�ation onditions. It is learthat if the veri�ation onditions are proved then the rules may be applied in the`forward' diretion to establish the original goal. A more detailed disussion of thisproess an be found elsewhere [4, 5℄.The following rules generate the veri�ation onditions; they an be derived fromthe axioms and rules given in 1.5.1.6.1 Assignments` P ) Q[E=V℄ Q _ Q[E=V℄ ) I` fPg V:=E fQg [I ℄ hTime(V := E)i1.6.2 Sequening` fPg C1 fRg [I ℄ hTime C1i ` fRg C2 fQg [I ℄ hTime C2i` fPg C1; fRg C2 fQg [I ℄ hTime(C1 ; C2)i` fPg C fQ[E=V℄g [I ℄ hTime Ci` fPg C; V := E fQg [I ℄ hTime(C ; V := E)i1.6.3 Conditionals` fP ^ Eg C fQg [I ℄ hTime Ci ` P ^ :E ) Q ` P ) I` fPg if E then C fQg [I ℄ hTime(if E then C)i` P ) :E ` P ) Q ` P ) I` fPg if E [F℄ then C fQg [I ℄ hTime(if E [F℄ then C)i3Mathing is urrently done by an ad ho proedure whih has the de�nition of Time built in.A more general approah would use Prolog-style metavariables to synthesize running times byuni�ation. Theorem provers suh as Isabelle [12℄ provide built-in failities to support this.



A Mehanized Hoare Logi of State Transitions 13` fP ^ Eg C1 fQg [I ℄ hTime C1i` fP ^ :Eg C2 fQg [I ℄ hTime C2i` P ) I` fPg if E then C1 else C2 fQg [I ℄ hTime(if E then C1 else C2)i` fP ^ Eg C1 fQg [I ℄ hTime C1i ` P ) E ` P ) I` fPg if E [T℄ then C1 else C2 fQg [I ℄ hTime(if E [T℄ then C1 else C2)i` fP ^ :Eg C2 fQg [I ℄ hTime C2i ` P ) :E ` P ) I` fPg if E [F℄ then C1 else C2 fQg [I ℄ hTime(if E [F℄ then C1 else C2)i
1.6.4 While loops` 8 v : fR(v) ^ E ^ v = vg while E do [v℄ fR(v)g C fR(v) ^ v < vg [I ℄ hTime Ci` 8 v : P(v) ) R(v) ^ v = v` 8 v : R(v) ) I` 8 v : fP(v)g while E do [v℄ fR(v)g C fQg [I ℄ hTime(while E do [v℄ fR(v)g C)i` P ) :E ` P ) Q ` P ) I` fPg while E [F℄ do [v℄ fRg C fQg [I ℄ hTime(while E [F℄ do [v℄ fRg C)i1.6.5 ExampleConsider the goal in box 6 on page 4. Using the de�nition of Time the veri�eromputes that 11 yles are needed. It thus tries to show:fx = x ^ y = y ^ x = 0gout := 0; fout = 0 ^ x = x ^ y = y ^ x = 0gif :(x = 0 _ y = 0) [F℄then while x > 0do [x℄ fout + (x � y) = x � y ^ y = ygout := out + y;x := x � 1fout = x � y g[y = y ℄h11i



14 Mike GordonBakhaining with the �rst rule in 1.6.2 yields two subgoals:(1) fx = x ^ y = y ^ x = 0gout := 0fout = 0 ^ x = x ^ y = y ^ x = 0g[y = y ℄h2i(2) fout = 0 ^ x = x ^ y = y ^ x = 0gif :(x = 0 _ y = 0) [F℄then while x > 0do [x℄ fout + (x � y) = x � y ^ y = ygout := out + y;x := x � 1fout = x � y g[y = y ℄h9iThe assignment rule in 1.6.1 redues (1) to two purely logial veri�ation ondi-tions; both are trivial.(3) (x = x ^ y = y ^ x = 0) )(0 = 0 ^ x = x ^ y = y ^ x = 0)(4) (0 = 0 ^ x = x ^ y = y ^ x = 0) _(out = 0 ^ x = x ^ y = y ^ x = 0) )(y = y)The seond onditional rule 1.6.3 redues (2) to three purely logial veri�ationonditions; all three are trivial.(5) (out = 0 ^ x = x ^ y = y ^ x = 0) ):(:(x = 0 _ y = 0))(6) (out = 0 ^ x = x ^ y = y ^ x = 0) )(out = x � y)(7) (out = 0 ^ x = x ^ y = y ^ x = 0) )(y = y)The veri�ation onditions from the original goal are (3), (4), (5), (6) and (7).They an all be solved automatially.



A Mehanized Hoare Logi of State Transitions 151.7 State transition assertionsA state transition assertion (STA) has the form:M j= A I > Bwhere M is a mahine, A and B are prediates on states and I is a prediate onsequenes of states. In general, a mahine is a funtion from states and inputs tostates [6℄, but as inputs are not onsidered here, a mahine will be represented bya funtion from states to states. If M : state ! state is suh a mahine, then oneyle is a step s 7! M s. A trae of M is a sequene:s a (M s)a (M(M s))a (M(M(M s))) : : :The STA above is true i� for all traes s0 a s1 a : : : of M, if A is true of si thenthere is a later state sj (where i < j ) for whih B is true and I is true of allsubsequenes si+1 a : : :a sk , where i < k � j .A mahine ode program O determines a mahine Mahine O that maps a state(p; stk ;mem) to the state resulting from exeuting the instrution pointed to bythe program ounter p. For example, the program in box 4 on page 3 determinesa mahine that maps the state (8; stk ;mem) to the suessor state (22; stk ;mem),sine the program ounter (viz. 8) points to the instrution JMP 22 (the programounter starts at 0, so 8 points to the 9th instrution).The prediate At n is true of a state (p; stk ;mem) i� p = n. The prediateBy t is true of a sequene of states i� its length is at most t .If the objet ode for a ommand C is loaded into program memory starting atloation n, then the resulting mahine ode program, O say, will ontain instru-tions [[C℄℄n from position n to position n+ jCj. The notation Loaded(O; C; n) meansthat this is the ase.If F is a formula then fFg is the prediate on states de�ned by:fFg(p; stk ;mem) = F [mem x1; : : : ;mem xn=x1; : : : ; xn ℄where x1, : : :, xn are the teletype font variables in F and F [v1; : : : ; vn=x1; : : : ; xn ℄denotes the result of textually substituting vi for xi (for 1 � i � n) in F . Forexample:fout + (x� y) = x � y ^ y = yg(p; stk ;mem) =(mem out) + ((mem x)� (mem y)) = x � y ^ (mem y) = yThis notation formalizes the onvention that teletype font variables are programvariables (i.e. names bound by the memory) and itali variables are logial (orauxiliary) variables.If P is a prediate on states then [P℄ is the prediate on sequenes of states thatis true i� P is true of eah individual state in the sequene.The onjuntion of prediates on states and sequenes of states will be indiatedby vertial staking.



16 Mike GordonArmed with all this notation, the timed Hoare formula fPg C fQg [I ℄ hti annow be de�ned to mean:8O n: Loaded(O; C; n) ) Mahine O j= At nfPg By t[fI g℄> At(n + jCj)fQgIn pratie, the urley brakets f g are omitted. For example, if O is the sequeneof instrutions in box 4 on page 3 and Loaded(O;MultProg; 0), then the meaningof the timed Hoare formula in box 3 on page 2 entails the STA in box 5 on page 3.1.8 MehanizationThe prototype veri�er is implemented in HOL [7℄. First STAs are de�ned and variousderived rules for them are proved. Next the stak mahine, programming language andompiler are de�ned. Timed Hoare formulae are then de�ned in terms of STAs and thevarious laws in 1.5 are proved. Finally, tatis are programmed to generate veri�ationonditions from goals; the justi�ation part of these tatis are the derived rules [4℄.1.9 ConlusionsThe work desribed here is just the beginning of an attempt to provide theorem provingsupport for speifying and verifying timed reative systems. Suh systems alternatebetween waiting for input events in the environment and proessing the data assoiatedwith these events. This paper onentrates on the data proessing aspets (anotherpaper [6℄ disusses waiting states and reation times). Although some theorem-provingtehnology has been developed for reasoning about STAs, it is still not lear how usefulthe STA formalism is as a spei�ation method for `real' real-time systems.1.10 AknowledgementsThis work was arried out as part of the safemos projet; a SERC/DTI funded ollabo-ration between inmos, SRI International, the Oxford University Programming ResearhGroup and the Cambridge University Computer Laboratory. I am grateful to my ol-laborators on this projet: Jonathan Bowen, Juanito Camilleri, Rahel Cardell-Oliver,Roger Hale, John Herbert and David Shepherd. In addition, I have had useful feedbakon STAs from Vitor Carreno, Nany Day and Neil Viljoen.
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