
Proof Aounts in HOLAvra CohnUniversity of Cambridge Computer LaboratoryNew Museums Site, Pembroke StreetCambridge, CB2 3QG, England.

Abstrat:This paper presents a method for extrating explanations of goal-oriented proofs from the proess of generating suh proofs in theHOL system. The aim has been to produe natural (if stylized)explanations whih are phrased in onventional terms, even wherethe tatis used in generating the proof are spei� to HOL, HOL'simplementation, or mehanized theorem proving in general. Inter-nal forms of the explanations are onstruted by enrihing the MLtypes that support goal-oriented proof in HOL, so that adequateinformation an be saved during the generation of a proof to enableexpliit, annotated proof trees to be produed. These trees are thenrendered in readable form by a suite of printing funtions.1

Aknowledgements:This work was supported by the Siene and Engineering ResearhCounil, on Grant Thanks to Mike Gordon for his assistane,and to everyone in the Cambridge Hardware Veri�ation Group fortheir interest and omments.

2

Contents1 Introdution 61.1 The HOL System . 91.1.1 The Metalanguage and Logi 91.1.2 Goal Oriented Proof 101.1.3 The Subgoal-Theorem Tree 111.2 An Example Textbook Proof 121.3 Design Deisions . 131.4 Related Work . 142 The Basi Idea 153 The Extended ML Types 224 Elementary Tatis 284.1 The Implementation of Named Tatis: (GEN TAC) 284.2 Solving a Goal: ACCEPT TAC 334.3 Naming New Assumptions: DISCH TAC 354.4 Transforming Subgoals: SUBST1 TAC 364.4.1 Impliit Assumptions from Invalid Proof Steps 374.4.2 Impliit Assumptions without Use 404.4.3 Impliit Assumptions from Valid Proof Steps 414.4.4 Aounting for Impliit Assumptions 434.5 Multiple Subgoals: INDUCT TAC 464.6 Advanement or Solution: REWRITE TAC 484.6.1 Solution by REWRITE TAC 484.6.2 Advanement by REWRITE TAC 514.7 Adding an Assumption: ASSUME TAC 535 Conversions 546 Resolution 577 Popping Assumptions 637.1 Popping to Erase Used Assumptions 647.2 Popping to Replae an Assumption 657.3 Popping to Erase Irrelevant Assumptions 653

7.4 Aounting for Popping Assumptions 667.4.1 Aounting for Popping to Erase Used Assumptions . . 677.4.2 Aounting for Popping to Replae Assumptions 707.4.3 Aounting for Popping to Erase Irrelevant Assumptions 717.5 Aounting for POP ASSUM LIST 747.6 Aounting for SUBST ALL TAC 758 Continuations 828.1 The Disjuntive Transformer 828.2 Implementation Issues . 938.3 Other Transformers whih Introdue Assumptions 938.3.1 The Disharging Transformer 938.3.2 The Choie Transformer 958.4 Transformers whih do not Introdue Assumptions 968.4.1 The Conjuntion Transformer 968.4.2 The Resolution Transformers 1069 Strip Funtions 1089.1 The Strip Transformer in HOL 1099.2 Stripping and Assuming a Theorem in HOL 1109.3 The Strip Tati in HOL . 1129.4 Aounting for The Strip Tati 1139.4.1 The Implementation-Based Aount 1149.4.2 The Primitive Aount 12410 Transforming Proof Aounts 12811 Future Researh 13212 Conlusions 13613 Referenes 13914 Appendix 140
4

Table of FiguresFigure 1 . ??Figure 2 . ??Figure 3 . ??

5

1 IntrodutionProof aounts are intended to explain and doument HOL1 proofs in some-thing approahing onventional or textbook terms. They do this for proofswhih are generated `top down' in HOL through the appliation of tatisto goals. Tati and goals in HOL (as in LCF) are metalanguage onstrutswhih are used to generate inferenes in an underlying formal logi. Thus, aproof in the sense of a proof strategy (a proedure expressed as a struture ofmetalanguage tatis), when applied suessfully to a goal, generates a proofin the sense of a hain of primitive inferenes ulminating in the desiredtheorem. Proof aounts explain `proofs' in the former sense.Generally, top-down (goal oriented) proofs in HOL an be represented bytree strutures of `proof steps', where eah step is a tati. A tati an be:� One of HOL's built-in tatis� The result of applying a tati-valued funtion when applied to argu-ments of appropriate type� A ombination (suh as alternation) of existing tatis� A tati implemented diretly in the metalanguage by a user2.The tatis are omposed into a tree struture via the metalanguage om-binators THEN (for sequening) or THENL (for seletive sequening). Thus, fortatis T1, T2, � � �, Tn:� T1 THEN T2 is a tati whih, given a goal, �rst applies T1 to the goal,then applies T2 to eah resulting subgoal.� T1 THENL [T2; � � �; Tn℄ is a tati3whih, to produe its results given a goal, �rst applies Ti respetivelyto the i results, for i from 2 to n.1The HOL (higher order logi) system is a system designed by Mike Gordon for helpingto automate formal proofs in higher order logi. It is based on Robin Milner's LCF system.2This last possibility, however, is not onsidered in this paper.3This notation denotes the list of elements shown.6

Given an initial goal, eah step of a proof results in a set of intermedi-ate subgoals, whih, if and when established, are adequate to establish theoriginal goal. That is, eah proof step omputes the funtion whih will mapthe established subgoals (i.e. theorems) bak to a theorem establishing theoriginal goal, via logial inferene. Goals are deomposed suessively in thisway until they yield axioms or previously proved theorems; then the inter-mediate funtions are applied to onstrut a hain of theorems ulminatingin the theorem establishing the initial goal.Proofs in HOL are typially performed during interative sessions in whihtatis are applied to suessive goals, in the ontext of a HOL theory4. Dur-ing a suessful interation, the user is made aware of intermediate subgoalsas they are generated by tatis; and in due ourse, of the theorem that estab-lishes eah subgoal. However, this information is ephemeral, and is availableonly at ertain times during the interative session. In the end, all that anbe preserved of the working session within the HOL theory is the �nal theo-rem itself. This is adequate in that the type system of HOL's metalanguageassures that no theorem an be omputed exept by inferenes in the logi5;and the logi itself has been shown onsistent (Pitts, manual ref). However,should a user wish to know more about the way in whih a proof was aom-plished after the working session is �nished, none of the intermediate goalsor theorems will have been saved in the relevant HOL theory.As the HOL system stands, the only persistent reord that an be kept ofthe way in whih a formal proof was produed is the text �le that a user keeps{ optionally, of ourse { in order to doument the interative session. (Mostusers do preserve, in some systemati way, the metalanguage proedures thatprove their theorems.) Reords of this sort are, however, extraneous to theformal logi or any theory extending the logi; they assoiate only informallywith suh theories.In any ase, the metalanguage text whih generates a proof is not nees-sarily, in itself, a useful explanation of the proof strategy. Comments addedby the user may help, but inserting omments by hand is tedious, diÆult todo in adequate detail, and not guaranteed to be aurate. The metalanguage4A HOL theory orresponds to a logial theory in the standard sense of an extensionof a logi via well-founded de�nitions and dedued theorems.5This use of the type disipline of the metalanguage was Milner's key idea in the LCFsystem. It dispenses with the need to preserve primitive inferene sequenes, but withoutloss of seurity. 7

text itself may not be aurately saved, or wholly intelligible to a reader inertain situations. This is so partiularly� For longer or more omplex strutures of tatis� For theorem-proving based, tehnial or HOL-spei� tatis� When proof steps are spei�ed as the result of tati-valued funtionsapplied to appropriate arguments (suh spei�ations may be arbitrar-ily nested and omplex)� When tati-valued funtions produe tatis whih obsure individualproof steps� For ontext or implementation dependent tatis (e.g. a tati whihrefers to the `third urrent assumption')� For ombined tatis (e.g. ombined by the operator `ORELSE')� When previously proved lemmas are denoted simply by name, or areomputed in situ� When parallel branhes of a proof are treated simultaneously by non-branhing strategies� When expert HOL users rely on personal styles of tatial proof notfamiliar to other users.In this paper, we propose what we hope is an intelligible, aurate andinformative style of doumentation of goal oriented proofs, and a method forderiving proof explanations in this style automatially upon the appliationof tatis to goals. The purpose of these proof aounts is to larify and do-ument suessfully ompleted HOL proofs in a style free from HOL-relatedor theorem-prover based terms and onepts; that is, as lose in spirit asis possible to textbook style proof presentations without involving naturallanguage expertise.Possible future appliations of proof aounts might inlude� Debugging user-designed tatis8

� Tools for teahing HOL� Tools for improving suessful proofs.Further possible appliations are disussed inAlthough this paper is probably of most interest to HOL users, and doesnot ontain a presentation of the HOL system, we hope that the main ideaswill be lear to other interested readers. Doumentation of the HOL systemmay be found in ().All of the example sessions and remarks pertain to Version 11 of HOL(1990). Minor modi�ations for Version 12 (1991) are urrently in progress.1.1 The HOL System1.1.1 The Metalanguage and LogiLCF-based systems suh as HOL are built around (i) a sequent alulus,and (ii) a programming language (ML, for metalanguage) in whih objetsof the alulus an be represented and omputed. In partiular, terms andtheorems of the logi an be denoted, and proofs an be omputed. Thisis done by representing rules of inferene as metalanguage funtions whihmap theorems (sometimes with various parameters) to new theorems; andimplementing these funtions as ML proedures.ML's type system plays an essential role in enabling theorems to be pro-teted as abstrat types. Thus, one may inspet the onlusion or hypothesesof a theorem (i.e. deompose a theorem into its syntati parts) but may notonstrut a theorem from its parts; theorems an be produed only by ap-pliation of funtions expressing rules of inferene.In reent years, the language ML has been interfaed to several logis inthe hope of assisting in the proof of theorems in these logis. The originallogi (PPLAMBDA) of the LCF system was intended for proofs about reur-sive funtions de�ned in domains, whih are useful in algorithm and softwareveri�ation. In HOL, a version of Churh's higher-order prediate alulus(also alled HOL) is used. This is intended for proofs about digital systems,and for other areas in whih the issues of de�nedness and termination areless entral. The Nuprl system (...) uses the logi ITT (intuitionisti typetheory). 9

For many appliations, the full expressiveness of a general-purpose pro-gramming language is not neessary; a set of primitive proof-building oper-ations would suÆe. One of the apabilities whih ML, as a full program-ming language, provides { for users experimenting with proof methods, proofstyles, automation, and so on { is a way to express and test informal proofstrategies of their own design. These strategies an be anything from verysimple proof tehniques (for example: \In order to prove P , assume :P andprove falsity") to sophistiated searhing heuristis. However, this paperrestrits itself to HOL's main built-in tatis.1.1.2 Goal Oriented ProofIn both simple and omplex ases, the LCF-HOL methodology is geared tothe natural `bakward' style of proof often used in textbook presentations:proeding from goal to subgoals via strategies, until reognizably trivial sub-goals are reahed. Eah stage of the deomposition is aompanied by ajusti�ation funtion in whih is embedded the inferene pattern enablingthe move from established subgoal to established goals. The justi�ationis again a funtion: it maps the set of theorems purporting to ahieve therespetive subgoals to the theorem ahieving the original goal { by invokingthe inferene pattern in question. (A theorem is said to ahieve a goal if theonlusion of the theorem is the term of the goal, up to alpha-onversion,and the hypotheses of the theorem are a subset of the assumptions of thegoal.)There are therefore two stages in a tatial proof: the searh stage, inwhih suessive subgoals are generated until (and if) axioms or previouslyestablished subgoals are produed; and the justi�ation stage in whih the-orems ahieving goals are dedued in suession from theorems ahievingtheir subgoals, via formal inferene. These are often thought of as reverseproesses, the �rst produing and working down a tree struture of subgoals,and the seond working bak up to the original goal.This proof style, of ourse, is really no more than a onvenient way of pre-senting a proof, and of dressing the `real' proof, namely, the sequene of theo-rems ulminating in the desired theorem, where eah theorem in the sequeneis either an axiom or is a onsequene of earlier theorems in the sequene.The style oneals from the user the book-keeping proess through whihthe real proof is ontruted as the subgoals are deomposed and eventually10

ahieved. Thus the simple strategy above (\In order to prove P , assume :Pand prove falsity") is a presentation of the inferene rule: \From the theoremasserting falsity, under the assumption that P is false, derive the theoremasserting P"; the strategy pakages the inferene rule in a onvenient way.The sequenes of theorems ulminating in a given theorem are not reordedas a result of performing a goal oriented proof; they are simply omputationsourring in time. That is, the funtion representing eah inferene rule usedis applied to arguments, whih in turn means that the ML proedure rep-resenting that funtion is exeuted. Beause inferenes are represented asfuntions, the proof (in the sense of the inferene sequene) is an ephemeralpart of the omputation whih represents the goal oriented proof e�ort.Proof aounts are based on enhanements of the metalanguage types ofgoals, tatis and justi�ations whih allow suÆient additional informationto be reorded for an explanation of the proof to be generated and preserved.1.1.3 The Subgoal-Theorem TreeThe tree struture of suessive subgoals { together with a reord of the proofsteps leading from goals to subgoals, and the theorems ahieving the variousgoals { is a onept whih is always in the bakground when tatial proofsare performed in HOL. For example, appliation of the tati enoding thestrategy above (\In order to prove P , assume :P and prove falsity") to anappropriate goal would always produe exatly one subgoal, and this wouldbe ahieved by one theorem; the usual numerial indution tati wouldprodue two subgoals (the base and step ases); ase analyses would produeat least two, and so on. However, suh trees are neither represented expliitlyin HOL nor open to exploration6.The struture of ahieving theorems forms an essential part of the tree.In a suessful top-down proof, there is, for eah node (i.e. goal) of thetree, starting at the leaves, a theorem ahieving that goal. Where one goaldiverges (under the appliation of a tati) into several subgoals, the severalahieving theorems onverge (by inferene) to produe one theorem. Thusthe numerial indution strategy would indue two subgoals when applied to6The subgoal pakage in Version 11 of HOL, whih is an add-on faility, an be usedto manage the subgoal-theorem tree during a working session; it is based on a stakrepresentation of the tree. Again, however, this stak is not open to exploration by users;nor is it expliit, or preservable 11

a goal, and a justi�ation funtion. The justi�ation funtion at that nodewould aept the two ahieving theorems and produe the theorem ahievingthe original goal.The whole tree struture representing the proof thus inludes the proofsteps, the subgoals, and the ahieving theorems. Proof aounts are basedon an expliit and preservable representation of this struture of goals, proofsteps and theorems.1.2 An Example Textbook ProofTo give an idea of the textbook style to whih proof aounts aspire, wegive some fragments of a real example. The proof from whih these aretaken is from \The Higher Arithmeti" by H. Davenport. The proof is of theuniqueness of prime fatorization.Theorem: Any natural number an be represented in ... only one way as aprodut of primes.Proof: We prove the uniqueness of fatorization by indution. This requiresus to prove it for any number n, on the assumption that it is already estab-lished for all numbers less than n. If n itself is a prime, there is nothing toprove. Suppose, then, that n is omposite, and has two di�erent representa-tions as produts of primes, sayn = p q r � � � = p' q' r' � � �,where p, q , r , � � � and p' , q' , r' , � � � are all primes. The same prime an-not our in both representations, for if it did we ould anel it and gettwo di�erent representations of a smaller number, whih is ontrary to theindution hypothesis. ...Now onsider the number n - p p' . This is a natural number less than n,and so an be expressed as a produt of primes in one and only one way....This ontradition proves that n has only one fatorization into primes.12

This presentation of the proof has the following features:� The presentation is in sophistiated but still stylized English, usingstandard phrases suh as \This requires us to prove � � �", \Suppose,then, that� � �" and \Now onsider � � �".� It is generally presented in a goal oriented style, and this requires thereader to maintain his loation in the implied subgoal tree (and heneto understand the sope of assumptions suh as \Suppose, then, thatn is omposite").� Within the goal oriented format there are intervals of forward reasoning;for example, \Now onsider the number n - p p' . This is a naturalnumber less than n, and so � � �".� Minor steps are omitted in plaes; for example, \If n itself is a prime,there is nothing to prove" { there is, of ourse.� The presentation is ast in purely problem-related and logial terms {i.e. it refers to numbers and their properties; to patterns of reasoningsuh as proof by ontradition; and to standing assumptions suh asthe indution hypothesis { but to nothing more tehnial in the realmof theorem-proving.Our aim is to produe proof aounts whih have as many of these prop-erties as possible without approahing the natural language issues. That is,we will be satis�ed with pre-pakaged phrases in a tiny subset of English, aslong as the explanations are strutured in something approahing the on-ventional style, and depend on similar onepts.1.3 Design DeisionsThe urrent prototype aounting faility rests on the following design dei-sions:� The faility is not interative in the �rst instane; i.e. is not intended tobe used whilst developing a proof, but rather to generate explanationsof suessfully ompleted proofs.13

� The proof explained is the proof in the sense of the strategy rather thanthe proof in the sense of the inferene sequene. A proof step is takento be a tati without internal sequening. These tatis are taken tobe the main proof steps.� There is an expliit data struture to represent subgoal-theorem treeswith proof steps. Eah aount is a presentation of an instane of thisdata struture.� The onstrution of this tree is separated from its presentation. Thatis, there is an internal representation of the tree, as well as a set ofprinting funtions for produing a readable rendition.� We attempt to apture the harater of the textbook prose but withoutany natural language apabilities.� For the present, the basi HOL tatis are re-implemented to produeaounts, and for this purpose are given distint names.Improvements and elaborations are disussed in ().1.4 Related WorkThe only other similar explanation faility we know about is the one providedfor the Boyer-Moore theorem-prover (). As we understand it, the presentfaility di�ers from that one in the following ways:� The Boyer-Moore faility explains the ation of the (automati) theo-rem prover as it searhes for a proof. Though it searhes very eÆiently,the explanation is still given in terms of the searh rather than of theproof diretly. The faility for HOL aims at explaining the proof foundrather than the searh proess.� The Boyer-Moore system produes explanatory text in real time, as theproof searh is in progress. Ours re-runs ompleted proofs in order togenerate explanations.� The Boyer-Moore faility does not (apparently) onstrut an expliitinternal respresentation of an explanation, but rather, produes frag-ments of explanation as a side e�et of the proof searh. We do aim14

at onstruting an internal representation { whih an itself be trans-formed, printed, et.� The Boyer-Moore faility does give attention to the quality of the nat-ural language produes, while ours does not.2 The Basi IdeaIn this hapter we give an example of a suessful proof session in HOL andshow, for this proof, the style and ontent of the explanation being proposed.The aounting faility uses HOL's methods of subgoal deomposition andproof assembly to generate a proof aount as a side-e�et of performing agoal oriented proof. The information preserved makes it possible to identifyertain key `proof events' suh as the solution of a subgoal, the splitting ofa goal into subgoals, proof by ontradition, assumptions made behinds thesenes, and invalid use of lemmas.In the following HOL session, a simple theorem is proved: the assoiativ-ity of addition. (This is atually one of the theorems that is already proved inthe theory of arithmeti when HOL is entered.) The proof uses the theoremalled ADD_CLAUSES:ADD_CLAUSES =|- (0 + m = m) /\(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))This is the HOL session in whih the theorem ADD_ASSOC is proved7.#let g = [℄,"!m n p. m + (n + p) = (m + n) + p";;g = ([℄, "!m n p. m + (n + p) = (m + n) + p") : (* list # term)#let ta = INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES℄;;ta = - : tati#let gl,p = ta g;;gl = [℄ : goal listp = - : proof#let ADD_ASSOC = p[℄;;ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p7In the sessions that follow, we use HOL in mode in whih hypotheses of theoremsare printed in full; the ML top level printing funtion has been set to print hypotheses oftheorems in full. 15

In this session, a goal, g, is �rst onstruted; it onsists of the term tobe proved (namely, "!m n p. m + (n + p) = (m + n) + p"), together witha list (initially empty) of assumptions whih may be used subsequently. Atati (ta) is applied to the goal; the tati is a funtion. The tati isformed by sequening two of HOL's built-in tatis: a tati INDUCT_TAC,whih implements the numerial indution strategy, and a tati of the formASM_REWRITE_TAC l , (where l is a list of theorems), whih implements thestrategy of rewriting (simplifying) using (i) the theorems in the list l , (ii) anyof HOL's built-in basi rewriting theorems, and also (iii) any assumptions ofthe goal in question8 (hene the `ASM_' { the tati REWRITE_TAC l would notuse the assumptions of the goal).The appliation of ta to g yields a list of goals (gl), together with ajusti�ation funtion (p). The list of goals represent the olletion of sub-goals whih, if all ahieved, would suÆe to ahieve the original goal. Thejusti�ation funtion maps the list of theorems (respetively) satisfying thesubgoals to a theorem ahieving the original goal. The mapping onsists ofa sequene of inferenes leading from the given theorems to the desired theo-rem. Thus, the interation onsists in two stages: the generation of subgoalsuntil there are no more subgoals; and the onstrution of the proof throughinferene, based on the various justi�ation funtions.The theorem produed an be named and preserved for future use as partof the logial theory in whih it was established; and the text of the tatian be saved in a �le (outside of the logial theory); but that is all that anbe preserved of the proof proess and proof session.The tati (ta) in this ase is so simple that at �rst sight it would seemto point diretly to a proof explanation { whih might read:To prove "!m n p. m + (n + p) = (m + n) + p", do indution on m, andthen, for all resulting ases, simplify with the fat ADD_CLAUSES, with anyurrent assumptions, and with the basi tautologies.However, the explanation does not follow so obviously from examination ofta. First, the fat that the proof is by indution depends on assoiat-ing the ML funtion name `INDUCT_TAC' with the strategy of mathematialindution. Seond, it atually requires some thought to pereive that the8The assumptions are represented as terms t , so for purposes of rewriting they areonsidered as theorems of the form t ` t 16

indution step produes two subgoals even though the goal is solved by a`linear' sequene of steps. It also takes some thought to realize that an in-dution assumption applies in the step ase, but not in the basis ase (andhene that ASM_REWRITE_TAC amounts to REWRITE_TAC in the basis ase). Itrequires further thought to state the indution hypothesis preisely. Finally,the name `ADD_CLAUSES' does not immediately reveal the theorem or de�ni-tion denoted by that name. If the tati were more omplex, the pattern ofreasoning indiated might be even less obvious.An equivalent tati ould be formed in this ase by seletive sequening;this makes the underlying tree of subgoals, and hene the explanation, a littlelearer:#let gl,p =(INDUCT_TACTHENL [ASM_REWRITE_TAC[ADD_CLAUSES℄;ASM_REWRITE_TAC[ADD_CLAUSES℄℄) g;;##gl = [℄ : goal listp = - : proof#let ADD_ASSOC = p[℄;;ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + pbut this form is verbose and thus often avoided.Some further information is revealed by generating the proof in stages.(Normally, the subgoal pakage would be used to do the book-keeping seenhere.) The head and tail of the list (gl1) of indution subgoals are omputedrespetively by the ML funtions hd and tl. Subsequent subgoal lists andjusti�ation funtions are named as shown:#let gl1,p1 = INDUCT_TAC g;;gl1 =[([℄, "!n p. 0 + (n + p) = (0 + n) + p");(["!n p. m + (n + p) = (m + n) + p"℄,"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p")℄: goal listp1 = - : proof#let gl2,p2 = ASM_REWRITE_TAC[ADD_CLAUSES℄(hd gl1);;gl2 = [℄ : goal listp2 = - : proof#let th2 = p2[℄;;th2 = |- !n p. 0 + (n + p) = (0 + n) + p#let gl3,p3 = ASM_REWRITE_TAC[ADD_CLAUSES℄(hd(tl gl1));;gl3 = [℄ : goal listp3 = - : proof 17

#let th3 = p3[℄;;th3 =!n p. m + (n + p) = (m + n) + p|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p#let ADD_ASSOC = p1[th2;th3℄;;ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + pHere, the list of subgoals, gl1, shows expliitly the two intermediate sub-goals produed by the indution step, and it an be seen how eah is sub-sequently a�eted by the rewriting step, and �nally ahieved by a theorem.However, though they an be viewed, the goals, steps and theorems are nei-ther strutured into a tree nor preserved, but are simply bound to ML iden-ti�ers for the duration of the partiular HOL session in whih they our.The meaning of the name ADD_CLAUSES is still not expliit; and the reasoningpattern denoted by `INDUCT_TAC' still depends on knowing the names ande�ets of the built-in ML funtions.The ompleted tree, if it ould be seen now, might look something likethis9: goal: [℄,"!m n p. m + (n + p) = (m + n) + p"ahieved by: |- !m n p. m + (n + p) = (m + n) + padvaned by proof step: INDUCT_TAC|---| |goal: [℄, goal: ["!n p. m + (n + p) ="!n p. 0 + (n + p) = (m + n) + p"℄,(0 + n) + p" "!n p. (SUC m) + (n + p) =((SUC m) + n) + p"ahieved by: |- !n p. 0 + (n + p) = ahieved by: !n p. m + (n + p) =(0 + n) + p (m + n) + p|- !n p. (SUC m) + (n + p) =| ((SUC m) + n) + p|| || |solved by proof step: solved by proof step:ASM_REWRITE_TAC[ADD_CLAUSES℄ ASM_REWRITE_TAC[ADD_CLAUSES℄9How it `looks' depends on the onventions for displaying it, of ourse.18

Using the subgoal pakage10, the subgoal-theorem tree is represented (butonly impliitly within HOL) using staks. However, the tree annot besearhed or examined, exept by proeding with (or undoing) the intera-tive proof, and it annot be preserved; and the problems of ADD_CLAUSES andINDUCT_TAC still remain. In the session below, the ommand set_goal hasthe side e�et of putting a goal on the goal stak, and a ommand of the formexpand ta applies ta to the goal at the top of the stak. Sibling subgoals arestaked in left-to-right order, and the subgoal tree is traversed in left-to-rightorder. A useful reminder of the next remaining subgoal is printed when agoal is ahieved. (Note that the hypotheses of a theorem is printed as `.'.)#set_goal([℄,"!m n p. m + (n + p) = (m + n) + p");;"!m n p. m + (n + p) = (m + n) + p"() : void#expand INDUCT_TAC;;OK..2 subgoals"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"["!n p. m + (n + p) = (m + n) + p" ℄"!n p. 0 + (n + p) = (0 + n) + p"() : void#expand(ASM_REWRITE_TAC[ADD_CLAUSES℄);;OK..goal proved|- !n p. 0 + (n + p) = (0 + n) + pPrevious subproof:"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"["!n p. m + (n + p) = (m + n) + p" ℄() : void#expand(ASM_REWRITE_TAC[ADD_CLAUSES℄);;OK..goal proved. |- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p|- !m n p. m + (n + p) = (m + n) + pPrevious subproof:goal proved() : voidThe proof aount faility produes the following explanation of the sameproof. It does so as a result of applying to a goal based on the original goal a10of HOL Version 11 { that of HOL Version 12 is more sophistiated19

tati based on the given tati. The marker >>>> indiates a proof step, and>>, a goal to be ahieved. The subgoal tree is presented depth-�rst, left toright. Theorems are shown as they are ahieved. Eah return to a pendingsubgoal is remarked:This is the proof of the onjeture>> ADD_ASSOC:"!m n p. m + (n + p) = (m + n) + p">>>> The proof is by mathematial indution on "m".This gives two ases to prove, the basis and step:>> basis:"!n p. 0 + (n + p) = (0 + n) + p">> indution step:"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"AssumingThe indution hypothesis: "!n p. m + (n + p) = (m + n) + p"The proof of the>> basis:"!n p. 0 + (n + p) = (0 + n) + p"is as follows:>>>> This follows by using the equality,|- (0 + m = m) /\(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))basi logial identities, and the assumptions made thus far.This establishes|- !n p. 0 + (n + p) = (0 + n) + pThe proof of the>> indution step:"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"AssumingThe indution hypothesis: "!n p. m + (n + p) = (m + n) + p"is as follows:>>>> This follows by using the equality,|- (0 + m = m) /\(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))basi logial identities, and the assumptions made thus far.This establishes!n p. m + (n + p) = (m + n) + p|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + pThis establishes 20

|- !m n p. m + (n + p) = (m + n) + pThis ompletes the proof of the onjeture>> ADD_ASSOC:"!m n p. m + (n + p) = (m + n) + p"
In other words, all the information that is impliit or ephemeral in theinterative proof session, or simply bound to ML identi�ers in an ad ho way,is now expliitly strutured and saved. Beause it is saved, it an be printedin a readable form for later inspetion and study.To produe the aount shown, the whole tree struture of intermediatesubgoals, proof steps and and ahieving theorems that is generated when atati is applied to a goal is preserved in an internal form. Thus, the meaningof names suh as ADD_CLAUSES an be shown; separate branhes of the tree(suh as the branhing into two ases that is aused by the indution proofstep) are shown individually, even when the tati is not phrased that way.After the printing of one branh of the tree, a reminder an be given of thenext pending branh. ML identi�ers suh as `INDUCT_TAC' are referred to bytheir meaning and e�et rather than simply by name. Most importantly, theaount avoids using HOL-spei� terminology or onepts. For example,referene is avoided to goals and subgoals, urrent assumptions, tatis, andrewrite rules.The aount is produed in the following way: First, the ML type of a goalis modi�ed to inlude more information, suh as a name for eah assumptionof the goal, and a name for the whole goal (useful when more than onesubgoal is produed at some stage). A new type, aount , is introdued torepresent subgoal-theorem trees. Justi�ations are reoneived as mappinglists of aounts (of subgoals) to an aount (of the original goal). Next, theML type of a tati is modi�ed to map a new type goal to a list of new typesubgoals together with a new type justi�ation. Finally, a suite of printingfuntions is written in ML to enable the subgoal-theorem trees to be outputin an understandable format.Further whole and partial examples of aounts our throughout thispaper. 21

3 The Extended ML TypesThe aounts depited in the previous hapter are based on more elaboratetypes of goals, tatis, and justi�ations than exist in HOL itself. The newtypes enable enough information to be stored during the performane of agoal oriented proof to generate a omprehensible explanation afterwards.In the existing system, the following expressions introdue the types forjusti�ations (proofs), goals and tatis, respetively:lettype proof = thm list -> thm ;;lettype goal = term list # term;;lettype tati = goal -> ((goal list) # proof);;A goal is a term together with a list of urrent assumptions; and a tatimaps a goal to a list of subgoals and a justi�ation, where the justi�a-tion maps the theorems ahieving the subgoals to the theorem ahieving theoriginal goal.For the purpose of produing aounts, a new type, named goal , is intro-dued (via a onstrutor funtion):type named_goal =mk_named_goal of string # (string # bool # term) list # term;;A named goal of the form mk_named_goal(s,sbtl,t) orresponds to an ordinarygoal tl,t , where the list of third omponents of the elements of sbtl is simplytl . That is, eah assumption of a named goal is aompanied by a name(i.e. a string) and a boolean value (whose purpose is explained later); andeah goal itself has a name (a string). The names are used in the printing ofaounts to identify ertain assumptions, and to distinguishe among multiplesubgoals.To speify the struture of an aount, we �rst introdue a type for proofsteps:lettype proof_step =string # term list # thm list;;The string part of a proof step identi�es the funtion omprising the step(that is, a tati or a tati-valued funtion); while the lists of terms andtheorems allow for parameters to be reorded (in ase the funtion omprising22

the step is not a tati but a funtion mapping a term to a tati, a theoremto a tati, et).An aount is de�ned reursively as onsisting of a proof step (whih atson a goal), together with a list of the named subgoals indued by that step;a list of sub-aounts of the respetive subgoals; and a theorem (purportingto ahieve the original goal):retype named_aount =mk_node of proof_step # (named_aount list) # (named_goal list) # thm;;An auxiliary funtion extrat_theorem selets the theorem omponent of anaount. It is de�ned by:let extrat_theorem a =let mk_node(ps,al,gl,th) = a in th;;The relation of ahievement between a theorem and a goal is the samehere as in HOL.In the new sheme, a justi�ation (named proof) funtion simply maps alist of (sub)aounts bak to an aount:lettype named_proof =(named_aount)list -> named_aount;;This subsumes the justi�ation in the HOL sense sine eah aount inludesa theorem (as its fourth omponent).A tati, �nally, maps a named goal to a list of named subgoals and ajusti�ation funtion:lettype named_tati =named_goal -> (named_goal list) # named_proof;;The reursiveness of aounts means that an aount is a tree struture.This gives an expliit internal representation of the subgoal-proof tree asso-iated with a goal oriented proof. A readable version then an be produedby a suite of print funtions. These an be arbitrarily sophistiated { for ex-ample, hoosing to present only `important' proof steps, and doing so usingnatural language expertise. However, we onsider only a simple presentationin this paper, presenting every proof step, and doing so using unvarying,stored phrases. Even so the print funtions are rather ompliated.23

There are two modes of printing named goals, one for goals whih areeither one of several goals to be printed together, or are the initial goalsin a proof; and one for solitary and non-initial goals. In either ase, goalsare identi�ed with the symbol >>. The term is printed �rst (using HOL'sfuntion for printing terms); then the labelled assumptions are announedand printed (using HOL's string and term printing funtions).For example, the following is a named goal whose aount was displayedin the previous hapter ():mk_named_goal(`ADD_ASSOC`, [℄, "!m n p. m + (n + p) = (m + n) + p")The indution tati was applied to this goal to yield two subgoals. Theindution step subgoal is printed as follows, sine it is one of two subgoalsprodued at one:>> indution step:"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"AssumingThe indution hypothesis: "!n p. m + (n + p) = (m + n) + p"Printed as an only, non-initial goal it would look the same but without thename of the goal:>> "!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"AssumingThe indution hypothesis: "!n p. m + (n + p) = (m + n) + p"There are also two modes of printing proof steps: one for steps whihadvane a goal and one for steps whih solve it. In either ase, proof steps areidenti�ed by the symbol >>>>. The funtion whih prints a proof step looksup the string identifying the step. This produes the appropriate phrasesfor explaining that step. The elements lists of term and theorem parametersmay appear in the printed result. For example, the indution step of theproof in question is(`NAMED_INDUCT_TAC`, ["m"℄, [℄)and that step is presented as follows, inluding the term parameter m:>>>> The proof is by mathematial indution on "m".This gives two ases to prove, the basis and step:24

This step advanes rather than solves the goal, and is worded aordingly. Inontrast, the indution ase is subsequently solved by applying a rewritingtati whih uses any relevant urrent assumptions as well as an existingtheorem of arithmeti. The rewriting proof step is(`NAMED_ASM_REWRITE_TAC`,[℄,[|- (0 + m = m) /\(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))℄)and is printed as follows, inluding the theorem parameter shown:>>>> This follows by using the equality,|- (0 + m = m) /\(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))basi logial identities, and the assumptions made thus far.An aount is presented (reursively) relative to a goal. Given a goaland an aount of its proof, the print funtion �rst prints the proof stepomponent of the aount (i.e. the top node of the subgoal-proof tree). Thatis either the only node of the tree (meaning that the goal was solved inone step) or not (meaning that the goal is just advaned by the step); theappropriate mode is thus seleted for printing the proof step.Seond, the subgoal list omponent of the aount is printed. Dependingon whether the list ontains just one or more than one subgoal, the appro-priate mode is seleted for printing the element(s) of the subgoal list.Third, the subaounts are printed (reursively), relative to the respetivesubgoals. This is aomplished by announing, for eah subgoal-subaountpair, that the proof of the subgoal is about to follow; then printing thesubgoal followed by the subaount. (Where there is only one suh pair, theannounement and the repeated printing of the subgoal are omitted.)Finally, the theorem ahieving the original goal is announed and printed.Where the theorem does not in fat ahieve the goal, a message to that e�etis also printed; an example of this ontingeny is shown in ().In the example ase, the original goal ismk_named_goal(`ADD_ASSOC`, [℄, "!m n p. m + (n + p) = (m + n) + p")25

and the internal representation of the whole aount ismk_node((`NAMED_INDUCT_TAC`, ["m"℄, [℄),[mk_node((`NAMED_ASM_REWRITE_TAC`,[℄,[|- (0 + m = m) /\(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))℄),[℄,[℄,|- !n p. 0 + (n + p) = (0 + n) + p);mk_node((`NAMED_ASM_REWRITE_TAC`,[℄,[|- (0 + m = m) /\(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))℄),[℄,[℄,. |- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p)℄,[mk_named_goal(`basis`, [℄, "!n p. 0 + (n + p) = (0 + n) + p");mk_named_goal(`indution step`,[(`indution hypothesis`,true,"!n p. m + (n + p) = (m + n) + p")℄,"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p")℄,|- !m n p. m + (n + p) = (m + n) + p)The whole aount is thus printed as follows:>>>> The proof is by mathematial indution on "m".This gives two ases to prove, the basis and step:>> basis:"!n p. 0 + (n + p) = (0 + n) + p">> indution step:"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"AssumingThe indution hypothesis: "!n p. m + (n + p) = (m + n) + p"The proof of the>> basis:"!n p. 0 + (n + p) = (0 + n) + p"is as follows:>>>> This follows by using the equality,|- (0 + m = m) /\(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))basi logial identities, and the assumptions made thus far.26

This establishes|- !n p. 0 + (n + p) = (0 + n) + pThe proof of the>> indution step:"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"AssumingThe indution hypothesis: "!n p. m + (n + p) = (m + n) + p"is as follows:>>>> This follows by using the equality,|- (0 + m = m) /\(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))basi logial identities, and the assumptions made thus far.This establishes!n p. m + (n + p) = (m + n) + p|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + pThis establishes|- !m n p. m + (n + p) = (m + n) + pIn ontexts in whih an aount to be printed is a top level aount ratherthan a subaount of another, a prologue and epilogue are printed aroundthe rest of the printout. Here, the prologue isThis is the proof of the onjeture>> ADD_ASSOC:"!m n p. m + (n + p) = (m + n) + p"and the epilogue isThis ompletes the proof of the onjeture>> ADD_ASSOC:"!m n p. m + (n + p) = (m + n) + p"This produes the whole aount shown in the previous hapter. The al-gorithm desribed for printing aounts determines the order in whih thenodes of the subgoal-proof tree are printed: the tree is traversed depth �rstand left to right. This method of printing a (tree-strutured) aount has theadvantage of produing a `at' result rather than a result mirroring the treestruture by use of indentation or other devie, whih is useful, as the a-ounts an be inde�nitely deep. The method also maintains indiators of theoriginal tree struture by repeating eah subgoal before giving its aount,where there is more than one subgoal to be presented.Further examples of printed aounts are shown throughout the paper.27

4 Elementary TatisFor the purpose of generating proof aounts, the tatis provided in HOLan be represented by three groups of orresponding named tatis:1. Simple tatis whih mirror the orresponding standard tatis, merelyelaborating them with names for their relevant values;2. Complex tatis whih use the orresponding standard tatis, butwhih then further proess the results into more meaningful formats;3. Tatis whose relation to natural patterns of reasoning is distant, andfor whih generating aounts raises philosophial problems; these an-not be implemented along the lines of the orresponding standard ta-tis.This setion and Setion (...) address the �rst group; Setions (...), (...)and (...) address the seond group; and Setions (...), (...) and (...) addressthe third.In produing an aount of the appliation of a tati to a goal, it isuseful to know something about the possible outomes of the appliation.A partiular tati, when applied to a goal, either produes some numberof subgoals (together with a justi�ation), or else it raises an exeption (i.e.fails). Where a tati sueeds on a goal, the number of subgoals produedmay be �xed for the tati, or it may vary inde�nitely, depending on the goal.Some tatis have the apaity to solve goals; i.e. to produe no subgoals(together with an appropriate justi�ation). Other tatis are able to advanegoals (i.e. to produe one or more subgoals); some an do either. Finally,a tati that advanes a goal an do so by produing subgoals either withhanged lists of assumptions, or with hanged terms { or both.Based on the possible outomes of applying a tati to a goal, a shemefor omprehensibly presenting the proof step it represents, and the subgoalsit indues, an be designed. The treatment of a few simple tatis illustratesthe methods and the range of issues involved.4.1 The Implementation of Named Tatis: (GEN TAC)In this setion, we sketh the way in whih simple named tatis are imple-mented to produe aounts. GEN_TAC is used as an example.28

The tati GEN_TAC maps a goal with a universally quanti�ed term (i.e.a term of the form !x.t[x℄ to a list with just one subgoal, whose term isinstantiated to the bound variable (or, if neessary, a fresh variable not freeanywhere in the goal). That is, the new term is of the form t[x'℄. GEN_TACfails on goals whose terms are not universally quanti�ed; where it sueedsit produes a subgoal list of �xed length (one). GEN_TAC hanges the term ofa goal, where it sueeds, but never the assumption list. It annot solve agoal, but only advane one.The use of GEN_TAC is illustrated in the example below. Two new predi-ates, DIVIDES and PRIME, are de�ned here:DIVIDES_DEF = |- !m n. m DIVIDES n = ~(m = 0) /\ (?q. q * m = n)PRIME_DEF =|- !n. PRIME n = n > 1 /\ (!m. m DIVIDES n ==> (m = 1) \/ (m = n))Suppose that a goal, g, is introdued, as shown below, and that GEN_TAC isapplied to g to give a list (gl1) of one subgoal, and a justi�ation funtion(p1):let g = [℄, "!n. (n > 1) ==> (?p. (PRIME p) /\ (p DIVIDES n))";;g = ([℄, "!n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")#let gl1,p1 = GEN_TAC g;;gl1 = [([℄, "n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄ : goal listp1 = - : proofGiven, eventually, the theorem thth = |- n > 1 ==> (?p. PRIME p /\ p DIVIDES n)the funtion p maps th to a theorem ahieving g:#p1[th℄;;|- !n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)To produe an aount of this goal-oriented proof, a orresponding newtati, alled NAMED_GEN_TAC is de�ned. NAMED_GEN_TACmaps the orrespond-ing named goal to a list of one named goal, together with a named proof(the justi�ation). The justi�ation, in turn, maps a list of one aount (theaount of the one subgoal) to another aount (the aount of the originalgoal). To de�ne NAMED_GEN_TAC, given an arbitrary named goal, requires (i)the subgoal to be onstruted and (ii) the justi�ation to be spei�ed. Theorresponding named goal (ng), alled `example_1`, is:29

#let ng =mk_named_goal(`example_1`,[℄,"!n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")Sine it is easy to extrat an ordinary goal from a named goal, the e�etof the ordinary tati GEN_TAC on the orresponding ordinary goal an beomputed; this gives an ordinary subgoal and justi�ation (as shown earlier).To then onstrut the named subgoal using the ordinary subgoal is verysimple, sine the (named and agged) assumptions of the original namedgoal should not be hanged by appliation of NAMED_GEN_TAC. The name ofthe subgoal does not matter, sine it is an only subgoal, so the name of theoriginal goal is used, arbitrarily, as the subgoals's name. The term of thesubgoal is just the term of the ordinary subgoal. Thus the list of subgoalsprodued by NAMED_GEN_TAC on the named goal (ng) is:[mk_named_goal(`example_1`,[℄,"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄Computing the justi�ation for a named goal is also straightforward. Afuntion is de�ned whih maps a list ontaining one aount (the aount ofthe named subgoal) to a new aount (the aount of the named goal). Thatis, the new justi�ation is spei�ed as a funtion of the form\[a:named aount℄. mk_node(..., ..., ..., ...)with the parameter a representing the aount of the subgoal, and the fourslots representing the following omponents:1. The proof step;2. The list ontaining the sub-aount of the subgoal3. The list ontaining the subgoal, and4. The theorem that ahieves the subgoal.The proof step onsists of a string, to identify the tati applied, a list of anyterm parameters to be remembered, and a list of any theorem parameters.NAMED_GEN_TAC (like GEN_TAC) does not involve theorem parameters, but does30

involve a term: the term whih is instantiated. To identify the proof step,the string `NAMED_GEN_TAC` will do. The new subgoal is known (as explainedabove), so the third omponent is easy. The list ontaining the aount (a)of the subgoal is supplied to the justi�ation (via the lambda binding), so thisgives the fourth item. Finally, the justi�ation of the ordinary GEN_TAC hasalready been omputed. From the aount of the new subgoal, the theoremahieving the new subgoal an be extrated (it is the fourth omponent ofthe aount); then the ordinary justi�ation an be applied to that theoremto produe the theorem ahieving the main goal. Thus the new justi�ationis denoted by the expression\[a℄. mk_node((`NAMED_GEN_TAC`, ["n:num"℄, [℄),[a℄,[mk_named_goal(`example_1`,[℄,"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄,p1[extrat_theorem a℄)When the named tati is applied to the named goal, a list of named subgoalsand a named proof (justi�ation) result:#NAMED_GEN_TAC ng;;([mk_named_goal(`example_1`,[℄,"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄,-): (named_goal list # named_proof)When the aount of the original goal ng is �nally produed { by applyingthe named proof to the atual aount of the subgoal { it is of the formmk_node((`NAMED_GEN_TAC`, ["n"℄, [℄),[mk_node(\dots)℄,[mk_named_goal(`example_1`,[℄,"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄,|- !n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)): named_aountwhere the \. . ." representing the atual aount of the subgoal may bearbitrarily omplex.This internal representation is made readable by a suite of printing fun-tions whih (i) produe a linear layout, and (ii) use the strings reording31

proof steps to look up a pakaged `explanation' of the strategy behind thetati.To print the aount of a named goal, the proof step is �rst announed andprinted; then the subgoals are announed and printed; then the aount ofeah subgoal is announed and (reursively) printed; and �nally, the theoremahieving the original goal is announed and printed. To print a proof steprequires a print funtion de�ned as a large onditional with a branh for eahpossible string whih identi�es a proof step. The print funtion provides anatural wording for the step denoted by the string { that is, it desribes thenatural pattern of reasoning implemented by the tati behind the step. Toprint a goal involves identifying and printing the term of the goal, and thenidentifying and printing the assumptions.The printed form of the example aount is shown (partially) below. (Aswe have not said anything about the proof of the subgoal, the the \� � �"represents the printout of the aount of the subgoal.)>>>> Consider an arbitrary "n":We show:>> "n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"...This establishes|- n > 1 ==> (?p. PRIME p /\ p DIVIDES n)This establishes|- !n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)The string `GEN_TAC` is used to generate the wording at \Consider an ar-bitrary � � �" (and the term remembered then appears). The wording suggeststhe natural pattern of reasoning in something like the way that a textbookmight put it. If an aount to be printed is the outermost aount of apartiular proof, a prologue and epilogue are added around its printout:This is the proof of the onjeture>> example_1:"!n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"...This ompletes the proof of the onjeture>> example_1:"!n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"32

The internal form of the aount ould be rendered in many other ways,of ourse, eah with its own suite of print funtions. The partiular suitethat has been implemented reports every proof step in detail, and uses theformat shown.Most of the named tatis orresponding to simple HOL tatis are im-plemented similarly way to GEN_TAC.4.2 Solving a Goal: ACCEPT TACSeveral tatis are apable, unlike GEN_TAC, of solving goals. The simplestof these is ACCEPT_TAC, whih in fat only solves, and annot advane, goals.ACCEPT_TAC is a funtion whih maps a theorem to a tati whih when ap-plied to a goal either produes an empty list of subgoals, or else fails. Theformer happens i� the onlusion of the theorem is the same as the term of thegoal (up to alpha-onversion); in that ase, the justi�ation of ACCEPT_TAC,applied to the orresponding empty list of theorems, produes the same theo-rem as provided to ACCEPT_TAC. This is demonstrated by solving the followinggoal (whih might, perhaps be a ase in a larger proof) using the pre-provedHOL theorem MULT_SYM:#let g = ["x > 0";"y > 0"℄,"x * y = y * x";;g = (["x > 0"; "y > 0"℄, "x * y = y * x") : goal#MULT_SYM;;|- !m n. m * n = n * m#let thm = SPECL ["x:num";"y:num"℄ (MULT_SYM);;thm = |- x * y = y * x#let gl,p = ACCEPT_TAC thm g;;gl = [℄ : goal listp = - : proof#p[℄;;|- x * y = y * xThe aount of this fragment of proof uses a wording to express the nat-ural strategy behind ACCEPT_TAC. (In the orresponding named goal, the twoassumptions are given names.)This is the proof of the onjeture>> example_2:"x * y = y * x"Assuming 33

The fat1: "x > 0"The fat2: "y > 0">>>> The theorem|- x * y = y * xis proposed to satisfy this.This establishes|- x * y = y * xThis ompletes the proof of the onjeture>> example_2:"x * y = y * x"AssumingThe fat1: "x > 0"The fat2: "y > 0"Note that NAMED_ACCEPT_TAC must reord its theorem parameter in orderthat the aount be understandable.If the theorem to whih the justi�ation of ACCEPT_TAC is applied has anappropriate onlusion but fails to ahieve the original goal through havinghypotheses beyond the assumptions of the goal, then this failure is noted atthe appropriate points in the aount { here, in the prologue and epilogue.Suppose, for example, that we have proved the easy theorem thm', as shownbelow, and that thm' is supplied to NAMED_ACCEPT_TAC in plae of thm:x = 3 |- x * y = y * xIn HOL, an empty list of subgoals would again ensue, but the justi�a-tion would then produe the theorem x = 3 |- x * y = y * x. The aountmakes the nature of this failure lear:This is the attempted proof of the onjeture>> example_2:"x * y = y * x"AssumingThe fat1: "x > 0"The fat2: "y > 0">>>> The theoremx = 3 |- x * y = y * xis proposed to satisfy this.This establishesx = 3 |- x * y = y * xwhih does not satisfy>> "x * y = y * x"Assuming 34

The fat1: "x > 0"The fat2: "y > 0"This ompletes the attempted proof of the onjeture>> example_2:"x * y = y * x"AssumingThe fat1: "x > 0"The fat2: "y > 0"The wording seen in the prologue and epilogue are hosen by the printfuntions when the ahievement failure is deteted in the subgoal-proof treebeing printed.NAMED_ACCEPT_TAC is implemented similarly to NAMED_GEN_TAC, exept thatinstead of onstruting a list ontaining one subgoal, it simply returns anempty list of subgoals. The justi�ation does not involve inferene { asGEN_TAC's does, but simply maps the empty list of theorems to the theoremprovided. While the implementation of NAMED_GEN_TAC must remember aterm, that of NAMED_ACCEPT_TAC must remember the theorem parameter towhih it was applied.4.3 Naming New Assumptions: DISCH TACDISCH_TAC, like GEN_TAC, an advane but not solve goals; and where it su-eeds, it produes exatly one subgoal. Unlike GEN_TAC, it not only hangesthe term of a goal, but also hanges the assumption list (by adding a newassumption):#let g = [℄,"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)";;g = ([℄, "n > 1 ==> (?p. PRIME p /\ p DIVIDES n)") : (* list # term)#let gl,p = DISCH_TAC g;;gl = [(["n > 1"℄, "?p. PRIME p /\ p DIVIDES n")℄ : goal listp = - : proofOne we have proved the theorem thth = |- ?p. PRIME p /\ p DIVIDES nwe an then apply the justi�ation (p) to yield the theorem ahieving theoriginal goal:#p[th℄;;|- n > 1 ==> (?p. PRIME p /\ p DIVIDES n)35

The orresponding named tati is implemented along the lines of theprevious named tatis, exept that it must in addition give a name to theadded assumption to indiate that this assumption was, in a previous goal,the anteedent of an impliation. The aount onstruted by the namedtati uses this name, and supplies a natural wording for the strategy, appliedto the orresponding named goal:This is the proof of the onjeture>> example_3:"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)">>>> It is suffiient to prove:>> "?p. PRIME p /\ p DIVIDES n"AssumingThe anteedent: "n > 1"...This establishesn > 1 |- ?p. PRIME p /\ p DIVIDES nThis establishes|- n > 1 ==> (?p. PRIME p /\ p DIVIDES n)This ompletes the proof of the onjeture>> example_3:"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"4.4 Transforming Subgoals: SUBST1 TACThe ML funtion SUBST1_TAC, like ACCEPT_TAC, maps a theorem to a tati.The theorem must have a onlusion of equational form; it is is used to makeand justify a substitution throughout the term of a goal for all free instanesof the left hand side of the equation by the right hand side of the equation.Like GEN_TAC, a tati of the form SUBST1_TAC th, where it sueeds, produesa subgoal list of �xed length one. Also like GEN_TAC, it advanes but doesnot solve goals; and it transform the term of a goal but does not alter theassumptions. For example:#let g = [℄,"!n:num. n > 1 ==> n DIVIDES n";;g = ([℄, "!n. n > 1 ==> n DIVIDES n")Suppose that the theorem th is an instane of the de�nition of division:th = |- n DIVIDES n = ~(n = 0) /\ (?q. q * n = n)36

Then substituting throughout the goal aording to the speialized form ofthe de�nition, is a way of unfolding the goal into more basi terms:#let gl1,p1 = (GEN_TAC THEN SUBST1_TAC th)g;;gl1 = [([℄, "n > 1 ==> ~(n = 0) /\ (?q. q * n = n)")℄ : goal listp1 = - : proofThe printed form of the aount on the orresponding named goal explainsthe e�et of SUBST_TAC:This is the proof of the onjeture>> example_4:"!n. n > 1 ==> n DIVIDES n">>>> Consider an arbitrary "n":We show:>> "n > 1 ==> n DIVIDES n">>>> We substitute aording to the following equality:|- n DIVIDES n = ~(n = 0) /\ (?q. q * n = n).Thus, it is suffiient to prove:>> "n > 1 ==> ~(n = 0) /\ (?q. q * n = n)"...This establishes|- n > 1 ==> ~(n = 0) /\ (?q. q * n = n)This establishes|- n > 1 ==> n DIVIDES nThis establishes|- !n. n > 1 ==> n DIVIDES nThis ompletes the proof of the onjeture>> example_4:"!n. n > 1 ==> n DIVIDES n"It an be seen that the theorem parameter to NAMED_SUBST_TAC has to be re-membered in order to explain fully the substitution { as for NAMED_ACCEPT_TAC.The implementation is similar to previous ones.4.4.1 Impliit Assumptions from Invalid Proof StepsAlthough SUBST_TAC is apparently straightforward, there is one diÆulty thatmay arise. To explain it, we use the arithmeti onstants SUC and PRE, pro-vided in HOL, for the suessor and predeessor funtions (respetively) on37

the natural numbers. The predeessor funtion is haraterized by the theo-rem|- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m)and about the suessor we know that|- !n. ~(SUC n = 0)Suppose that the goal is to prove the following (for any x)#let g = [℄, "PRE(SUC(PRE x)) = PRE x";;g = ([℄, "PRE(SUC(PRE x)) = PRE x") : (* list # term)and that we have already proved the theorem th:~(x = 0) |- SUC(PRE x) = x(whih is not diÆult to prove).If a user unwittingly were to try to proede in HOL by making a substi-tution based on the theorem th, the resulting subgoal would appear withoutreording the fat that an assumption (~(x = 0)) had thereby been intro-dued. The result would appear to be as hoped:#let gl1,p1 = SUBST1_TAC th g;;gl1 = [([℄, "PRE x = PRE x")℄ : goal listp1 = - : proofThis subgoal ould then be solved by appeal to reexivity:#let th' = REFL "PRE x";;th' = |- PRE x = PRE x#let gl2,p2 = ACCEPT_TAC th' (hd gl1);;gl2 = [℄ : goal listp2 = - : proof#let th2 = p2[℄;;th2 = |- PRE x = PRE xThis still appears to solve the problem; it leads to a theorem whih ahievesthe one subgoal in gl1. However, the justi�ation of the substitution (p1)maps th2 to a theorem th1 38

#let th1 = p1[th2℄;;th1 = . |- PRE(SUC(PRE x)) = PRE x#print_all_thm th1;;~(x = 0) |- PRE(SUC(PRE x)) = PRE xwhih, beause it is ontingent on some hypothesis, does not ahieve theoriginal goal. This sudden failure of ahievement is the �rst indiation to theuser that an assumption has been introdued `behind the senes' { as a resultof the theorem parameter to SUBST1_TAC having depended on the hypothesis~(x = 0). The ause of the failure may not be immediately apparent { evenafter the hypothesis (printed by default as a dot) is examined.Indeed, if instead of th' (|- PRE x = PRE x) we had proved an easy the-orem th''~(x = 0) |- PRE x = PRE xand we had supplied th'' rather than th' as the solution of the subgoal in gl1(i.e. ([℄, "PRE x = PRE x")), then the theorem (th2) whih was suppliedto the justi�ation (p1) of the substitution would already depend on thehypothesis ~(x = 0):#let gl2,p2 = ACCEPT_TAC th'' (hd gl1);;gl2 = [℄ : goal listp2 = - : proof#let th2 = p2[℄;;th2 = . |- PRE x = PRE x#print_all_thm th2;;~(x = 0) |- PRE x = PRE x#let th1 = p1[th2℄;;th1 = . |- PRE(SUC(PRE x)) = PRE x#print_all_thm th1;;~(x = 0) |- PRE(SUC(PRE x)) = PRE xAs an be seen, the end result is the same as before. That is, the justi�ationof the substitution (the funtion p1) \knows" about the invisible assumption~(x = 0), so whether the justi�ation is applied to the theorem with onlu-sion PRE x = PRE x) with the hypothesis ~(x = 0) or without the hypothesismakes no di�erene; in either ase, the result is a theorem with the hypothe-sis ~(x = 0). However, what the justi�ation funtion \knows" is not readilyapparent to a user. We will take this behaviour of the justi�ation to be the39

riterion of whether a tati applied to a given goal introdues an impliitassumption.To see why the justi�ation neessarily adds the hypothesis to the theo-rem it returns, where it is laking, one must examine the inferene rule forsubstitution whih supports the substitution tati. The rule spei�es thatin using an established equality to substitute equals for equals throughoutthe onlusion of a given theorem, the hypotheses of the equality theorem,as well as the hypotheses of the theorem into whih the substitution is made,are propagated through to the resulting theorem. (See ref, Ch 3.)A |- t = u B |- P(t)-----------------------A u B |- P(u/t)In general, a tati is alled invalid if it is able to generate, on somegoal, subgoals and a justi�ation suh that ahieving the subgoals does notneessarily entail, via the justi�ation, ahieving the goal. Invalidity ne-essarily haraterizes any tati onstruted by applying a funtion of typethm -> tati (or thm list -> tati), et, to appropriate values to reatea tati. The property thereby pertains to quite a few of the ommonly usedHOL tatis, inluding DISCH_TAC, whih was desribed earlier, as well asSUBST1_TAC. (See appendix ... listing all suh HOL tatis.)Any of these invalid tatis an be applied validly or invalidly to goals.SUBST1_TAC th, for example, was applied invalidly to the goal g, in the lastexample, beause g inluded no assumptions { in partiular, it did not inludeas an assumption the hypothesis ~(x = 0) of the substitution theorem th.4.4.2 Impliit Assumptions without UseIn the previous example, the theorem th was used in the substitution step;it may appear that that is essential for the hypothesis ~(x = 0) to have beenmade impliitly. However, this is not so. Another example of the same sortillustrates the subtle point that the appearane of the invisible assumptiondoes not depend on the theorem with the hypothesis having had an e�et onthe goal. In the following example, the attempted substitution has no e�et,beause there is no suitable substitution instane for the term SUC(PRE x).Suppose the goal is#let g = [℄,"PRE(SUC x) = x";;g = ([℄, "PRE(SUC x) = x") : (* list # term)40

and the same substitution theorem, th (~(x = 0) |- SUC(PRE x) = x), isengaged (but to no e�et):#let gl,p = SUBST1_TAC th g;;gl = [([℄, "PRE(SUC x) = x")℄ : goal listp = - : proofOne the single subgoal is ahieved { without our speifying how { by atheorem th'#th';;|- PRE(SUC x) = xthe justi�ation an be applied to give a result:#p[th'℄;;. |- PRE(SUC x) = x#print_all_thm it;;~(x = 0) |- PRE(SUC x) = xThus, despite the fat that the theorem th' itself ahieves the subgoal[℄, "PRE(SUC x) = x")and the fat that the substitution tati has had no e�et, the justi�ation(p) of the substitution tati still produes a theorem depending on thehypothesis ~(x = 0). That is, the substitution step neessarily introdues anassumption behind the senes { by embedding that hypothesis in the funtionthat justi�es the (e�etive or ine�etive) substitution step.114.4.3 Impliit Assumptions from Valid Proof StepsAlthough the appearane of the unexpeted hypothesis in the previous twosetions was aused by an invalid use of a tati, the introdution of invis-ible assumptions does not arise only through invalidity { the mehanism isatually more subtle still. We return to the �rst substitution example (Se-tion 4.4.1) to illustrates the same e�et, but without the invalid use of tatisand without failing to ahieve the original goal.Suppose we refer to the same theorem th:11Possibly, HOL's substitution tati ould be implemented so that if it deteted that ithas had no e�et it would return a justi�ation that did not rely on the inferene rule forsubstitution { whih is the origin of the hypothesis of the result. However, this would beompliated, probably ineÆient, and would have to be done for quite a few other similarlyonstruted tatis. 41

~(x = 0) |- SUC(PRE x) = xand this time use a goal resembling that of Setion 4.4.1, but whih inludesthe assumption in question to begin with:#let g = ["~(x = 0)"℄, "(PRE(SUC(PRE x)) = PRE x)";;g = (["~(x = 0)"℄, "PRE(SUC(PRE x)) = PRE x") : goalThe use of the substitution tati is now valid:#let gl1,p1 = SUBST1_TAC th (hd gl1);;gl1 = [(["~(x = 0)"℄, "PRE x = PRE x")℄ : goal listp1 = - : proofIf the theorem th' (as in Setion 4.4.1)th' = |- PRE x = PRE xor indeed th'' (also as in Setion 4.4.1)~(x = 0) |- PRE x = PRE xis now supplied as the solution to the goal in gl1, the justi�ation (p1) ofthe substitution { as before { produes a theorem (th2) that depends on theondition ~(x = 0). (This time, though, the resulting theorem does ahievethe goal g.)#let gl2,p2 = ACCEPT_TAC th' (hd gl2);;gl2 = [℄ : goal listp2 = - : proof#let th2 = p2[℄;;th2 = |- PRE x = PRE x#let th1 = p1[th2℄;;th1 = . |- PRE(SUC(PRE x)) = PRE x#print_all_thm th1;;~(x = 0) |- PRE(SUC(PRE x)) = PRE xThe dependene on ~(x = 0) happens despite the validity of the substitutionon the subgoal { that is, despite the fat that at the point where the sub-stitution tati was applied, the ondition ~(x = 0) was already a standingassumption. (This is not an automati e�et of ~(x = 0) having already beenan assumption { not all assumptions reappear thus.) The impliit assump-tion introdued by the tati manifests itself in the e�et of the justi�ationfuntion of that tati, and for exatly the same reason as in the previoustwo examples: the propagation of assumptions in the inferene rule for sub-stitution. 42

4.4.4 Aounting for Impliit AssumptionsThe �rst and seond examples (in Setions 4.4.1 and 4.4.2 respetively),involving invalid reasoning, might be dismissed simply as poor HOL style;indeed, suh reasoning is preluded by the HOL subgoal interfae in its mostrestritive mode. However, in the third example, the reasoning is ompletelyvalid, and the example in fat illustrates a ommonly used method in HOLtatial proof. There are, in addition, several other (valid) ways in whihassumptions an be aused to appear behind the senes, and these likewiseannot be dismissed as poor HOL style { they are features of HOL's urrentdesign. (These other ways are disussed in) For all of these ases, it isneessary, in proof aounts, to deal with the issue of impliit assumptions.The aounting method we propose is to reord all assumptions thatpertain to a goal, whether or not they would be visible ordinarily. Impliitassumptions are identi�ed by the boolean value false; this is the purpose ofthe boolean omponent of an assumption of a named goal. Whether or whenimpliit assumptions are printed is a feature of a partiular printing routine,but the information is anyway available to print. (Currently, they are alwaysprinted.)With impliit assumptions reorded in aounts, the invalid use of substi-tution seen above in the �rst (invalid) example (Setion 4.4.1) { whih mightwell have puzzled the user { is aounted for as follows:This is the attempted proof of the onjeture>> example_5:"PRE(SUC(PRE x)) = PRE x">>>> We substitute aording to the following equality:~(x = 0) |- SUC(PRE x) = x.Thus, it is suffiient to prove:>> "PRE x = PRE x"Assuming impliitlyThe hypothesis of the equality: "~(x = 0)">>>> The theorem|- PRE x = PRE xis proposed to satisfy this.This establishes|- PRE x = PRE xThis establishes~(x = 0) |- PRE(SUC(PRE x)) = PRE xwhih does not satisfy 43

>> "PRE(SUC(PRE x)) = PRE x"This ompletes the attempted proof of the onjeture>> example_5:"PRE(SUC(PRE x)) = PRE x"This aount lears up all the mystery from the situation: �rst, the sub-goal deomposition reords the introdued assumption so that it an be seenfrom the point at whih it beomes an assumption onward; seond, the transi-tion (via the justi�ation of the substitution tati) from the establishment ofthe theorem |- PRE x = PRE x to the theorem ~(x = 0) |- PRE(SUC(PRE x)) = PRE xan be understood by referene to the impliit assumption of the relevantsubgoal; and �nally, the failure to ahieve the original goal (beause of theadditional hypothesis) is noted and made lear.The aount of the seond example (Setion 4.4.2), in whih the (invalid)substitution step has no e�et on the term of the goal, makes lear thatthe step does have the side e�et of introduing an impliit assumption,whih later manifests itself in the hain of ahieving theorems produed bysuessive justi�ations:This is the attempted proof of the onjeture>> example_6:"PRE(SUC x) = x">>>> We substitute aording to the following equality:~(x = 0) |- SUC(PRE x) = x.Thus, it is suffiient to prove:>> "PRE(SUC x) = x"Assuming impliitlyThe hypothesis of the equality: "~(x = 0)"...This establishes|- PRE(SUC x) = xThis establishes~(x = 0) |- PRE(SUC x) = xwhih does not satisfy>> "PRE(SUC x) = x"This ompletes the attempted proof of the onjeture>> example_6:"PRE(SUC x) = x"The aount produed for the third (valid) example (Setion 4.4.3), inwhih the assumption ~(x = 0) belongs to the goal at the point where the44

substitution is made, is again intended to lear up any mystery about thereappearane of the impliit assumption in the hain of ahieving theorems:This is the proof of the onjeture>> example_7:"PRE(SUC(PRE x)) = PRE x"AssumingThe fat: "~(x = 0)">>>> We substitute aording to the following equality:~(x = 0) |- SUC(PRE x) = x.Thus, it is suffiient to prove:>> "PRE x = PRE x"AssumingThe fat: "~(x = 0)"Assuming impliitlyThe hypothesis of the equality: "~(x = 0)">>>> The theorem|- PRE x = PRE xis proposed to satisfy this.This establishes|- PRE x = PRE xThis establishes~(x = 0) |- PRE(SUC(PRE x)) = PRE xThis ompletes the proof of the onjeture>> example_7:"PRE(SUC(PRE x)) = PRE x"AssumingThe fat: "~(x = 0)"The expliit assumption ~(x = 0), in the subgoal>> "PRE x = PRE x"AssumingThe fat: "~(x = 0)"Assuming impliitlyThe hypothesis of the equality: "~(x = 0)"does not explain the dependene on ~(x = 0) of the orresponding ahievingtheorem~(x = 0) |- PRE(SUC(PRE x)) = PRE xThe noting of the introdution of the impliit assumption, in eah of theaounts of substitution, is ahieved by implementing NAMED_SUBST_TAC sothat whenever it is applied to a theorem, and the resulting tati to a goal,45

any hypotheses of the theorem are reorded as impliit assumptions of thesubgoal being onstruted. Any suh assumption is labelled to indiate itsorigin { in the ase of substitution with the string`the hypothesis of the equality`and with the boolean value false to indiate that it is an impliit assumption.The only futher are required is that in extrating an ordinary goal from anamed goal (so that the results of the ordinary SUBST1_TAC an be omputed),only expliit assumptions should be inluded; assumptions of the named goallabelled with false are ignored. Impliit assumptions are inluded again,however, in the named subgoal being onstruted by NAMED_SUBST_TAC { thatis, impliit assumptions persist from named goals to named subgoals, as onewould expet.The printing routine for goals is then arranged to print expliit and im-pliit assumptions separately (as illustrated in the aounts above). Theroutine for printing whole aounts is arranged to produe an appropriatemessage (again, as illustrated) when a andidate theorem fails to ahieve thesubgoal for whih it was intended; and when the theorem purporting to doso fails to ahieve an initial (outermost) goal.4.5 Multiple Subgoals: INDUCT TACThe numerial indution tati is an example of a tati whih produes morethan one subgoal { it always produes one basis and and one step ase, whenit sueeds at all. In both subgoals, there is a transformed term; and inthe step goal, there is a di�erent assumptions list { a new assumption (theindution hypothesis) is added. For example, the proof of the assoiativityof addition (normally pre-proved in HOL) is by indution:#let g = [℄,"!m n p. m + (n + p) = (m + n) + p";;g = ([℄, "!m n p. m + (n + p) = (m + n) + p")#let [g1;g2℄,p = INDUCT_TAC g;;g1 = ([℄, "!n p. 0 + (n + p) = (0 + n) + p") : goalg2 =(["!n p. m + (n + p) = (m + n) + p"℄,"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"): goalp = - : proof 46

The orresponding named goal ismk_named_goal(`example_8`, [℄, "!m n p. m + (n + p) = (m + n) + p")To speify the orresponding named tati NAMED_INDUCT_TAC requiresonstruting the two named subgoals from the two ordinary subgoals. Thisin turn requires naming eah subgoal, and naming the new assumption ofthe step subgoal. The named justi�ation is onstruted muh as for theprevious tatis. Here, it is a funtion that maps a list of two sub-aountsto an aount of the original goal. The string `NAMED_INDUCT_TAC` identi�esthe tati used, and the indution variable (m) is reorded. When the wholeproof is ompleted and printed, the indution is aounted for as follows:This is the proof of the onjeture>> example_8:"!m n p. m + (n + p) = (m + n) + p">>>> The proof is by mathematial indution on "m".This gives two ases to prove, the basis and step:>> basis:"!n p. 0 + (n + p) = (0 + n) + p">> indution step:"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"AssumingThe indution hypothesis: "!n p. m + (n + p) = (m + n) + p"The proof of the>> basis:"!n p. 0 + (n + p) = (0 + n) + p"is as follows:...This establishes|- !n p. 0 + (n + p) = (0 + n) + pThe proof of the>> indution step:"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"AssumingThe indution hypothesis: "!n p. m + (n + p) = (m + n) + p"is as follows:...This establishes!n p. m + (n + p) = (m + n) + p|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p47

This establishes|- !m n p. m + (n + p) = (m + n) + pThis ompletes the proof of the onjeture>> example_8:"!m n p. m + (n + p) = (m + n) + p"In printing this aount, the aounts of the two subgoals are printed inthe order in whih the subgoals were announed. Sine there is more than onesubgoal, and the aount of eah an be arbitrarily long, eah sub-aount isprefaed by a reminder of the subgoal to whih it pertains.4.6 Advanement or Solution: REWRITE TACThe funtion that implements HOL's rewriting sheme maps a list of theo-rems (to be used as left-to-right rewrite rules) to a tati. For a given list l,the tati REWRITE_TAC l (or any of the several variants of REWRITE_TAC, in-luding ASM_REWRITE_TAC and so on { see ...) an produe a variable numberof subgoals: either none or one. That is, a goal an be solved by rewriting, orit an be advaned to a single subgoal. In the former ase, as for ACCEPT_TAC,an empty list of subgoals ensues. In the latter, the subgoal produed is un-hanged as regards its assumption list, but may be hanged as regards theterm.4.6.1 Solution by REWRITE TACThe following list, ontaining one pre-proved HOL theorem, an be used toomplete the proof in the previous example (Setion 4.5):#let l = [ADD_CLAUSES℄;;l =[|- (0 + m = m) /\(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))℄: thm listIn both the basis and step ases of that proof, it is suÆient to rewriteusing ADD_CLAUSES, using any assumptions pertaining at the time of rewriting,48

and using a standard list of basi tautologies12. This strategy is implementedby the tati ASM_REWRITE_TAC l. Thus the goal is solved by the tatiNAMED_INDUCT_TAC THENNAMED_ASM_REWRITE_TAC lOne the orresponding named tati NAMED_REWRITE_TAC is implemented,the proedure for printing the aount of the rewriting proof step must hoosebetween two ways of presenting the rewriting step: one whih gives a wordingappropriate to solution, and one for advanement only.For solution, the aount below shows the presentation of the (advaning)rewriting step in both ases:This is the proof of the onjeture>> example_8:"!m n p. m + (n + p) = (m + n) + p">>>> The proof is by mathematial indution on "m".This gives two ases to prove, the basis and step:>> basis:"!n p. 0 + (n + p) = (0 + n) + p">> indution step:"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"AssumingThe indution hypothesis: "!n p. m + (n + p) = (m + n) + p"The proof of the>> basis:"!n p. 0 + (n + p) = (0 + n) + p"is as follows:>>>> This follows by using the equality,|- (0 + m = m) /\(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))basi logial identities, and the assumptions made thus far.This establishes|- !n p. 0 + (n + p) = (0 + n) + pThe proof of the>> indution step:"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"AssumingThe indution hypothesis: "!n p. m + (n + p) = (m + n) + p"12All of HOL's rewriting funtions use these basi rewrite rules exept those with namessuÆxed by `PURE', suh as PURE ASM REWRITE TAC.49

is as follows:>>>> This follows by using the equality,|- (0 + m = m) /\(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))basi logial identities, and the assumptions made thus far.This establishes!n p. m + (n + p) = (m + n) + p|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + pThis establishes|- !m n p. m + (n + p) = (m + n) + pThis ompletes the proof of the onjeture>> example_8:"!m n p. m + (n + p) = (m + n) + p"In the implementation of NAMED_REWRITE_TAC, the list provided of poten-tial rewrite theorems is saved so that it an be printed as part of the aountof the rewriting step. A more sophistiated aount would perhaps not re-port every potential rewrite theorem, but only those on whih hanges to theterm of the goal were based. Likewise, a more informative aount wouldindiate, in both ases, whih, if any, of the basi logial identities were en-gaged, and whih, if any, of the assumptions { by name. However, to reportonly the rewrites atually engaged is beyond the sope of the urrent a-ounting method, whih implements named tatis based on the values thatwould be produed by the orresponding ordinary tatis (on the orrespond-ing ordinary goals). The method treats the ordinary tatis as `blak boxes'.To ause the ordinary rewriting tati to keep a reord of rewrites atuallyengaged would involve re-implementing the existing rewriting tati (whihhappens to be partiularly omplex).However, an analysis of the aount shown, giving all potential rewriterules, does have a use: an analysis of the aount might suggest to the usersome improvements to the tati used. In the basis ase, for example, thefuntion ASM_REWRITE_TAC was spei�ed, but in fat it is obvious from theaount that no assumptions are present, and so REWRITE_TAC would havesuÆed. The user ould then deide whetherNAMED_INDUCT_TAC THENL[NAMED_REWRITE_TAC l;NAMED_ASM_REWRITE_TAC l℄ 50

were preferable to the original tati.It is worth noting here that the subgoal-theorem tree onstruted in theproess of aounting is strutured exatly as the goal-oriented proof is atu-ally performed. That is, although the original tati is spei�ed as a `linear'sequene of two tatis, the indution proof step in fat yields two subgoals;the sequening funtional THEN is de�ned so as to apply its seond argumentto all the subgoals produed by its �rst argument. In this way, the aountlari�es the proof's atual struture in a way that is not neessarily madeapparent by the ML expression that generates the proof.4.6.2 Advanement by REWRITE TACThe aount of applying the following alternative tati to the goal illustratesthe wording for rewriting steps that do not solve goals. (It also happens todemonstrate the simpler tati that is suÆient in the basis ase.) It dividesthe rewriting step for the step ase into two rewriting steps (the seond usingthe basi rewrites and assumptions only), but is still a linear tati.NAMED_INDUCT_TAC THENNAMED_REWRITE_TAC[ADD_CLAUSES℄ THENNAMED_ASM_REWRITE_TAC[℄The aount is then as follows, illustrating (in the step ase) the wording fora rewriting step that does not solve a subgoal:This is the proof of the onjeture>> example_8:"!m n p. m + (n + p) = (m + n) + p">>>> The proof is by mathematial indution on "m".This gives two ases to prove, the basis and step:>> basis:"!n p. 0 + (n + p) = (0 + n) + p">> indution step:"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"AssumingThe indution hypothesis: "!n p. m + (n + p) = (m + n) + p"The proof of the>> basis:"!n p. 0 + (n + p) = (0 + n) + p"is as follows:>>>> This follows by using the equality|- (0 + m = m) /\ 51

(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))and basi logial identities.This establishes|- !n p. 0 + (n + p) = (0 + n) + pThe proof of the>> indution step:"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"AssumingThe indution hypothesis: "!n p. m + (n + p) = (m + n) + p"is as follows:>>>> Using the following equality|- (0 + m = m) /\(m + 0 = m) /\((SUC m) + n = SUC(m + n)) /\(m + (SUC n) = SUC(m + n))and using basi tautologies, it is suffiient to prove:>> "!n p. SUC(m + (n + p)) = SUC((m + n) + p)"AssumingThe indution hypothesis: "!n p. m + (n + p) = (m + n) + p">>>> This follows from basi logial identities, as well asthe assumptions made thus far.This establishes!n p. m + (n + p) = (m + n) + p|- !n p. SUC(m + (n + p)) = SUC((m + n) + p)This establishes!n p. m + (n + p) = (m + n) + p|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + pThis establishes|- !m n p. m + (n + p) = (m + n) + pThis ompletes the proof of the onjeture>> example_8:"!m n p. m + (n + p) = (m + n) + p"The aount lari�es the fat that the �rst rewriting step of the lineartati solves the basis ase; this, again, is not immediately apparent from theML proedure.Finally, as the point about invalidity made in Setion 4.4 applies also tothe rewriting funtions (whih take a list of theorems as their parameter);any of the theorems on the list an introdue impliit assumptions, and these52

assumptions are treated just as for substitution.134.7 Adding an Assumption: ASSUME TACLike several tatis so far, ASSUME_TAC maps a theorem to a tati. It simplyadds the onlusion of the theorem provided to the assumption list, and jus-ti�es this step by disharging the assumption and applying Modus Ponens.Thus, an impliit assumption may again be introdued. The following a-ount shows the wording for printing suh a proof step, and illustrates howimpliit assumptions an be raised by using ASSUME_TAC to aess assumptionsby text (a ommon method in HOL proofs).For example, suppose we wish to provemk_named_goal(`example_9`, [℄, "(p = q) ==> (q = r) ==> (p = r)")(for p, q and r) of some given type, by assuming the anteedents in turn, ap-pealing to the transitivity of equality to derive as a new assumption "p = r",and then using the new assumption as a rewrite rule. The aount of thisproof, using the orresponding NAMED_ASSUME_TAC is:This is the proof of the onjeture>> example_9:"(p = q) ==> (q = r) ==> (p = r)">>>> It is suffiient to prove:>> "(q = r) ==> (p = r)"AssumingThe anteedent: "p = q">>>> It is suffiient to prove:>> "p = r"AssumingThe anteedent: "q = r"The anteedent: "p = q">>>> We use the fat thatp = q, q = r |- p = r.It is suffiient to prove:>> "p = r"13Indeed, any of the assumptions that happens to be engaged as a rewrite rule byASM REWRITE TAC { but not those whih are not { must also, neessarily, introduean impliit assumption. However, these partiular impliit assumptions seem unlikely toause onfusion, and so are not reorded as impliit in the aounts.53

AssumingThe added hypothesis: "p = r"The anteedent: "q = r"The anteedent: "p = q"Assuming impliitlyThe hypothesis of the theorem used: "p = q"The hypothesis of the theorem used: "q = r">>>> This follows from basi logial identities, as well asthe assumptions made thus far.This establishesp = r |- p = rThis establishesp = q, q = r |- p = rThis establishesp = q |- (q = r) ==> (p = r)This establishes|- (p = q) ==> (q = r) ==> (p = r)This ompletes the proof of the onjeture>> example_9:"(p = q) ==> (q = r) ==> (p = r)"Note that the seond theorem established (p = q, q = r |- p = r) ar-ries as hypotheses the two impliit assumptions of the theorem parameter toASSUME_TAC. This assumption step is explained by the phrase `We use the fat that� � �'.5 ConversionsA onversion in HOL is a funtion mapping a term to a theorem { thatis, a theorem parameterized on a term. For example, the onept of beta-onversion is represented in HOL by the funtion BETA_CONV whih maps aterm (the beta redex) to a theorem expressing the redution:#BETA_CONV "(\x. x > 0) 3";;|- (\x. x > 0)3 = 3 > 0Conversions provide a way of deriving partiular instanes of fats whihannot themselves be expressed as theorems in the HOL logi. (To express54

beta-onversion in general, for example, would require quanti�ation oversyntax lasses of logial expressions.)To enable the use of suh equational theorems as redution tatis, afuntion CONV_TAC is provided. CONV_TAC maps a given onversion to a tatiwhih will perform the redution on a goal with suitable term. The tatithus produed, when applied to a goal, will either fail to be appliable, orwill produe exatly one subgoal.#CONV_TAC BETA_CONV;;- : tati#CONV_TAC BETA_CONV ([℄,"(\x. x > 0) 3");;([([℄, "3 > 0")℄, -) : subgoalsThe redution is justi�ed by a simple substitution.To onstrut the aount of a proof step generated by applying a tati ofthe form CONV_TAC , for some onversion , the usual method is used. Thetheorem {|- (\x. x > 0)3 = 3 > 0{ whih justi�es the beta-redution step is saved as a theorem parameterin the aount, for purposes of explanation. For example, to explain theappliation of the named tatiNAMED_CONV_TAC BETA_CONVto the goalmk_named_goal(`example`,[℄,"(\x. x > 0) 3")the aount produed is:This is the proof of the onjeture>> example:"(\x. x > 0)3">>>> We use the instantiated theorem-shema|- (\x. x > 0)3 = 3 > 0making it suffiient to prove:>> "3 > 0"...This establishes 55

|- 3 > 0This establishes|- (\x. x > 0)3This ompletes the proof of the onjeture>> example:"(\x. x > 0)3"Beause the named tati reords the partiular fat that was used, themethod gives a meaninful explanation however the onversion is expressed.For example, the funtion DEPTH_CONV is one of several funtions whih trans-form onversions to new onversions. The onversion (DEPTH_CONV BETA_CONVprodues a onversion whih will apply reursively { to arbitrary depth { toall the beta-redexes of a term.)For example, to explain the appliation of the named tatiNAMED_CONV_TAC (DEPTH_CONV BETA_CONV)to the goal(mk_named_goal(`example`,[℄,"(\x. x > 0)3 = ((\x. x > 0)4 = T)"))the aount produed is:This is the proof of the onjeture>> example:"(\x. x > 0)3 = ((\x. x > 0)4 = T)">>>> We use the instantiated theorem-shema|- ((\x. x > 0)3 = ((\x. x > 0)4 = T)) = (3 > 0 = (4 > 0 = T))making it suffiient to prove:>> "3 > 0 = (4 > 0 = T)"...This establishes|- 3 > 0 = (4 > 0 = T)This establishes|- (\x. x > 0)3 = ((\x. x > 0)4 = T)This ompletes the proof of the onjeture>> example:"(\x. x > 0)3 = ((\x. x > 0)4 = T)"56

For omplex expressions denoting a onversion, it ould be quite diÆ-ult to reonstrut the tati produed by CONV_TAC when applied to thatonversion. The explanation makes it unneessary to remember what formof theorem eah onversion (suh as BETA_CONV) gives on appropriate terms;what e�ets the various onversion transformers (suh as DEPTH_CONV) have ononversions in general; and in what sense the parameterized tati CONV_TACprodues a tati given a onversion. The explanation instead supplies theatual equational theorem justifying the redution.6 ResolutionThe `resolution' tatis provided in HOL { IMP_RES_TAC and RES_TAC { arethe basis of the seond group of named tatis. Members of this group relyon the results of the orresponding ordinary tatis, but they further proessthe results so that they an be presented in a meaningful way14.The funtion IMP_RES_TAC maps a theorem to a tati. It gives a way ofbringing to bear an impliative15 axiom or previously proved theorem on agoal by adding to the urrent assumptions of a goal a ertain subset of theolletive diret and indiret onsequenes of that theorem together with theurrent assumptions.The onsequenes are found by attempting to math the anteedent of theimpliative theorem to eah existing assumption (i.e. andidate anteedent);so determining an instantiation, wherever a math is made. The appropriateinstane of the onsequent of the impliation is then added as a new assump-tion, to the subgoal. A single appliation of IMP_RES_TAC th to a goal, for atheorem th, is suÆent for �nding all new assumptions of the form sought;subsequent appliations of IMP_RES_TAC have no further e�et.The instantiated onsequents are proessed before new the new subgoal(s)are onstruted. If the onsequent is an n-ary disjuntion, n subgoals arereated, one with eah respetive disjunt as a new assumption. If it is an n-ary onjuntion, the n onjunts are added separately to the (single) subgoal.(Existential and other onsequents are not further proessed.)14The resolution tatis are mis-named in that they do not do resolution in the lassialsense (based on uni�ation), but simply some one-way mathing of an impliation to aandidate anteedent, followed by forward inferene based on Modus Ponens .15Impliations, in this ontext, are taken in a generalized sense, as desribed in ...57

The tati RES_TAC, on a goal, looks for pairs of resolvents within theset of urrent assumptions. It onsiders eah impliative assumption againstthe set of all other assumptions in the same way that IMP_RES_TAC resolvesan impliation against a set of assumptions. For eah impliation mathed,RES_TAC similarly adds as a new assumption the appropriate instane of theonsequent. Like IMP_RES_TAC, RES_TAC applied to a goal produes n subgoalswhen the onsequent of a mathed impliation is an n-ry disjuntion. Thefull set of results that RES_TAC is able to �nd is not neessarily found in asingle appliation of the tati; whether it is depends on the ordering of theinitial assumptions.Both IMP_RES_TAC th and RES_TAC an either solve goals or advane them.They an solve a goal either by deriving as a new assumption the term itselfof the goal, or by deriving falsity as a new assumption (in whih ase any-thing desired ould be established, inluding the partiular term of the goal).Where these tatis advane goals, they an produe an inde�nite numberof subgoals; just one subgoal if no math made involves an impliation witha disjuntive onsequent; and more than one subgoal if at least one mathdoes so. Where these tatis advane a goal, they an add to the assumptionlist, but they annot hange the term.To onstrut the aount of a proof step involving one of the resolutiontatis involves omputing the results of the orresponding ordinary tation the orresponding ordinary goal, then identifying the nature of the result,and (in the advanement ase) naming the relevant parts of subgoals. Wherethe step solves the goal, diret solution and solution by ontradition aredistinguished. This is done by heking whether an arbitrary goal would alsobe solved at that point. An appropriate string is then hosen to denote theproof step so that the two solution ases an be printed appropriately. Forexample, onsider the pre-proved theorem LESS_MONO:#LESS_MONO;;|- !m n. m < n ==> (SUC m) < (SUC n)In the following proof, LESS_MONO is used to solve a trivially easy goal byresolution:#let g = ["p < q"℄,"SUC p < SUC q";;g = (["p < q"℄, "(SUC p) < (SUC q)") : goal#let gl,p = IMP_RES_TAC LESS_MONO g;;gl = [℄ : goal list 58

p = - : proof#let th = p[℄;;th = . |- (SUC p) < (SUC q)#print_all_thm th;;p < q |- (SUC p) < (SUC q)The aount generated by the named tati shows the wording used:This is the proof of the onjeture>> example:"(SUC p) < (SUC q)"AssumingThe fat: "p < q">>>> This follows diretlyby using the assumptions made thus far and the fat|- !m n. m < n ==> (SUC m) < (SUC n).This establishesp < q |- (SUC p) < (SUC q)This ompletes the proof of the onjeture>> example:"(SUC p) < (SUC q)"AssumingThe fat: "p < q"The next example demonstrates solution by ontradition. (Sine theterm of the goal does not matter, we use an arbitrary provable term t.) Thepre-proved theorem LESS_NOT_EQ is the theorem parameter:#LESS_NOT_EQ;;|- !m n. m < n ==> ~(m = n)The impliation of LESS_NOT_EQ is taken by IMP_RES_TAC to be a form of theanonial|- m < n ==> (m = n) ==> FThough IMP_RES_TAC this time sueeds by deriving a ontradition, there isnothing in the following ordinary HOL session to indiate that fat:#let g = ["p < q";"(p:num) = q"℄,"t:bool";;g = (["p < q"; "p = q"℄, "t") : goal#let gl,p = IMP_RES_TAC LESS_NOT_EQ g;;gl = [℄ : goal list 59

p = - : proof#let th = p[℄;;th = .. |- t#print_all_thm th;;p < q, p = q |- tThe wording of the aount makes the proof method lear16:This is the proof of the onjeture>> example:"t"AssumingThe fat1: "p < q"The fat2: "p = q">>>> This follows by ontradition,using the assumptions made thus far and the fat|- !m n. m < n ==> ~(m = n).This establishesp < q, p = q |- tThis ompletes the proof of the onjeture>> example:"t"AssumingThe fat1: "p < q"The fat2: "p = q"Where resolution advanes a goal rather than solving it, this is indiatedin the aount; the new result is identi�ed. Here, LESS_MONO is again used:This is the proof of the onjeture>> example:"t"AssumingThe fat: "p < q">>>> From the assumptions made thus far and the fat|- !m n. m < n ==> (SUC m) < (SUC n),it is suffiient to prove the following:>> "t"AssumingThe onsequene: "(SUC p) < (SUC q)"The fat: "p < q"...16An alternative presentation ould print the anonial form of LESS NOT EQ (i.e. theform atually used by the tati), if that were felt to be more informative.60

This establishes(SUC p) < (SUC q), p < q |- tThis establishesp < q |- tThis ompletes the proof of the onjeture>> example:"t"AssumingThe fat: "p < q"Of ourse, there may be more than one new result; in that ase, the newresults are numbered in the order in whih they would ordinarily be addedto the assumptions in HOL:This is the proof of the onjeture>> example:"t"AssumingThe fat1: "p1 < q1"The fat2: "p2 < q2">>>> From the assumptions made thus far and the fat|- !m n. m < n ==> (SUC m) < (SUC n),it is suffiient to prove the following:>> "t"AssumingThe onsequene 2: "(SUC p2) < (SUC q2)"The onsequene 1: "(SUC p1) < (SUC q1)"The fat1: "p1 < q1"The fat2: "p2 < q2"....This establishes(SUC p2) < (SUC q2), (SUC p1) < (SUC q1), p1 < q1, p2 < q2 |- tThis establishesp1 < q1, p2 < q2 |- tThis ompletes the proof of the onjeture>> example:"t"AssumingThe fat1: "p1 < q1"The fat2: "p2 < q2"As noted earlier, a resolvent with a disjuntive onlusion an ause aase split. If that happens, the ases are numbered and identi�ed in the61

aount (and new results identi�ed as before). In the following example, weresolve against the pre-proved LESS_LEMMA:#let LESS_LEMMA1 = theorem `prim_re` `LESS_LEMMA1`;;LESS_LEMMA1 = |- !m n. m < (SUC n) ==> (m = n) \/ m < nThis is the proof of the onjeture>> example:"t"AssumingThe fat: "p < (SUC q)">>>> From the assumptions made thus far and the fat|- !m n. m < (SUC n) ==> (m = n) \/ m < n,it is suffiient to prove the following:>> disjuntive ase 1 of 2:"t"AssumingThe onsequene: "p = q"The fat: "p < (SUC q)">> disjuntive ase 2 of 2:"t"AssumingThe onsequene: "p < q"The fat: "p < (SUC q)"The proof of the>> disjuntive ase 1 of 2:"t"AssumingThe onsequene: "p = q"The fat: "p < (SUC q)"is as follows:....This establishesp = q, p < (SUC q) |- tThe proof of the>> disjuntive ase 2 of 2:"t"AssumingThe onsequene: "p < q"The fat: "p < (SUC q)"is as follows:....This establishesp < q, p < (SUC q) |- t 62

This establishesp < (SUC q) |- tThis ompletes the proof of the onjeture>> example:"t"AssumingThe fat: "p < (SUC q)"Finally, the point made in (...) about impliit assumptions applies to anytati of the form IMP_RES_TAC th; impliit assumptions may be introduedby the theorem parameter th. RES_TAC does not have this property.The implementations of NAMED_IMP_RES_TAC and NAMED_RES_TAC follow theoutlines of simpler implementations (...) but involve rather more proessingof the ordinary results in order to build useful aounts into the namedfuntions.7 Popping AssumptionsThere are several groups of funtions in HOL whose members produe newtatis from old. Suh funtions might be alled `tati transformers'. Onesuh group ontains the HOL funtion POP_ASSUM, whih maps a funtion fof type thm -> tati to a new funtion of type tati so thatPOP_ASSUM f = \((a.A),t). f (ASSUME a) (A,t)That is, the funtion POP_ASSUM transforms f into a tati whih takes a goal(with at least one term on the assumption list), removes the �rst term (a)on the assumption list, assumes that term (to produe the theorem a |- a),supplies that theorem to the funtion f (to yield a new tati), and �nally,applies that tati to the redued goal (the goal without the leading assump-tion).The other two members of this group of funtions are POP_ASSUM_LISTand SUBST_ALL_TAC. The method of viewing the assumption list of a goal asa stak whih an be `popped' was developed for LCF by Larry Paulson (...).The reasons for wishing to pop or remove an assumption before using itmay not be immediately apparent, as this tehnique does not orrespond toany natural strategy. For example, in the textbook proof shown in (...), oneof the proof steps was: 63

If n itself is a prime, there is nothing to prove. Suppose, then,that n is omposite...The argument then ontinues until the desired fat is established for n, underthe assumption that n is omposite; and the assumption is used at somepoint. It would sound very odd if, after the assumption were used, butbefore the ase were solved, the proof were to ontinue:...We now ease to assume that n is omposite, as this fat is nolonger required.This sounds odd beause assumptions in a normal subgoaling frameworkannot be `dropped' one they have been used, and they would normally beused one introdued. In the example, the assumption that n is ompositepersists from subgoal to subgoal, past the point of its use, right until theomposite ase of the proof is established. However, in proofs in HOL, thereare at least two reasons for wishing to give the appearane of dropping anassumption from a subgoal, and one reason for atually doing so.7.1 Popping to Erase Used AssumptionsThe simplest reason for ausing an assumption to seem to vanish is that dur-ing an interative session in whih proof steps are made one at a time, eahsubgoal of the proof tree is printed out to the user expliitly. To redue appar-ent lutter, it has beome a ommon pratie to use the funtion POP_ASSUMto supress the printing of assumptions that were but are no longer required.Thus, appliation of the tati POP_ASSUM SUBST1_TAC not only e�ets a sub-stitution (and without expliit mention of the substitution equation { i.e.of the leading assumption), but also prevents the leading assumption fromappearing subsequently in the subgoal. It does not, of ourse, prevent thetheorem ahieving the original goal from depending on the popped assump-tion, sine the justi�ation of POP_ASSUM SUBST1_TAC neessarily adds thepopped assumption to any theorem ahieving the subgoal.#let g = ["x = 5"℄,"x > 0";;g = (["x = 5"℄, "x > 0") : goal#let gl,p = POP_ASSUM SUBST1_TAC g;;gl = [([℄, "5 > 0")℄ : goal list 64

p = - : proof...th = |- 5 > 0#print_all_thm(p[th℄);;x = 5 |- x > 0...th' = x = 5 |- 5 > 0#print_all_thm(p[th'℄);;x = 5 |- x > 07.2 Popping to Replae an AssumptionThe seond reason for popping an assumption is to re-introdue it imme-diately in a di�erent form. For example, it may be onvenient to `replae'an assumption of the form t1 = t2 with the equivalent t2 = t1, in whihase the original assumption is no longer required, and indeed, may be anobstale if it does not o-exist happily with the new form (in this ase, forexample, it would prevent a subsequent appliation of ASM_REWRITE_TAC...from terminating). One way to ahieve this is illustrated below:#let g = ["5 = x"℄,"t:bool";;g = (["5 = x"℄, "t") : goal#let gl,p = POP_ASSUM (ASSUME_TAC o SYM) g;;gl = [(["x = 5"℄, "t")℄ : goal listp = - : proofAgain, the justi�ation of POP_ASSUM (ASSUME_TAC o SYM) neessarily pro-dues a theorem depending on the popped assumption 5 = x, given a theoremahieving the subgoal { so the popped theorem is not gone, but simply notprinted.7.3 Popping to Erase Irrelevant AssumptionsThe third reason for popping assumptions is that in HOL proofs in whihertain kinds automation ome into play, useless assumptions are sometimesintrodued into subgoals; the resolution tatis (...), whih add to the as-sumptions of a goal all the olletive onsequenes of a ertain type of theexisting assumptions (with or without an additional impliative lemma), are65

notorious for this. Useless assumptions are therefore popped (and genuinelydropped) in order to redue the onfusion (and lutter) that might result fromthe presene of assumptions whih are never used and on whih nothing everatually depends. For example:#let g = ["5 = x"℄,"t:bool";;g = (["5 = x"℄, "t") : goal#let gl,p = POP_ASSUM (\th. ALL_TAC) g;;gl = [([℄, "t")℄ : goal listp = - : (* list -> *)...th = |- t#p[th℄;;|- tIn this ase, the assumption 5 = x is genuinely lost; the justi�ation ofPOP_ASSUM (\th. ALL_TAC)17 { or, to use a ombinator, POP_ASSUM (K ALL_TAC){ does not add the popped assumption to the theorem ahieving the goal.This ases arises for any user-de�ned funtion whih shares the property ofgenuinely dropping assumptions.It is also the ase that if the ahieving theorem does depend on the lostassumption, the justi�ation still maps that theorem to a theorem ahievingthe original goal, even though the subgoal is not ahieved:#let g = ["5 = x"℄,"t:bool";;g = (["5 = x"℄, "t") : goal#let gl,p = POP_ASSUM (K ALL_TAC) g;;gl = [([℄, "t")℄ : goal listp = - : (* list -> *)...#print_all_thm th;;5 = x |- t#print_all_thm(p[th℄);;5 = x |- t7.4 Aounting for Popping AssumptionsFor whatever reasons it is used, the assumption-popping strategy is perfetlyvalid, sine a theorem that ahieves the subgoal less an assumption must17as POP ASSUM is urrently implemented in HOL66

also ahieve a subgoal with that assumption, by the de�nition of ahievement.Whether, in eah ase, popping assumptions is the best method for produingthe desired e�et is a question of style, taste and larity, but this is not thequestion of interest here. Instead, the question is how to produe a naturalaount of a proof that relies on this tehnial and non-natural devie.The key to produing suh aounts, in the �rst and seond ases, isthe onept of an impliit assumption, introdued in (...). This is suggestedby the way assumptions not visible in subgoals are nevertheless known tojusti�ations, exatly as happens when a tati is applied whih has beenonstruted from a theorem whose hypotheses do not orrespond to urrentassumptions.The aount desired would simply doument the tati atually applied,show the subgoal with the popped assumption no longer expliit, but leaveno mystery about the persistene of the assumption in the justi�ation. Thatis, the popped assumption would appear as impliit where it eased to appearas expliit.7.4.1 Aounting for Popping to Erase Used AssumptionsA sensible aount of the �rst ase (popping to erase used assumptions)is onstruted by �rst de�ning a funtion NAMED_POP_ASSUM in parallel withHOL's POP_ASSUM funtion. Thus, for a funtion f of type thm -> named_tati,the funtion NAMED_POP_ASSUM f is a named tati whih when applied to anamed goal1. �nds the term part (tm, say) of the �rst expliit assumption of a goal;2. assumes tm to give a theorem tm |- tm and applies f to the resultingtheorem to form a named tati; and3. applies the named tati f(ASSUME tm) to the named goal minus its�rst expliit assumption.This means that in relation to the redued goal, the new tati is bringingto bear a theorem whih depends on a hypothesis not represented in the goal{ namely, tm. Thus the situation is the same as in (...). The aount produedfor the �rst ase(Setion 7.1), in whih the tati POP_ASSUM SUBST1_TAC wasused to substitute with and dispense with the leading assumption, is asfollows: 67

This is the proof of the onjeture>> example1:"x > 0"AssumingThe fat: "x = 5">>>> We substitute aording to the following equality:x = 5 |- x = 5.Thus, it is suffiient to prove:>> "5 > 0"Assuming impliitlyThe hypothesis of the equality: "x = 5"...This establishes|- 5 > 0This establishesx = 5 |- x > 0This ompletes the proof of the onjeture>> example1:"x > 0"AssumingThe fat: "x = 5"This interpretation of NAMED_POP_ASSUM assures that when the popped as-sumption (tm) is atually used (e.g. in this ase, by the substitution tatiNAMED_SUBST1_TAC(ASSUME tm)), it will neessarily be reorded in the substi-tution subgoal as an impliit assumption. The aount desribes just oneproof step: the substitution. It does not mention the popping funtion,but simply douments the `loss' of the expliit assumption at the point ofsubstitution, where the impliit assumption arises. This gives the e�et oftransferring the popped, expliit assumption to the list of impliit assump-tions, whih is what was desired.A di�erent interpretation of NAMED_POP_ASSUM f is to insist that a poppedassumption always be reorded as impliit. To implement this view, thegoal to whih the tati f(ASSUME tm) is applied does not have the poppedassumption removed, but simply marked as impliit.If an impliit assumption is ultimately reorded in the �rst way, thenthe same assumption is reorded as impliit in the new way. However, theadvantage of the new method over the �rst is that the new method is not om-mitted to the phrasing with whih, in the �rst way, the funtion f identi�esthe impliit assumption { indiating that the assumption was used invalidly.68

The �rst method is ommitted to this phrasing, as it is built into the a-ount produed by the justi�ation of f; the name of the assumption before itwas popped annot be restored. (In the example, the impliit assumption islabelled The hypothesis of the equality by NAMED_SUBST1_TAC.) Using thenew method, the name borne by the assumption in the previous subgoal(fat, in the example) ould be retained (or some other preferred phraseused instead). The disadvantage of the new method is that it does not overthe third ase (popping to erase irrelevant assumptions); we return to thispoint in Setion 7.4.3.An elaboration of NAMED_POP_ASSUM f is to have it notie when f is exatlyequivalent to NAMED_ASSUME_TAC, in whih ase there is no overall e�et. Inthat ase, the justi�ation of f an be replaed with the identity justi�ation(i.e. the funtion mapping a list ontaining one aount to that aount) sothat instead of the aountThis is the proof of the onjeture>> example1:"x > 0"AssumingThe fat: "x = 5">>>> We use the assumption thatx = 5 |- x = 5.It is suffiient to prove:>> "x > 0"AssumingThe added hypothesis: "x = 5"Assuming impliitlyThe hypothesis of the theorem used: "x = 5"...This establishesx = 5 |- x > 0...whih douments the double re-assumption of x = 5 without it ever obviouslyhaving been lost, the following less onfusing aount is produed:This is the proof of the onjeture>> example1:"x > 0"AssumingThe fat: "x = 5"... 69

This establishesx = 5 |- x > 0...This is a minor elaboration, as the exat situation desribed is infrequent,and the trik does not extend to anything more omplex (i.e. to anythinginvolving modi�ation of the justi�ation of f).7.4.2 Aounting for Popping to Replae AssumptionsThe original interpretation of popping also gives a reasonable aount of theseond ase: popping to replae an assumption (Setion 7.2). In the exampleused, the tati POP_ASSUM (\th. ASSUME_TAC(SYM th)) was used to drop anold assumption and add a new one, as if replaing the old one. The aountprodued is:This is the proof of the onjeture>> example2:"t"AssumingThe fat: "5 = x">>>> We use the fat that5 = x |- x = 5.It is suffiient to prove:>> "t"AssumingThe added hypothesis: "x = 5"Assuming impliitlyThe hypothesis of the theorem used: "5 = x"...This establishesx = 5 |- tThis establishes5 = x |- tThis ompletes the proof of the onjeture>> example2:"t"AssumingThe fat: "5 = x"Again, by using the new interpretation of popping (i.e. by insisting thatpopped assumptions are immediately made impliit) the phrase70

The hypothesis of the theorem usedidentifying the impliit assumption, ould be varied as desired and does nothave to be the one seen above, whih was supplied by ASSUME_TAC.7.4.3 Aounting for Popping to Erase Irrelevant AssumptionsThe original interpretation of NAMED_POP_ASSUM also gives a natural aount ofthe third ase (Setion 7.3), in whih an unneessary assumption is atuallydropped, and is not stithed into any justi�ation funtion. In the exampleshown, POP_ASSUM (\th. ALL_TAC) (i.e. POP_ASSUM (K ALL_TAC)) was usedto give this e�et. The aount produed is:This is the proof of the onjeture>> example3:"t"AssumingThe fat: "5 = x">>>> It is suffiient to prove:>> "t"...This establishes|- tThis establishes|- tThis ompletes the proof of the onjeture>> example3:"t"AssumingThe fat: "5 = x"The aount douments the loss of the assumption (a valid step), andshows that when the subgoal is ultimately ahieved, the justi�ation ofthe proof step returns a theorem whih does not depend on the original(and lost) fat. This orresponds to { and explains { the behaviour ofPOP_ASSUM (K ALL_TAC) in HOL, as shown in Setion 7.3.It is also the ase, as mentioned in Setion 7.3, that the justi�ationof POP_ASSUM (K ALL_TAC) maps the theorem 5 = x |- t to itself, and soahieves the original goal, even though the theorem does not ahieve the71

subgoal. If the theorem 5 = x |- t is eventually established and then sup-plied as the purported ahievement of the subgoal, the following aountresults:This is the proof of the onjeture>> example3:"t"AssumingThe fat: "5 = x">>>> It is suffiient to prove:>> "t"...This establishes5 = x |- twhih does not satisfy>> "t"This establishes5 = x |- tThis ompletes the proof of the onjeture>> example3:"t"AssumingThe fat: "5 = x"The loal failure is noted, as well as the ultimate ahievement of the originalgoal. This also orresponds to { and explains { the behaviour of POP_ASSUM (K ALL_TAC)in HOL.In ontrast to this interpretation of NAMED_POP_ASSUM f { in whih thepopped assumption (tm) is allowed to appear or not in the ourse of applyingthe tati f (ASSUME tm) to the goal ontaining no version of the assump-tion { is the seond interpretation, in whih the popped assumption is madeimpliit in the goal to whih the tati is applied. (We all this funtionNAMED_POP_TRACE beause it neessarily leaves a `trae' of the popped as-sumption.) Under the seond interpretation, the aount is:This is the proof of the onjeture>> example3:"t"AssumingThe fat: "5 = x">>>> It is suffiient to prove: 72

>> "t"Assuming impliitlyThe fat: "5 = x"...This establishes|- tThis establishes|- tThis ompletes the proof of the onjeture>> example3:"t"AssumingThe fat: "5 = x"Here, a reord of the popped assumption is kept, so it is not de�nitivelylost. This still orresponds to HOL's behaviour, but it no longer satis�es theoriginal de�nition of impliit assumptions, whih was based on the behaviourof justi�ations. It seems desirable to retain the present de�nition of impliitassumptions as the basis for explaining why ertain assumptions do or donot appear as hypotheses of ertain theorems. Therefore, it seems sensibleto retain the original view of the pop operation, whih overs all three asesadequately. However, there is another use for this version of the pop funtion;it arises in the next setion.An alternative might be to implement NAMED_POP_ASSUM f di�erently fordi�erent f, using the original view of popping for ases resembling the thirdase and the new view in others. Probably, the hoie would have to berepresented by a onditional within the implementation of a more generalpop funtion, as there seems no way in advane to tell whih sort of funtionf one has been given. This would be a ompliated way around the problem,if it ould be made to work at all.The root of the diÆult with K ALL_TAC is the de�nition of ahievement inHOL. This spei�es that a theorem's hypotheses need only be a subset of theassumptions of the subgoal it purports to ahieve. If the de�nition requiredthe full set, the problem would not arise. A less drasti modi�ation of HOL,however, would at least produe uniformity over all funtions to whih thepop operator ould be applied; that would be to re-implement HOL's funtionPOP_ASSUM so that for any appropriate f, the justi�ation of POP_ASSUM f werenot simply the justi�ation (p, say) of f, but rather (ADD_ASSUM tm) o p.73

where ADD_ASSUM : term -> thm -> thm is the inferene rule in HOL thatadds a hypothesis to a theorem. Under this de�nition, the two views of thepop operator would be the same, so we ould use the seond, if desired, tohoose a way of identifying the popped assumption.7.5 Aounting for POP ASSUM LISTThe funtion POP_ASSUM_LIST is a generalization of POP_ASSUM whih removesall of the assumptions of a goal and passes the list of (assumed) assumptionsto a funtion of type thm list -> tati. The aount is therefore similar;for example, the following proof#let g = ["x = 5";"y = 4"℄,"x > y";;g = (["x = 5"; "y = 4"℄, "x > y") : goal#let gl,p = POP_ASSUM_LIST SUBST_TAC g;;gl = [([℄, "5 > 4")℄ : goal listp = - : proof...th = |- 5 > 4#print_all_thm(p[th℄);;x = 5, y = 4 |- x > yreeives the following aount:This is the proof of the onjeture>> example4:"x > y"AssumingThe fat: "x = 5"The fat: "y = 4">>>> We substitute aording to the following equalities:x = 5 |- x = 5y = 4 |- y = 4.Thus, it is suffiient to prove:>> "5 > 4"Assuming impliitlyThe hypothesis of the equality: "x = 5"The hypothesis of the equality: "y = 4"...This establishes|- 5 > 4 74

This establishesx = 5, y = 4 |- x > yThis ompletes the proof of the onjeture>> example4:"x > y"AssumingThe fat: "x = 5"The fat: "y = 4"7.6 Aounting for SUBST ALL TACThe funtion SUBST_ALL_TAC, of type thm -> tati, is not a tati trans-former, but the tati SUBST_ALL_TAC th shares with POP_ASSUM f the propertyof ausing assumptions of a goal to seem to disappear. SUBST_ALL_TAC uses anequational theorem to e�et a substitution throughout the term of the goal{ in the style of SUBST1_TAC { and also to e�et the substitution throughoutthe assumption list. In partiular, SUBST_ALL_TAC th resembles POP_ASSUM fwhen the latter is used for replaing assumptions by equivalent terms { andat the same time, making the original assumptions impliit (Setion 7.2).This, again, does not orrespond to a natural pattern of reasoning, and thatmakes it diÆult to give a natural aount. The e�ets of SUBST_ALL_TAC areillustrated in the following example:rth = |- x = 1#let g = ["(y:num) = x";"w > x";"w < 5"℄,"(z:num) = x";;g = (["y = x"; "w > x"; "w < 5"℄, "z = x") : goal#let gl,p = SUBST_ALL_TAC rth g;;gl = [(["y = 1"; "w > 1"; "w < 5"℄, "z = 1")℄ : goal listp = - : proof...th = y = 1, w > 1, w < 5 |- z = 1#print_all_thm(p[th℄);;y = x, w > x, w < 5 |- z = xIn HOL, SUBST_ALL_TAC happens to be implemented as an appliation ofSUBST1_TAC (to modify the term of the goal), sequened with a appliationof POP_ASSUM_LIST (Setion 7.5) to a funtion that substitutes through andre-assumes eah assumption (to modify the assumptions). That is, to modify75

the assumptions, all are removed, and eah is transformed, then re-assumed.Although the method of implemening named tatis so far has not beento parallel the atual HOL implementation { the HOL funtions are takenas `blak boxes' { one reason for trying to do so in this ase is to leavethe reording of the impliit assumptions to the ASSUME_TAC's, so that it isautomati.The parallel implemantation satis�es:NAMED_SUBST_ALL_TAC rth =NAMED_SUBST1_TAC rth THENNAMED_POP_ASSUM_LIST(\[th1;...;thn℄. ASSUME_TAC (SUBS [rth℄ thn)THEN...THENASSUME_TAC (SUBS [rth℄ th1))The aount that is produed in this way turns out to be rather in-srutable. Although this implementation of NAMED_SUBST_ALL_TAC gives theorret end result, the intermediate proof steps { normally not visible { arenot what one would expet; they reveal loal failures of theorems to ahievesubgoals:This is the proof of the onjeture>> example5:"z = x"AssumingThe fat1: "y = x"The fat2: "w > x"The fat3: "w < 5">>>> We substitute aording to the following equality:|- x = 1.Thus, it is suffiient to prove:>> "z = 1"AssumingThe fat1: "y = x"The fat2: "w > x"The fat3: "w < 5">>>> We use the assumption thatw < 5 |- w < 5.It is suffiient to prove:>> "z = 1"AssumingThe added hypothesis: "w < 5"Assuming impliitlyThe hypothesis of the theorem used: "w < 5"76

>>>> We use the fat thatw > x |- w > 1.It is suffiient to prove:>> "z = 1"AssumingThe added hypothesis: "w > 1"The added hypothesis: "w < 5"Assuming impliitlyThe hypothesis of the theorem used: "w > x"The hypothesis of the theorem used: "w < 5">>>> We use the fat thaty = x |- y = 1.It is suffiient to prove:>> "z = 1"AssumingThe added hypothesis: "y = 1"The added hypothesis: "w > 1"The added hypothesis: "w < 5"Assuming impliitlyThe hypothesis of the theorem used: "y = x"The hypothesis of the theorem used: "w > x"The hypothesis of the theorem used: "w < 5"...This establishesy = 1, w > 1, w < 5 |- z = 1This establishesw > 1, w < 5, y = x |- z = 1whih does not satisfy>> "z = 1"AssumingThe added hypothesis: "w > 1"The added hypothesis: "w < 5"Assuming impliitlyThe hypothesis of the theorem used: "w > x"The hypothesis of the theorem used: "w < 5"This establishesw < 5, y = x, w > x |- z = 1whih does not satisfy>> "z = 1"AssumingThe added hypothesis: "w < 5"Assuming impliitlyThe hypothesis of the theorem used: "w < 5"This establishesy = x, w > x, w < 5 |- z = 1 77

This establishesy = x, w > x, w < 5 |- z = xThis ompletes the proof of the onjeture>> example5:"z = x"AssumingThe fat1: "y = x"The fat2: "w > x"The fat3: "w < 5"That is, the �rst subgoal orretly reets the modi�ation of the termpart of the goal; but of the three subsequent subgoals that reet the re-assumption of the modi�ed assumption terms, only the last one is orret: itshows the three new assumptions and the three impliit assumptions as de-sired. The other two subgoals reet intermediate states of the omputationin whih ertain assumptions are missing { neither impliit nor expliit, butheld in temporary data strutures.Whether the urrent implementation of SUBST_ALL_TAC in HOL is the bestone is not relevant here; nor is whether SUBST_ALL_TAC represents a `good'style of reasoning. It is suÆient to note that, in this ase, following theimplementation is not a useful tehnique.In any ase, this aount shown is awed in two other ways: (i) thefat that the assumption w < 5 is not a�eted by the substitution wouldbe explained more learly if that assumption were not said to have beenproessed like the others (although it is); and (ii) the aount would beless tedious and if it did not report the proessing of eah assumption insequene, but all together. The sequene results from the fat that althoughPOP_ASSUM_LIST removes all of the assumptions at one, ASSUME_TAC th isnot one of the HOL tatis for whih a simultaneous version is provided (asSUBST_TAC is for SUBST1_TAC).This suggests a seond approah: namely, to implement a funtion alled,say, NAMED_ASSUME_LIST_TAC that generalizes NAMED_ASSUME_TAC. NAMED_ASSUME_LIST_TAComputes the e�et of adding a list of assumptions in sequene to a goal, thenpresents and justi�es the result in one proof step, as though the assumptionshad been added simultaneously. Impliit assumptions are reorded as a mat-ter of ourse by the internal ASSUME_TAC's. When the addition of the assump-tions is pakaged into one step with its own aount, then NAMED_SUBST_ALLan then be implemented to satisfy 78

NAMED_SUBST_ALL_TAC rth =NAMED_SUBST1_TAC rth THENNAMED_POP_ASSUM_LIST(\thl. NAMED_ASSUME_LIST_TAC [SUBS [rth℄ thn;... ;SUBS [rth℄ th1℄)so that its aount spares the user the sequential omputation of the re-assumptions. The aount thus produed for the example is:This is the proof of the onjeture>> example5:"z = x"AssumingThe fat1: "y = x"The fat2: "w > x"The fat3: "w < 5">>>> We substitute aording to the following equality:|- x = 1.Thus, it is suffiient to prove:>> "z = 1"AssumingThe fat1: "y = x"The fat2: "w > x"The fat3: "w < 5">>>> We use the fats thaty = x |- y = 1w > x |- w > 1w < 5 |- w < 5.It is suffiient to prove:>> "z = 1"AssumingThe added hypothesis: "y = 1"The added hypothesis: "w > 1"The added hypothesis: "w < 5"Assuming impliitlyThe hypothesis of the theorem used: "y = x"The hypothesis of the theorem used: "w > x"The hypothesis of the theorem used: "w < 5"...This establishesy = 1, w > 1, w < 5 |- z = 1This establishesy = x, w > x, w < 5 |- z = 1This establishes 79

y = x, w > x, w < 5 |- z = xThis ompletes the proof of the onjeture>> example5:"z = x"AssumingThe fat1: "y = x"The fat2: "w > x"The fat3: "w < 5"This is a great improvement over the previous aount in showing only twosteps: the modi�ation of the term, and the one-step modi�ation of theassumptions. It also has the property that the theorems returned by thejusti�ations respetively ahieve the subgoals shown.A minor aw of this version is that there is no way, in passing ontrol fromNAMED_POP_ASSUM_LIST to NAMED_ASSUME_LIST_TAC, to make speial provisionsfor partiular assumptions whih are not a�eted by substitution; thus w < 5,in the example, has to be treated in the same way as the others. This ausesa slight obsurity in the aount.It was noted in Setion 7.4.1 that NAMED_POP_ASSUM ould be elaborated,in the ase that NAMED_POP_ASSUM f had no net e�et, to return the iden-tity justi�ation, and so omit the aount of the re-assumption on the re-dued goal. The orresponding generalization of NAMED_POP_ASSUM_LIST per-tains when NAMED_POP_ASSUM_LIST f has no net e�et { that is, when allthe popped assumptions reappear intat and in order. This elaboration ofNAMED_POP_ASSUM_LIST would only help with NAMED_SUBST_ALL_TAC where noassumption were a�eted by substitution; that is, the hoie is between re-porting the re-assumption of all the modi�ed assumptions, or reporting noth-ing.A more serious aw is that in implementing NAMED_SUBST_ALL_TAC in adi�erent manner than HOL's SUBST_ALL_TAC, it is not neessarily the asethat the two omputations are (in a suitable sense) equivalent { the aounttherefore might not be explaining the HOL proof. This would at least requirean argument about the two omputations.The third (and last) approah we onsider is to implement NAMED_SUBST_ALL_TACitself as a unit funtion with a one-step aount. To ompute its results,NAMED_SUBST_ALL_TAC analyzes the results of applying SUBST_ALL_TAC to theorresponding ordinary goal, and then presents the results as if derived inone stroke. As part of the presentation, unhanged assumptions are notied80

and presented as if no substitution had been attempted. The analysis stageallows the new assumptions as well as the impliit (old) assumptions to benamed in a meaningful way (rather than in due ourse by ASSUME_TAC).The implementation of NAMED_SUBST_ALL_TAC in terms of SUBST_ALL_TACis not diÆult, but it does involve a ertain amount of internal analysis. Theaount produed is as follows:This is the proof of the onjeture>> example5:"z = x"AssumingThe fat1: "y = x"The fat2: "w > x"The fat3: "w < 5">>>> We substitute aording to the following equality:|- x = 1.(likewise restating any assumptions made thus far whih involve "x").Thus, it is suffiient to prove:>> "z = 1"AssumingThe new fat1: "y = 1"The new fat2: "w > 1"The fat3: "w < 5"Assuming impliitlyThe old fat1: "y = x"The old fat2: "w > x"...This establishesy = 1, w > 1, w < 5 |- z = 1This establishesy = x, w > x, w < 5 |- z = xThis ompletes the proof of the onjeture>> example5:"z = x"AssumingThe fat1: "y = x"The fat2: "w > x"The fat3: "w < 5"This approah has the advantages of using the implementation of HOL'sorresponding tati in the usual way, so there is no issue of di�ering om-putations. It also allows for a learer naming sheme in the aount pro-dued. Finally, it gives an opportunity to note the rather odd pattern of81

reasoning being used, at the node in the subgoal-proof tree representing theNAMED_SUBST_TAC step (before the subgoal in the aount).However, there is a new diÆulty: whereas, in the previous attempts atan aount, the new assumptions assumptions (made by NAMED_ASSUME_TAC)automatially aused the impliit assumptions to be reorded, there is noway to do this given only the results of the ordinary SUBST_ALL_TAC. In-stead, the impliit assumptions (i.e. those original assumptions whih wouldbe a�eted by substitution) have to be identi�ed and added as part of thepresentation. Thus, there is again an argument to be made that HOL's be-haviour is reeted here: it has to be argued that the diret implementationof NAMED_SUBST_ALL_TAC produes the same impliit assumptions that an beobserved by experiment in HOL itself.Whether the seond or the third approah is best is diÆult to say, butin any ase, the �rst approah is learly not adequate.NAMED_SUBST_ALL_TAC th is the �rst example of a named tati with a om-plex implementation (p. ...). A meaningful aount neither parallels the HOLimplementation of the ordinary tati nor follows diretly from it, but re-quires some new funtion to be implemented diretly (NAMED_ASSUME_LIST_TAC,in the seond approah, or NAMED_SUBST_ALL_TAC itself, in the third). Thenext suh example are the strip funtions (Setion ...).8 ContinuationsThe HOL funtions in the next group to be onsidered also produe newtatis from old, as do the funtions in the previous hapter. The membersof this group di�er from funtions suh as POP_ASSUM in that they all ausesome inferene to be done behind the senes, and they an also a�et theterm parts of goals, in addition to the assumptions. The onealed inferenesgive the e�et of performing two proof steps in one. The diÆulty in givingaounts for these funtions is to explain the onealed inferenes oherently.8.1 The Disjuntive TransformerA typial example is DISJ_CASES_THEN, whih maps a funtion f of typethm -> tati and a disjuntive theorem to a new tati. For the sake of82

example, suppose that a new type, :voltage, has been introdued, withexatly two values, hi and lo. The new type is haraterized by:|- !(v:voltage). (v = hi) \/ (v = lo)Suppose also that there is an operator, AND, suh that|- hi AND hi = hiand|- lo AND lo = loThe e�et of DISJ_CASES_THEN is illustrated below The goal is to show (forall v) that v AND v = v, given that hi AND hi = hi and lo AND lo = lo.#let g = [℄,"v AND v = v";;g = ([℄, "v AND v = v") : (* list # term)...th = |- (v = hi) \/ (v = lo)#let gl,p = DISJ_CASES_THEN SUBST1_TAC th g;;gl = [([℄, "hi AND hi = hi"); ([℄, "lo AND lo = lo")℄ : goal listp = - : proof...#th1 = |- hi AND hi = hith2 = |- lo AND lo = loth1' = v = hi |- hi AND hi = hith2' = v = lo |- lo AND lo = lo#p[th1;th2℄;;|- v AND v = v#p[th1';th2'℄;;|- v AND v = vIn the example, the new tati DISJ_CASES_THEN SUBST1_TAC th maps thegoal to two subgoals by extrating from the disjuntive theorem|- (v = hi) \/ (v = lo)the two disjunt terms, v = hi and v = lo, assuming these, and using thetwo resulting theorems { in parallel { as parameters to two appliations ofthe substitution funtion. The two new subgoals are the values of83

SUBST1_TAC (ASSUME "v = hi") gandSUBST1_TAC (ASSUME "v = lo") gThe subgoals arry the impliit assumptions v = hi and v = lo respetively;these are introdued, in eah ase, by the at of assuming the disjunt term.The justi�ation (p) relies on (i) the inferene rule for substitution (see Se-tion ...) and (ii) the rule for disjuntion (DISJ_CASES, see Desription ...).The substitution rule adds the respetive assumptions to the two ahievingtheorems if they are not already present:...th1 = |- hi AND hi = hith2 = |- lo AND lo = lo#let gl1,p1 = SUBST1_TAC (ASSUME "v = hi") g;;gl1 = [([℄, "hi and hi = hi")℄ : goal listp1 = - : proof#print_all_thm(p1[th1℄);;v = hi |- v and v = v#let gl2,p2 = SUBST1_TAC (ASSUME "v = lo") g;;gl2 = [([℄, "lo and lo = lo")℄ : goal listp2 = - : proof#print_all_thm(p2[th2℄);;v = lo |- v and v = vThe disjuntion rule then dismisses the two added assumptions as it ombinesthe two ahieving theorems to yield the theorem ahieving g:#print_all_thm(DISJ_CASES th (p1[th1℄) (p2[th2℄));;|- v AND v = vThe addition of the impliit assumptions to the subgoals does not dependon the funtion f to whih DISJ_CASES_THEN is applied, but rather, on theassumptions being made at all; for example, using the funtion K ALL_TACto throw away the assumed terms, as in Setion ..., we have the followingresults (having established above, for all v, that |- v AND v = v):84

#let gl,p = DISJ_CASES_THEN (K ALL_TAC) th g;;gl = [([℄, "v AND v = v"); ([℄, "v AND v = v")℄ : goal listp = - : proof...#th1'' = |- v AND v = vth2'' = |- v AND v = vth1''' = v = hi |- v AND v = vth2''' = v = lo |- v AND v = v#p[th1'';th2''℄;;|- v AND v = v#p[th1''';th2'''℄;;|- v AND v = vIn any ase, the tati DISJ_CASES_THEN SUBST1_TAC th, in one step, splitsa goal into two subgoals by applying two distint substitutions { based onthe disjutive theorem th { in parallel to the original goal. In this one-stepproess, the assumptions v = hi and v = lo do not appear expliitly; theyare added and then dismissed only behind the senes, when the justi�ationfuntion is applied. This one-step proess shown below is more elegant thanthe straightforward two-step proess shown below, as the latter (i) requiresexpliit referene to the terms v = hi and v = lo, and (ii) leaves the two`used' assumptions in the respetive subgoals after the substitutions basedon them have been made:#let gl3,p3 = DISJ_CASES_TAC th g;;gl3 =[(["v = hi"℄, "v AND v = v"); (["v = lo"℄, "v AND v = v")℄: goal listp3 = - : proof#let gl4,p4 = SUBST1_TAC(ASSUME "v = hi")(hd gl3);;gl4 = [(["v = hi"℄, "hi AND hi = hi")℄ : goal listp4 = - : proof#let gl5,p5 = SUBST1_TAC(ASSUME "v = lo")(hd(tl gl3));;gl5 = [(["v = lo"℄, "lo AND lo = lo")℄ : goal listp5 = - : proof#let th4 = p4[th1℄;;th4 = . |- v AND v = v#print_all_thm th4;;v = hi |- v AND v = v#let th5 = p5[th2℄;;th5 = . |- v AND v = v 85

#print_all_thm th5;;v = lo |- v AND v = v#print_all_thm(p3[th4;th5℄);;|- v AND v = vFrom the viewpoint of aounts, however, the one-step tati presents dif-�ulties. It was possible (Setion ...) to report the tati POP_ASSUM SUBST1_TACin one step, as a substitution. That was possible beause the tati trans-former POP_ASSUM simply supplied the argument for an appliation of NAMED_SUBST1_TACto an amended goal. The tati DISJ_CASES_THEN SUBST1_TAC th, in ontrast,annot be explained learly in one step (e.g. as a substitution), beause itonsists internally of a disjuntive split into two idential subgoals followedby distint and parallel substitutions on two `opies' of the original goal.In the urrent example, what has to be explained is the move from thenamed goal (ng, say)>> "v AND v = v"to the two named subgoals>> "hi AND hi = hi"and>> "lo AND lo = lo"and this move is not explained by any single existing tati.Even by devoting a node in the subgoal-proof tree to the appliation ofompound tatis of the form NAMED_DISJ_CASES_THEN f th, so that thereis an opportunity for hoosing a wording to explain the disjuntive split, aoherent aount still annot be produed. (This is demonstrated below.)To devote a node in this way, NAMED_DISJ_CASES_THEN is implemented inparallel with the HOL implementation of the ordinary tati DISJ_CASES_THENf th. The proof step of the node is identi�ed by a string, say `NAMED_DISJ_CASES_THEN`.In the example ase,NAMED_DISJ_CASES_THEN NAMED_SUBST1_TAC th ngwould ompute 86

NAMED_SUBST1_TAC (ASSUME "v = hi") ngandNAMED_SUBST1_TAC (ASSUME "v = lo") ngand then use the pair of resulting subgoals and justi�ations to onstrutthe justi�ation. The justi�ation is the funtion whih when given thetwo respetive sub-aounts returns an aount onsisting of (i) the singleombined proof step, (ii) the two subgoals, (iii) the two sub-aounts, and(iv) the method for omputing the ahieving theorem: namely, by applyingthe two justi�ations respetively to the two sub-aounts, seleting the twotheorems from within these aounts, and ombining these theorems to justifythe disjuntive split. The aount thus produed is:This is the proof of the onjeture>> example1:"v AND v = v">>>> We onsider the two ases suggested by the fat|- (v = hi) \/ (v = lo),namelyv = hi |- v = hiandv = lo |- v = loIt is thus suffiient to prove the following:>> left disjuntive ase:"hi AND hi = hi"Assuming impliitlyThe hypothesis of the equality: "v = hi">> right disjuntive ase:"lo AND lo = lo"Assuming impliitlyThe hypothesis of the equality: "v = lo"The proof of the>> left disjuntive ase:"hi AND hi = hi"Assuming impliitlyThe hypothesis of the equality: "v = hi"is as follows:...This establishes|- hi AND hi = hiThe proof of the>> right disjuntive ase: 87

"lo AND lo = lo"Assuming impliitlyThe hypothesis of the equality: "v = lo"is as follows:...This establishes|- lo AND lo = loThis establishes|- v AND v = vThis ompletes the proof of the onjeture>> example1:"v AND v = v"The problem with this aount is that although it explains the disjun-tive split, it does not provide any opportunity for reporting or explaining thesubstitutions; the node that is onstruted for the ompound step branhesdiretly into the two subgoals, eah with an aount of its own. The substi-tutions are justi�ed, internally to the tati, as part of the ombined justi�-ation. The only evidene in the aount that any substitutions took plaeis the move from the term v AND v = v to the terms hi AND hi = hi andlo AND lo = lo { and the impliit assumption that is introdued in eahase. Aounts of the substitutions are thus not part of the aount of theombined step.In this ase, it might be possible for a user to guess that the unexplainedstep was substitution, but it might not be possible to guess for a more om-plex funtion than substitution.The aount produed in this way beomes even more obsure when oneof the subgoals is atually solved by the onealed step. In the shematiexample below, the funtion \th.NAMED_REWRITE_TAC[th℄ is used in plae ofNAMED_SUBST1_TAC so that one of the subgoals an be solved. (P is someproperty true of lo.)This is the proof of the onjeture>> example2:"(v = hi) \/ P v">>>> We onsider the two ases suggested by the fat|- (v = hi) \/ (v = lo),namelyv = hi |- v = hiand 88

v = lo |- v = loIt is thus suffiient to prove the following:>> "(lo = hi) \/ P lo"Assuming impliitlyThe hypothesis of the equality: "v = lo"...This establishes|- (lo = hi) \/ P loThis establishes|- (v = hi) \/ P vThis ompletes the proof of the onjeture>> example2:"(v = hi) \/ P v"In this aount, the v = hi subgoal is solved internally (by rewriting) withoutever having been displayed; so as well as the unexplained funtion (rewriting),the missing ase and the the way in whih the funtion solved the missingase would also have to be guessed. The point also applies where both asesare generated and solved internally by the ombined tati. A trivial exampleillustrates this:This is the proof of the onjeture>> example3:"(v = hi) \/ (v = lo)">>>> This follows by onsidering the two ases suggested by the fat|- (v = hi) \/ (v = lo),namelyv = hi |- v = hiandv = lo |- v = loThis establishes|- (v = hi) \/ (v = lo)This ompletes the proof of the onjeture>> example3:"(v = hi) \/ (v = lo)"To give a lear aount of a tati of the form NAMED_DISJ_CASES_THEN fth, it is therefore neessary to generate more than one node of the subgoal-proof tree. The disjuntive split is aorded a node of its own, and thisbranhes into a node for eah appliation of the seond tati. Thus anaount attahes to the disjuntion node, as well as to eah of the daughternodes; so all steps are explained. 89

In the framework of proof aounts, a node represents the appliation ofa tati to a goal to produe subgoals and a justi�ation. Without alteringthe basi framework, this means that the disjuntive split has to be regardedas the appliation of a tati. One possibility is to use the existing namedtati NAMED_DISJ_CASES_TAC th to implement the split.The e�et of applying the straightforward disjuntion tati is simply toreate two subgoals with the respetive disjunts as expliit assumptions.To produe the same end result as the tati NAMED_DISJ_CASES_THEN f th,the tati NAMED_DISJ_CASES_TAC th must be sequened with a tati whihin eah ase removes the new expliit assumption term from eah subgoal,assumes it, passes the resulting theorem as paramaters to f , and applies theresulting tati to the subgoal.This suggests a popping operation. Furthermore, it suggests a poppingoperation whih neessarily keeps the popped term as an impliit assumption,sine, by its implementation, an appliation of the tati DISJ_CASES_THENf th to a goal always adds the respetive disjunt terms of the onlusionof th as impliit assumptions to its two resulting subgoals. (Insisting onkeeping the popped term only makes a di�erene where f has the propertyof throwing away its theorem parameter, e.g. where f is K NAMED_ALL_TAC.For the purpose of suint printing of aounts in this hapter, we will notinsist on keeping the popped term { the issue of lost assumptions does notarise in any of the examples.)If we de�ne NAMED_DISJ_CASES_THEN f th to be NAMED_DISJ_CASES_TAC thTHEN NAMED_POP_TRACE f (see Setion ...), then the aount produed in theexample ase is as shown below. (Sine NAMED_DISJ_CASES_TAC th produestwo subgoals, the sequener THEN auses NAMED_POP_TRACE f to be applied toeah.)This is the proof of the onjeture>> example1:"v AND v = v">>>> We onsider the two ases suggested by the fat|- (v = hi) \/ (v = lo)>> left disjunt ase:"v AND v = v"AssumingThe left disjunt: "v = hi">> right disjunt ase:"v AND v = v" 90

AssumingThe right disjunt: "v = lo"The proof of the>> left disjunt ase:"v AND v = v"AssumingThe left disjunt: "v = hi"is as follows:>>>> We substitute aording to the following equality:v = hi |- v = hi.Thus, it is suffiient to prove:>> "hi AND hi = hi"Assuming impliitlyThe hypothesis of the equality: "v = hi"The left disjunt: "v = hi"...This establishes|- hi AND hi = hiThis establishesv = hi |- v AND v = vThe proof of the>> right disjunt ase:"v AND v = v"AssumingThe right disjunt: "v = lo"is as follows:>>>> We substitute aording to the following equality:v = lo |- v = lo.Thus, it is suffiient to prove:>> "lo AND lo = lo"Assuming impliitlyThe hypothesis of the equality: "v = lo"The right disjunt: "v = lo"...This establishes|- lo AND lo = loThis establishesv = lo |- v AND v = vThis establishes|- v AND v = vThis ompletes the proof of the onjeture>> example1:"v AND v = v" 91

This seems a reasonable aount.When the funtion f is NAMED_ASSUME_TAC, the mehanism internal to thenamed popping funtions, desribed in Setion ..., automatially assures thatthere is no unneessary aounting; the aount of NAMED_DISJ_CASES_THENNAMED_ASSUME_TAC th on ng is:This is the proof of the onjeture>> example1:"v AND v = v">>>> We onsider the two ases suggested by the fat|- (v = hi) \/ (v = lo)>> left disjunt ase:"v AND v = v"AssumingThe left disjunt: "v = hi">> right disjunt ase:"v AND v = v"AssumingThe right disjunt: "v = lo"The proof of the>> left disjunt ase:"v AND v = v"AssumingThe left disjunt: "v = hi"is as follows:...This establishesv = hi |- v AND v = vThe proof of the>> right disjunt ase:"v AND v = v"AssumingThe right disjunt: "v = lo"is as follows:...This establishesv = lo |- v AND v = vThis establishes|- v AND v = vThis ompletes the proof of the onjeture>> example1:"v AND v = v" 92

8.2 Implementation IssuesThe only real fault of the sheme desribed above is its ineÆieny. This re-sults from the fat that, in HOL, transformers suh as DISJ_CASES_THEN aretaken as primitives, and tatis suh as DISJ_CASES_TAC th are elaborationsof the primitives. Thus, DISJ_CASES_TAC is implemented as DISJ_CASES_THENapplied to ASSUME_TAC. The implementation of the named funtions, as de-sribed in Setion 8.1, reverses HOL's order of dependeny. Thus, unfortu-nately, the omputation of NAMED_DISJ_CASES_THEN requires NAMED_DISJ_CASES_TACto be omputed, whih requires DISJ_CASES_TAC, whih requires DISJ_CASES_THEN;two translations are made, internally, to produe the desired aount.HOL's partiular hoie of primitive funtions is useful for implementa-tion purposes, and it also provides the user of the system with tati-buildingtools rather than with spei� tatis; variations of DISJ_CASES_TAC are de-�ned easily via DISJ_CASES_THEN. However, the HOL system is not generallypresented or learned in the implementation's order of dependeny; simple ta-tis usually are presented �rst and `advaned' funtions later. Thus, for manyusers, it probably seems natural to regard DISJ_CASES_TAC as the primitivefuntion and DISJ_CASES_THEN as the elaboration, as is done for produingaounts.In any ase, funtions suh as NAMED_DISJ_CASES_TAC ould be imple-mented diretly, rather than in terms of DISJ_CASES_TAC (and hene of DISJ_CASES_THENand ASSUME_TAC). This option involves more work to implement, but the mainobjetion to it is that it makes it less lear that the same proof is being per-formed as in the ordinary system. Con�dene would require an argumentthat the same inferene hains were generated either way.8.3 Other Transformers whih Introdue AssumptionsThe method for implementing NAMED_DISJ_CASES_THEN an be applied to sev-eral other tati transformers in HOL whih similarly ause impliit assump-tions to be generated.8.3.1 The Disharging TransformerBy implemenating NAMED_DISCH_THEN f as NAMED_DISCH_TAC THEN NAMED_POP_TRACEf , a omprehensible two-step aount is produed for a one-step tati.93

The e�et of the transformer DISCH_THEN is illustrated below. For exam-ple, for the goalg = ([℄, "(v = hi) ==> (v AND v = v)")we have, in one step,#let gl,p = DISCH_THEN SUBST1_TAC g;;gl = [([℄, "hi AND hi = hi")℄ : goal listp = - : proofwhere:...th1 = |- hi AND hi = hith2 = v = hi |- hi AND hi = hi#p[th1℄;;|- (v = hi) ==> (v AND v = v)#p[th2℄;;|- (v = hi) ==> (v AND v = v)Under the implementation suggested, the two-step aount of the one-steptati (whih introdues an impliit assumption) is as follows:This is the proof of the onjeture>> example4:"(v = hi) ==> (v AND v = v)">>>> It is suffiient to prove:>> "v AND v = v"AssumingThe anteedent: "v = hi">>>> We substitute aording to the following equality:v = hi |- v = hi.Thus, it is suffiient to prove:>> "hi AND hi = hi"Assuming impliitlyThe hypothesis of the equality: "v = hi"The anteedent: "v = hi"...This establishes|- hi AND hi = hiThis establishes 94

v = hi |- v AND v = vThis establishes|- (v = hi) ==> (v AND v = v)This ompletes the proof of the onjeture>> example4:"(v = hi) ==> (v AND v = v)"8.3.2 The Choie TransformerAnalogously, by implemenating NAMED_CHOOSE_THEN f as NAMED_CHOOSE_TAC THEN NAMED_POP_TRACEf , a omprehensible two-step aount is produed for a one-step tati.The following shemati example illustrates the use of CHOOSE_THEN, usingthe fat that (for all y) |- ?x. y = PRE x). (Q is some property true of allnumbers.)...th = |- ?x. y = PRE x#let g = [℄, "(Q:num -> bool) y";;g = ([℄, "Q y") : (* list # term)#let gl,p = CHOOSE_THEN SUBST1_TAC th g;;gl = [([℄, "Q(PRE x)")℄ : goal listp = - : proof...thm = |- Q(PRE x)thm' = y = PRE x |- Q(PRE x)#p[thm℄;;|- Q y#p[thm'℄;;|- Q yLike DISJ_CASES_THEN, CHOOSE_THEN f introdues an impliit assumption; inthis ase, y = PRE x, the assumption about the witness onstant.The implementation of NAMED_CHOOSE_THEN f as NAMED_CHOOSE_TAC THEN NAMED_POP_TRACEf gives the following two-step aount for the example:This is the proof of the onjeture>> example5:"Q y">>>> Using the term "x"as a witness to the fat 95

|- ?x. y = PRE xit is suffiient to prove:>> "Q y"AssumingThe witness hypothesis: "y = PRE x">>>> We substitute aording to the following equality:y = PRE x |- y = PRE x.Thus, it is suffiient to prove:>> "Q(PRE x)"Assuming impliitlyThe hypothesis of the equality: "y = PRE x"The witness hypothesis: "y = PRE x"...This establishes|- Q(PRE x)This establishesy = PRE x |- Q yThis establishes|- Q yThis ompletes the proof of the onjeture>> example5:"Q y"This again seems a reasonable explanation.8.4 Transformers whih do not Introdue AssumptionsThe transformers that do not introdue impliit assumptions are CONJUNCTS_THENand the resolution funtions IMP_RES_THEN and RES_THEN. A di�erent ap-proah is used for these than for the others.8.4.1 The Conjuntion TransformerThe transformer CONJUNCTS_THEN is di�erent from those desribed thus farin that it does not introdue impliit assumptions. Given a onjuntivetheorem, it is possible to infer the two onjunts immediately. Hene, neitherof the two onjunt terms (nor the onjuntive term itself) has to be assumedimpliitly during the deomposition of the goal (and hene dismissed laterwhen the justi�ation of the onjuntive split is applied). The inferene ould96

be deferred in this way, but there is a small eonomy of inferene steps innot doing so.The e�et of CONJUNCTS_THEN is illustrated by the following example, usinga onsequene of the fat |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)):...th = |- (0 + n = n) /\ ((SUC m) + n = SUC(m + n))#let g = [℄,"(SUC m) + n = SUC(m + (0 + n))";;g = ([℄, "(SUC m) + n = SUC(m + (0 + n))") : (* list # term)#let gl,p = CONJUNCTS_THEN SUBST1_TAC th g;;gl = [([℄, "SUC(m + n) = SUC(m + n)")℄ : goal listp = - : proof...thm = |- SUC(m + n) = SUC(m + n)thm' = 0 + m = m, (SUC m) + n = SUC(m + n) |- SUC(m + n) = SUC(m + n)thm'' = (0 + n = n) /\ ((SUC m) + n = SUC(m + n)) |- SUC(m + n) = SUC(m + n)#p[thm℄;;|- (SUC m) + n = SUC(m + (0 + n))#print_all_thm(p[thm'℄);;0 + m = m, (SUC m) + n = SUC(m + n) |- (SUC m) + n = SUC(m + (0 + n))#print_all_thm(p[thm''℄);;(0 + n = n) /\ ((SUC m) + n = SUC(m + n))|- (SUC m) + n = SUC(m + (0 + n))As illustrated, neither of the the onjunts nor the onjuntion is an impliitassumption of the subgoal.As it happens, there is no funtion `CONJUNCTS_TAC', analogous to DISJ_CASES_TAC,provided in HOL. CONJUNCTS_TAC th, by analogy, would be de�ned as CONJUNCTS_THEN ASSUME_TAC th;in the above example, this would return, in one step, the subgoal["(SUC m) + n = SUC(m + n)"; "0 + m = m"℄,"(SUC(0 + m)) + n = SUC(m + n)"It might seem useful to de�ne the funtion NAMED_CONJUNCTS_TAC so thatNAMED_CONJUNCTS_THEN ould be de�ned in terms of it, by analogy with NAMED_DISJ_CASES_THENand the others. However, no fution NAMED_CONJUNCTS_TAC that introduesassumptions an support a NAMED_CONJUNCTS_THEN that satisfatorily modelsCONJUNCTS_THEN, sine CONJUNCTS_THEN does not introdue any (expliit orimpliit) assumptions. 97

To illustrate this point, it is easy to implement a NAMED_CONJUNCTS_TACwhih adds the onjunts (and justi�es the additions). The aount of thatmuh, in the example ase, is:This is the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))">>>> We use the two separate theorems implied by the fat|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).It is thus suffiient to prove:>> "(SUC m) + n = SUC(m + (0 + n))"AssumingThe seond onjunt: "(SUC m) + n = SUC(m + n)"The first onjunt: "0 + n = n"...This establishes(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))This establishes|- (SUC m) + n = SUC(m + (0 + n))This ompletes the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))"If the funtion NAMED_CONJUNCTS_THENwere now de�ned as NAMED_CONJUNCTS_TACfollowed by two popping operations in sequene, the aount ofNAMED_CONJUNCTS_THEN NAMED_SUBST1_TAC th ngin the example ase, is:This is the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))">>>> We use the two separate theorems implied by the fat|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).It is thus suffiient to prove:>> "(SUC m) + n = SUC(m + (0 + n))"AssumingThe seond onjunt: "(SUC m) + n = SUC(m + n)"The first onjunt: "0 + n = n">>>> We substitute aording to the following equality:(SUC m) + n = SUC(m + n) |- (SUC m) + n = SUC(m + n).Thus, it is suffiient to prove:98

>> "SUC(m + n) = SUC(m + (0 + n))"AssumingThe first onjunt: "0 + n = n"Assuming impliitlyThe hypothesis of the equality: "(SUC m) + n = SUC(m + n)"The seond onjunt: "(SUC m) + n = SUC(m + n)">>>> We substitute aording to the following equality:0 + n = n |- 0 + n = n.Thus, it is suffiient to prove:>> "SUC(m + n) = SUC(m + n)"Assuming impliitlyThe hypothesis of the equality: "0 + n = n"The first onjunt: "0 + n = n"The hypothesis of the equality: "(SUC m) + n = SUC(m + n)"The seond onjunt: "(SUC m) + n = SUC(m + n)"...This establishes|- SUC(m + n) = SUC(m + n)This establishes0 + n = n |- SUC(m + n) = SUC(m + (0 + n))This establishes0 + n = n, (SUC m) + n = SUC(m + n) |- (SUC m) + n = SUC(m + (0 + n))This establishes|- (SUC m) + n = SUC(m + (0 + n))This ompletes the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))"This is a good aount in that it is in three steps: the onjuntive split and thetwo sequential substitutions. The aounts of the substitutions are produeddiretly via the funtion NAMED_SUBST1_TAC. The inferene hain generated isarguably the same as that generated by CONJUNCTS_THEN SUBST1_TAC th g,with the addition of the inferenes in whih the added assumptions are in-trodued and dismissed. However, the subgoal thus arries 0 + n = n and(SUC m) + n = SUC(m + n) as impliit assumptions, whih is not satisfatory.In the aount ofCONJUNCTS_THEN NAMED_ASSUME_TAC th ngimpliit asusmptions are not an issue; and the aount produed in the same99

way as the above is therefore satisfatory. It is also onise beause, inter-nally, the popping funtion noties and omits the pop and re-assume steps:This is the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))">>>> We use the two separate theorems implied by the fat|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).It is thus suffiient to prove:>> "(SUC m) + n = SUC(m + (0 + n))"AssumingThe seond onjunt: "(SUC m) + n = SUC(m + n)"The first onjunt: "0 + n = n"...This establishes(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))This establishes|- (SUC m) + n = SUC(m + (0 + n))This ompletes the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))"However, a more serious defet of this implementation of NAMED_CONJUNCTS_THENis that the sequential popping operations produe the wrong e�et in on-texts in whih the assumption stak is disturbed by the �rst popping opera-tion (whih may itself involve further transformers) before the seond takesplae. (This sort of disturbane is a general problem in the stak approah,and was a fator motivating the developmentof the transformer funtions.)The defet an be repaired by taking NAMED_CONJUNCTS_TAC simply to beNAMED_ASSUME_TAC, and NAMED_CONJUNCTS_THEN f th to NAMED_CONJUNCTS_TACth followed by the popping of the whole added onjuntion { to a funtionthat infers the two separate theorems, and then applies f to the two theoremsin sequene. The aount of the example, under this interpretation, is:This is the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))">>>> We use the fat that|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).It is suffiient to prove: 100

>> "(SUC m) + n = SUC(m + (0 + n))"AssumingThe added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))">>>> We substitute aording to the following equality:(0 + n = n) /\ ((SUC m) + n = SUC(m + n)) |- 0 + n = n.Thus, it is suffiient to prove:>> "(SUC m) + n = SUC(m + n)"Assuming impliitlyThe hypothesis of the equality: "(0 + n = n) /\((SUC m) + n = SUC(m + n))"The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))">>>> We substitute aording to the following equality:(0 + n = n) /\ ((SUC m) + n = SUC(m + n))|- (SUC m) + n = SUC(m + n).Thus, it is suffiient to prove:>> "SUC(m + n) = SUC(m + n)"Assuming impliitlyThe hypothesis of the equality: "(0 + n = n) /\((SUC m) + n = SUC(m + n))"The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"...This establishes|- SUC(m + n) = SUC(m + n)This establishes(0 + n = n) /\ ((SUC m) + n = SUC(m + n)) |- (SUC m) + n = SUC(m + n)This establishes(0 + n = n) /\ ((SUC m) + n = SUC(m + n))|- (SUC m) + n = SUC(m + (0 + n))This establishes|- (SUC m) + n = SUC(m + (0 + n))This ompletes the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))"Here, the onjuntion is mentioned, if not split, in one step, and the sub-stitutions have adequate aounts of their own. This avoids the defet of theprevious method, but it still, likewise, generates a undesired impliit assump-tion. In addition, the aount of NAMED_CONJUNCTS_THEN NAMED_ASSUME_TACis now more awkward, sine there is no pop and re-assume step to omit:This is the proof of the onjeture>> example7: 101

"(SUC m) + n = SUC(m + (0 + n))">>>> We use the fat that|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).It is suffiient to prove:>> "(SUC m) + n = SUC(m + (0 + n))"AssumingThe added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))">>>> We use the fat that(0 + n = n) /\ ((SUC m) + n = SUC(m + n)) |- 0 + n = n.It is suffiient to prove:>> "(SUC m) + n = SUC(m + (0 + n))"AssumingThe added hypothesis: "0 + n = n"Assuming impliitlyThe hypothesis of the theorem used: "(0 + n = n) /\((SUC m) + n = SUC(m + n))"The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))">>>> We use the fat that(0 + n = n) /\ ((SUC m) + n = SUC(m + n))|- (SUC m) + n = SUC(m + n).It is suffiient to prove:>> "(SUC m) + n = SUC(m + (0 + n))"AssumingThe added hypothesis: "(SUC m) + n = SUC(m + n)"The added hypothesis: "0 + n = n"Assuming impliitlyThe hypothesis of the theorem used: "(0 + n = n) /\((SUC m) + n = SUC(m + n))"The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"...This establishes(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))This establishes0 + n = n, (0 + n = n) /\ ((SUC m) + n = SUC(m + n))|- (SUC m) + n = SUC(m + (0 + n))This establishes(0 + n = n) /\ ((SUC m) + n = SUC(m + n))|- (SUC m) + n = SUC(m + (0 + n))This establishes|- (SUC m) + n = SUC(m + (0 + n))This ompletes the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))"102

In both interpretations disussed so far, undesired impliit assumptionsare added to the subgoal. Omitting the NAMED_CONJUNCTS_TAC step, whihauses this problem, is still not a good solution; this time, beause it obsuresthe origin of the onjunts:This is the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))">>>> We substitute aording to the following equality:|- 0 + n = n.Thus, it is suffiient to prove:>> "(SUC m) + n = SUC(m + n)">>>> We substitute aording to the following equality:|- (SUC m) + n = SUC(m + n).Thus, it is suffiient to prove:>> "SUC(m + n) = SUC(m + n)"...This establishes|- SUC(m + n) = SUC(m + n)This establishes|- (SUC m) + n = SUC(m + n)This establishes|- (SUC m) + n = SUC(m + (0 + n))This ompletes the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))"The only remaining solution would seem to be to inlude a step in whihthe onjuntion is at least mentioned, but in whih no assumptions are added.In the urrent framework, this requires that the aount of the �rst stepinlude a subgoal, albeit unhanged from the previous subgoal. The aountby this method is not therefore perfetly tidy, but does at least model HOL'sCONJUNCTS_THEN funtion:This is the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))">>>> We use the two separate theorems implied by the fat|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).The two theorems are used in sequene. We are showing:103

>> "(SUC m) + n = SUC(m + (0 + n))">>>> We substitute aording to the following equality:|- 0 + n = n.Thus, it is suffiient to prove:>> "(SUC m) + n = SUC(m + n)">>>> We substitute aording to the following equality:|- (SUC m) + n = SUC(m + n).Thus, it is suffiient to prove:>> "SUC(m + n) = SUC(m + n)"...This establishes|- SUC(m + n) = SUC(m + n)This establishes|- (SUC m) + n = SUC(m + n)This establishes|- (SUC m) + n = SUC(m + (0 + n))This establishes|- (SUC m) + n = SUC(m + (0 + n))This ompletes the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))"In the event of f being NAMED_ASSUME_TAC, the aount is now:This is the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))">>>> We use the two separate theorems implied by the fat|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).The two theorems are used in sequene. We are showing:>> "(SUC m) + n = SUC(m + (0 + n))">>>> We use the fat that|- 0 + n = n.It is suffiient to prove:>> "(SUC m) + n = SUC(m + (0 + n))"AssumingThe added hypothesis: "0 + n = n">>>> We use the fat that|- (SUC m) + n = SUC(m + n).It is suffiient to prove:>> "(SUC m) + n = SUC(m + (0 + n))"104

AssumingThe added hypothesis: "(SUC m) + n = SUC(m + n)"The added hypothesis: "0 + n = n"...This establishes(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))This establishes0 + n = n |- (SUC m) + n = SUC(m + (0 + n))This establishes|- (SUC m) + n = SUC(m + (0 + n))This establishes|- (SUC m) + n = SUC(m + (0 + n))This ompletes the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))"Aminor re�nement of this solution is to implement NAMED_CONJUNCTS_THENto notie when f is e�etively the same as NAMED_ASSUME_TAC, and where itis, to use instead a trivial variant of NAMED_ASSUME_TAC whih labels the newassumptions as onjunts. (The point of this re�nement is made lear inSetion ...). The previous aount is now:This is the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))">>>> We use the two separate theorems implied by the fat|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).The two theorems are used in sequene. We are showing:>> "(SUC m) + n = SUC(m + (0 + n))">>>> We use the fat that|- 0 + n = n.It is suffiient to prove:>> "(SUC m) + n = SUC(m + (0 + n))"AssumingThe left onjunt: "0 + n = n">>>> We use the fat that|- (SUC m) + n = SUC(m + n).It is suffiient to prove:>> "(SUC m) + n = SUC(m + (0 + n))"AssumingThe right onjunt: "(SUC m) + n = SUC(m + n)"The left onjunt: "0 + n = n"105

...This establishes(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))This establishes0 + n = n |- (SUC m) + n = SUC(m + (0 + n))This establishes|- (SUC m) + n = SUC(m + (0 + n))This establishes|- (SUC m) + n = SUC(m + (0 + n))This ompletes the proof of the onjeture>> example7:"(SUC m) + n = SUC(m + (0 + n))"8.4.2 The Resolution TransformersThe resolution funtions IMP_RES_THEN and RES_THEN, like the funtion CONJUNCTS_THEN,are implemented in suh a way that the appliation of the tatis of the formIMP_RES_THEN f th and RES_THEN f th to a goal do not introdue any assump-tions, expliit or impliit, into the resulting subgoal. For example:th = |- !x. x < 1 ==> (x = 0)#let g = ["x < 1";"y < 1"℄,"(x = 0) /\ (y = 0)";;g = (["x < 1"; "y < 1"℄, "(x = 0) /\ (y = 0)") : goal#let gl,p = IMP_RES_THEN SUBST1_TAC th g;;gl = [(["x < 1"; "y < 1"℄, "(0 = 0) /\ (0 = 0)")℄ : goal listp = - : proof...thm = |- (0 = 0) /\ (0 = 0)thm' = y = 0, x = 0 |- (0 = 0) /\ (0 = 0)thm'' = !x. x < 1 ==> (x = 0) |- (0 = 0) /\ (0 = 0)#print_all_thm(p[thm℄);;y < 1, x < 1 |- (x = 0) /\ (y = 0)#print_all_thm(p[thm'℄);;y = 0, x = 0, y < 1, x < 1 |- (x = 0) /\ (y = 0)#print_all_thm(p[thm''℄);;!x. x < 1 ==> (x = 0), y < 1, x < 1 |- (x = 0) /\ (y = 0)Therefore, the implementations of NAMED_IMP_RES_THEN and NAMED_RES_THENshould have the same behaviour as IMP_RES_THEN and RES_THEN with respet106

to assumptions. The tehnique used to implement CONJUNCTS_THEN an beadapted here; a whole proof step, in whih the subgoal does not hange, isdevoted to displaying the resolvents, and the appliations of the funtionf are desribed in subsequent steps. Care must be taken in implementingNAMED_IMP_RES_THEN and RES_THEN that the resolvents are used singly by fin the same order as in the orresponding ordinary funtions.This is the proof of the onjeture>> example10:"(x = 0) /\ (y = 0)"AssumingThe fat1: "x < 1"The fat2: "y < 1">>>> We use the theorem|- !x. x < 1 ==> (x = 0)to derive the following onsequenes from the assumptions made thus far:x < 1 |- x = 0y < 1 |- y = 0These theorems are used in sequene. We are showing:>> "(x = 0) /\ (y = 0)"AssumingThe fat1: "x < 1"The fat2: "y < 1">>>> We substitute aording to the following equality:x < 1 |- x = 0.Thus, it is suffiient to prove:>> "(0 = 0) /\ (y = 0)"AssumingThe fat1: "x < 1"The fat2: "y < 1"Assuming impliitlyThe hypothesis of the equality: "x < 1">>>> We substitute aording to the following equality:y < 1 |- y = 0.Thus, it is suffiient to prove:>> "(0 = 0) /\ (0 = 0)"AssumingThe fat1: "x < 1"The fat2: "y < 1"Assuming impliitlyThe hypothesis of the equality: "y < 1"The hypothesis of the equality: "x < 1"...This establishes|- (0 = 0) /\ (0 = 0)This establishes 107

y < 1 |- (0 = 0) /\ (y = 0)This establishesy < 1, x < 1 |- (x = 0) /\ (y = 0)This establishesy < 1, x < 1 |- (x = 0) /\ (y = 0)This ompletes the proof of the onjeture>> example10:"(x = 0) /\ (y = 0)"AssumingThe fat1: "x < 1"The fat2: "y < 1"This seems a reasonably lear aount. The fat that an impliit as-sumption is generated for eah resolvent (i.e. for eah theorem passed tothe substitution funtion { x < 1, for example, is generated for the resolventx = 0) is a no more minor imperfetion, as these terms must be hypothesesof the �nal theorem in any ase. That is, these terms are impliit assump-tions in the sense that whether of not they are hypotheses of the theoremahieving the �nal subgoal, they will be hypotheses of the theorem ahievingthe original goal.To devote a separate step to the use of eah resolvent might seem tedious,but this is in fat the unseen e�et of applying the ordinary IMP_RES_THEN fth. It is not in general the ase that the sequene of uses of the resolvent-based theorems an be expressed as a single use of a list of theorems. Forexample, while a sequene of substitutions (via SUBST1_TAC) an be expressedas a single use of substitution (via SUBST_TAC), the same is not true of thefuntions \th. REWRITE_TAC [th℄ and REWRITE_TAC.The funtion NAMED_RES_THEN is handled in a similar way to NAMED_IMP_RES_THEN.9 Strip FuntionsThe strip funtions are examples of HOL tatis that do not orrespondto single `natural' proof steps; they are onvenient tatis that do one ofseveral simple steps, and are often repeated to do at one all suh simplesteps that possibly an be done. They are also examples of tati whoseimplementations makes lever use of higher order funtions (namely, thefuntions desribed in Chapter ...), and as a result are diÆult to understand108

immediately. Some of the issues raised by the e�ort to give an aount of anappliation of the strip funtions are:� To what extent to deompose the omplex step into primitive (natural)steps;� To what extent to give the aount in terms of the implementation;� How to identify the subgoals produed (and their assumptions) so thatno mystery remains about their origin or parts.9.1 The Strip Transformer in HOLThe basi stripping tool in HOL is the strip funtion STRIP_THM_THEN. Given afuntion tta from theorems to tatis, a theorem th, and a goal g, STRIP_THM_THENinspets the top level struture the onlusion of th and hooses amongstthe tati transformers CONJUNCTS_THEN, DISJ_CASES_THEN and CHOOSE_THEN,for onlusions whih are onjuntions, disjuntions or existential terms, re-spetively, at the top level (and it fails for other terms). (The three tatitransformers are explained in Chapter ...)STRIP_THM_THEN = FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN℄whereFIRST_TCL [ttl1;...;ttln℄ = ttl1 ORELSE_TCL ... ORELSE_TCL ttlnwhere(ttl1: thm_tatial) ORELSE_TCL (ttl2: thm_tatial) tta th =(ttl1 tta th) ? (ttl2 tta th)(meaning: the value of the ttl1 tta th unless that evaluation fails, inwhih ase the value of ttl2 tta th). The appropriate tati transformeris then applied to tta; then the resulting funtion to th; and �nally, theresulting tati to g. This is illustated by the following shemati examples:109

...g = ([℄, "t")th1 = |- p1 /\ p2th2 = |- p1 \/ p2th3 = |- ?x. P x#STRIP_THM_THEN ASSUME_TAC th1 g;;([(["p2"; "p1"℄, "t")℄, -) : subgoals#STRIP_THM_THEN ASSUME_TAC th2 g;;([(["p1"℄, "t"); (["p2"℄, "t")℄, -) : subgoals#STRIP_THM_THEN ASSUME_TAC th3 g;;([(["P x"℄, "t")℄, -) : subgoalsSTRIP_THM_THEN underlies the �rst of the two main strip tatis in HOL:STRIP_ASSUME_TAC th.9.2 Stripping and Assuming a Theorem in HOLThe tati STRIP_ASSUME_TAC th, applied to a goal g, maps the theorem th toone or more sets of lauses (terms), and assumes eah set of terms (in the fash-ion of ASSUME_TAC) in a separate subgoal. The term part of eah of the sub-goals is unhanged. Eah set of lauses is a subset of the basi (lowest level)disjunts, onjunts and witness subterms of the original term (with sepa-rate subgoals being formed for disjunts). The e�et of STRIP_ASSUME_TAC isillustrated with shemati theorems and goal:#let g = [℄,"t:bool";;g = ([℄, "t") : (* list # term)...th1 = |- p1 /\ p2th2 = |- (p1 \/ p2) /\ (p3 \/ p4)th3 = |- (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)#STRIP_ASSUME_TAC th1 g;;([(["p2"; "p1"℄, "t")℄, -) : subgoals#STRIP_ASSUME_TAC th2 g;;([(["p3"; "p1"℄, "t");(["p4"; "p1"℄, "t");(["p3"; "p2"℄, "t");(["p4"; "p2"℄, "t")℄,-): subgoals 110

#STRIP_ASSUME_TAC th3 g;;([(["x < 2"; "p3"; "p2"; "p1"℄, "t"); (["x < 2"; "p3"; "p2"℄, "t")℄, -): subgoalsIn eah ase, the lauses added to eah subgoal are not themselves on-juntions, disjuntions or existential terms. The �rst theorem is mapped to asingle subgoal, with the two onjunts as separate assumptions. The seondtheorem indues a four-way disjuntive split, where the four subgoals havetwo lauses (disjunts) eah. The third would have eight subgoals, but twoof these of these are solved internally beause they are inonsistent, and twomore beause they are trivially true (i.e. they inlude the term t itself as anassumption). The two internal solutions prelude further ase analysis, sothat only six ases are atually generated. Of the two remaining subgoals,the seond an be simpli�ed to omit mention of the tautologous lause (T)and so inludes only three lauses as assumptions. Both subgoals inlude thewitness term p2.STRIP_ASSUME_TAC is implemented by repeated use of STRIP_ASSUME_THENand a version of ASSUME_TAC:STRIP_ASSUME_TAC = (REPEAT_TCL STRIP_THM_THEN) CHECK_ASSUME_TACwhereREPEAT_TCL (ttl: thm_tatial) tta th =((ttl THEN_TCL (REPEAT_TCL ttl)) ORELSE_TCL I) tta thand(ttl1: thm_tatial) THEN_TCL (ttl2: thm_tatial) tta = ttl1 (ttl2 tta)Rather than assuming the �nal lauses via ASSUME_TAC, STRIP_ASSUME_TACuses the more seletive funtion (CHECK_ASSUME_TAC) whih noties and solvesontraditions (via CONTR_TAC), and solutions (via ACCEPT_TAC). This intro-dues the possibility, therefore, of STRIP_ASSUME_TAC solving a goal. (CHECK_ASSUME_TACalso delines to add tautologous lauses as assumptions.)To summarize:STRIP_ASSUME_TAC th gis 111

(REPEAT_TCL STRIP_THM_THEN) CHECK_ASSUME_TAC th gwhih is(REPEAT_TCL (FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN℄))CHECK_ASSUME_TAC th gwhih in turn is(((FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN℄) THEN_TCL(REPEAT_TCL ((FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN℄)))) ORELSE_TCLI) CHECK_ASSUME_TAC th gIn the ase of th2 and g, above, for example, the ultimate `hain' of theoremtransformers ontains two elements: CONJUNCTS_THEN THEN_TCL DISJ_CASES_THEN:#CONJUNCTS_THEN (DISJ_CASES_THEN CHECK_ASSUME_TAC);;- : thm_tati#(CONJUNCTS_THEN THEN_TCL DISJ_CASES_THEN) CHECK_ASSUME_TAC th2 g;;([(["p3"; "p1"℄, "t");(["p4"; "p1"℄, "t");(["p3"; "p2"℄, "t");(["p4"; "p2"℄, "t")℄,-)In general, REPEAT_TCL STRIP_THM_THEN results in a hain of funtionsf1,...,fn of type thm_tatial suh that then STRIP_ASSUME_TAC is equal tof1(f2(....(fn CHECK_ASSUME_TAC)...)).STRIP_ASSUME_TAC supports the two seond of the two main strip tatisin HOL: STRIP_TAC th.9.3 The Strip Tati in HOLThe other main stripping tati in HOL is STRIP_TAC, whih performs onesyntati layer of stripping on a given goal. On goals whose terms are uni-versally quanti�ed, STRIP_TAC spei�es to a variant of the quanti�ed vari-able. On goals whose terms are onjuntions, it produes a pair of separatesubgoals. The other possibility, aside from failure, is that the term is animpliation, in whih ase the anteedent is taken apart into sets of lauses(by STRIP_ASSUME_TAC), and eah set is assumed in a separate subgoal (whoseterm is the onsequent of the impliation). That is,112

STRIP_TAC = STRIP_GOAL_THEN STRIP_ASSUME_TACwhereSTRIP_GOAL_THEN tta = FIRST [GEN_TAC; CONJ_TAC; DISCH_THEN tta℄STRIP_TAC inherits from STRIP_ASSUME_TAC the ability to solve ertaingoals. Also, as is usual in HOL, a term of the form ~t is regarded as beingt ==> F so that STRIP_TAC approahes the proof of ~t as a proof by ontra-dition.STRIP_TAC is illustrated by adapting the theorems used above to illustrateSTRIP_ASSUME_TAC { the anteedents are deomposed into disjunts, onjuntsand witness terms:g1 = ([℄, "p1 /\ p2 ==> t")g2 = ([℄, "(p1 \/ p2) /\ (p3 \/ p4) ==> t")g3 = ([℄, "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t")#STRIP_TAC g1;;([(["p2"; "p1"℄, "t")℄, -) : subgoals#STRIP_TAC g2;;([(["p3"; "p1"℄, "t");(["p4"; "p1"℄, "t");(["p3"; "p2"℄, "t");(["p4"; "p2"℄, "t")℄,-): subgoals#STRIP_TAC g3;;([(["x < 2"; "p3"; "p2"; "p1"℄, "t"); (["x < 2"; "p3"; "p2"℄, "t")℄, -): subgoalsBeause of the inner repeat onstrut, an inde�nite number of subgoalsan result from an appliation of STRIP_TAC. That is, there may be any num-ber of disjuntive splits, and of the subgoals generated, some may be solved.9.4 Aounting for The Strip TatiOne method of implementing NAMED_STRIP_TAC, to supply an aount ofthe stripping proess applied to a named goal, is to regard stripping asa ompound proof step not to be aounted for as a single proof step.This is ahieved by implementing NAMED_STRIP_TAC in parallel with HOL'sSTRIP_TAC, based on (likewise parallel) implementations of NAMED_STRIP_GOAL_THEN,113

NAMED_STRIP_ASSUME_TAC, NAMED_STRIP_THM_THEN, NAMED_REPEAT_TCL, and soon. By this method, the job of onstruting the aount of the stripping ta-ti is handed over to the funtions NAMED_CONJUNCTS_THEN and so on, giving,in the end, a full aount of the proessing of the goal, with eah step in theproess explained as a separate proof step.A seond method of implementing NAMED_STRIP_TAC is to gather and pro-ess the results of applying NAMED_STRIP_TAC. This gives an aount of strip-ping as a single proof step. (The results of applying HOL's STRIP_TAC, tothe orresponding ordinary goal { in the style of many other named tatis'implementations { does not give enough information to onstrut a usefulaount.)We explain both methods, and leave the hoie to be deided aordingto partiular needs.9.4.1 The Implementation-Based AountOne all of the basi funtion are implemented for named goals, the tatiNAMED_STRIP_TAC is easy to implement in parallel with the HOL implemen-tation. We onsider three orresponding named goals:ng1 = mk_named_goal(`example1`, [℄, "p1 /\ p2 ==> t")ng2 = mk_named_goal(`example2`, [℄, "(p1 \/ p2) /\ (p3 \/ p4) ==> t")ng3 =mk_named_goal(`example3`,[℄,"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t")To these we apply the version of NAMED_STRIP_TAC implemented in parallelwith HOL's STRIP_TAC. In the �rst example, applying NAMED_STRIP_TAC to ng1gives one subgoal:>> "t"AssumingThe right onjunt: "p2"The left onjunt: "p1"Assuming impliitlyThe anteedent: "p1 /\ p2"The justi�ation is onstruted, as for HOL's STRIP_TAC, from the justi�-ations of the onstituent funtions when the tati is applied. Given anaount of the subgoal, the justi�ation returns an aount of the wholestripping step: 114

This is the proof of the onjeture>> example1:"p1 /\ p2 ==> t">>>> It is suffiient to prove:>> "t"AssumingThe anteedent: "p1 /\ p2">>>> We use the two separate theorems implied by the assumptionp1 /\ p2 |- p1 /\ p2.The two theorems are used in sequene. We are showing:>> "t"Assuming impliitlyThe anteedent: "p1 /\ p2">>>> We use the fat thatp1 /\ p2 |- p1.It is suffiient to prove:>> "t"AssumingThe left onjunt: "p1"Assuming impliitlyThe anteedent: "p1 /\ p2">>>> We use the fat thatp1 /\ p2 |- p2.It is suffiient to prove:>> "t"AssumingThe right onjunt: "p2"The left onjunt: "p1"Assuming impliitlyThe anteedent: "p1 /\ p2"...This establishesp1, p2 |- tThis establishesp1, p1 /\ p2 |- tThis establishesp1 /\ p2 |- tThis establishesp1 /\ p2 |- tThis establishes|- p1 /\ p2 ==> t 115

This ompletes the proof of the onjeture>> example1:"p1 /\ p2 ==> t"The aount is straightforward; its seond proof step is the one devotedby CONJUNCTS_THEN to explaining the onjuntive split of the anteedent as-sumption. The subgoal produed by this step is unhanged from the previoussubgoal exept for `disappearane' of the (no longer needed) anteedent as-sumption at that point. The last subgoal shown has the anteedent of theoriginal impliation entirely taken apart, as a result of the steps determinedby applying NAMED_STRIP_TAC to ng1.When the hain of funtions determined by applying NAMED_STRIP_TACto a given goal is longer, and espeially when it involves ase splits (as itwould in the seond example), the aount in the present style beomesmore tedious and onfusing. It is onfusing, in partiular, beause there isa sequene of binary ase splits to be presented, and the resulting ases arerepeatedly labelled as the left disjunt ase or the right disjunt ase.The atual subgoal being onsidered at ertain points in the presentation anbe identi�ed only via the onvention that in printing a subgoal-proof tree indepth-�rst fashion, the next (awaiting) subgoal is re-printed immediatelyafter a leaf has been printed.Despite the inonvenienes, it still sometimes the ase that the aountdesired is the one that lays out all the stages of the stripping proess. For ex-ample, the learest explanation is produed for the third ase by this method.Here, as mentioned earlier, there are two subgoals produed out of the sixgenerated internally. These are:>> left disjunt ase:"t"AssumingThe witness hypothesis: "x < 2"The left disjunt: "p3"The left disjunt: "p2"The left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"and>> left disjunt ase:"t" 116

AssumingThe witness hypothesis: "x < 2"The left disjunt: "p3"The left disjunt: "p2"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"In the lengthy aount produed by applying the justi�ation, however, all sixases are displayed, and it is explained learly how the four internal ases aresolved (this information being provided by the named tatis that ultimatelysolve the internal goals). In ontrast, it is not lear in HOL itself (see ...)how many ases were atually generated, nor of these, whih were solved,and how.This is the proof of the onjeture>> example3:"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t">>>> It is suffiient to prove:>> "t"AssumingThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)">>>> We use the two separate theorems implied by the assumption(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)|- (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2).The two theorems are used in sequene. We are showing:>> "t"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)">>>> We onsider the two ases suggested by the fat(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p1 \/ T>> left disjunt ase:"t"AssumingThe left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)">> right disjunt ase:"t"AssumingThe right disjunt: "T"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"The proof of the>> left disjunt ase: 117

"t"AssumingThe left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"is as follows:>>>> We use the two separate theorems implied by the fat(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)|- (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2).The two theorems are used in sequene. We are showing:>> "t"AssumingThe left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)">>>> We onsider the two ases suggested by the fat(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p2 \/ F>> left disjunt ase:"t"AssumingThe left disjunt: "p2"The left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)">> right disjunt ase:"t"AssumingThe right disjunt: "F"The left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"The proof of the>> left disjunt ase:"t"AssumingThe left disjunt: "p2"The left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"is as follows:>>>> We use the two separate theorems implied by the fat(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)|- (p3 \/ t) /\ (?x. x < 2).The two theorems are used in sequene. We are showing:>> "t"AssumingThe left disjunt: "p2"The left disjunt: "p1" 118

Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)">>>> We onsider the two ases suggested by the fat(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p3 \/ t>> left disjunt ase:"t"AssumingThe left disjunt: "p3"The left disjunt: "p2"The left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)">> right disjunt ase:"t"AssumingThe right disjunt: "t"The left disjunt: "p2"The left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"The proof of the>> left disjunt ase:"t"AssumingThe left disjunt: "p3"The left disjunt: "p2"The left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"is as follows:>>>> Using the term "x"as a witness to the fat(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- ?x. x < 2it is suffiient to prove:>> "t"AssumingThe witness hypothesis: "x < 2"The left disjunt: "p3"The left disjunt: "p2"The left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"...This establishesx < 2, p1, p2, p3 |- tThis establishes 119

p3, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p1, p2 |- tThe proof of the>> right disjunt ase:"t"AssumingThe right disjunt: "t"The left disjunt: "p2"The left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"is as follows:>>>> The theoremt |- tis proposed to satisfy this.This establishest |- tThis establishes(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p1, p2 |- tThis establishesp2, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p1 |- tThe proof of the>> right disjunt ase:"t"AssumingThe right disjunt: "F"The left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"is as follows:>>>> This follows vauously (by ontradition) from the theoremF |- FThis establishesF |- tThis establishes(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p1 |- tThis establishesp1, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- tThe proof of the>> right disjunt ase:"t"AssumingThe right disjunt: "T"Assuming impliitly 120

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"is as follows:>>>> It is suffiient to prove:>> "t"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)">>>> We use the two separate theorems implied by the fat(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)|- (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2).The two theorems are used in sequene. We are showing:>> "t"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)">>>> We onsider the two ases suggested by the fat(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p2 \/ F>> left disjunt ase:"t"AssumingThe left disjunt: "p2"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)">> right disjunt ase:"t"AssumingThe right disjunt: "F"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"The proof of the>> left disjunt ase:"t"AssumingThe left disjunt: "p2"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"is as follows:>>>> We use the two separate theorems implied by the fat(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)|- (p3 \/ t) /\ (?x. x < 2).The two theorems are used in sequene. We are showing:>> "t"AssumingThe left disjunt: "p2" 121

Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)">>>> We onsider the two ases suggested by the fat(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p3 \/ t>> left disjunt ase:"t"AssumingThe left disjunt: "p3"The left disjunt: "p2"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)">> right disjunt ase:"t"AssumingThe right disjunt: "t"The left disjunt: "p2"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"The proof of the>> left disjunt ase:"t"AssumingThe left disjunt: "p3"The left disjunt: "p2"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"is as follows:>>>> Using the term "x"as a witness to the fat(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- ?x. x < 2it is suffiient to prove:>> "t"AssumingThe witness hypothesis: "x < 2"The left disjunt: "p3"The left disjunt: "p2"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"...This establishesx < 2, p2, p3 |- tThis establishes 122

p3, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p2 |- tThe proof of the>> right disjunt ase:"t"AssumingThe right disjunt: "t"The left disjunt: "p2"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"is as follows:>>>> The theoremt |- tis proposed to satisfy this.This establishest |- tThis establishes(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p2 |- tThis establishesp2, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- tThe proof of the>> right disjunt ase:"t"AssumingThe right disjunt: "F"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"is as follows:>>>> This follows vauously (by ontradition) from the theoremF |- FThis establishesF |- tThis establishes(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- t...This establishes|- (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> tThis ompletes the proof of the onjeture>> example3:"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t"123

9.4.2 The Primitive AountIt may be the ase that the explanation of the stripping proess is not wanted,as above, in terms of the entire hain of steps, inluding the subgoals solvedinternally and the methods used { but simply in one unit strip step. If so,the strip funtion ould not be implemented as above, in parallel with HOL'simplementation.Neither an it be implemented diretly in an analogous way to manyother tatis { by gathering and organizing the results of applying HOL'sSTRIP_TAC to the orresponding ordinary goal; this method does not give anadequate aount beause the results of STRIP_TAC in themselves a�ord nomeans of identifying the subgoals (and parts of subgoals) resulting from thestripping proess.Instead, the one-step funtion (NAMED_PRIM_STRIP_TAC, for `primitive striptati') is implemented indiretly by applying the full-aount version (NAMED_STRIP_TAC)to the goal and then proessing those results into a single aount. NAMED_STRIP_TACgives enough information { via its onstituent funtions NAMED_CONJUNCTS_THENand so on { to be able to identify the results in a meaningful way for aount-ing purposes.The proessing that is required on the results of applying NAMED_STRIP_TACis quite elaborate. First, some simple proessing greatly improve the aount:� Provision has to be made for the goal being ompletely solved, as thatoutome is presented di�erently than a set of subgoals;� It has to be notied if the original goal is a negated term, so that theproof an be presented as a proof by ontradition;� The term parameters of any appliations of NAMED_GEN_TAC should bereorded; even though an individual generalization step is not going tobe reported, this information may be required.The more omplex proessing relates to the fat, observed earlier, thata single appliation of STRIP_TAC to an impliative goal an give rise to aninde�nite number of subgoals, through a sequene of disjuntive splits ofthe anteedent, and through internal solutions. Subgoals arising in this waywill always be identi�ed (via NAMED_STRIP_TAC) as left disjunt ase orright disjunt ase. The �nal set of subgoals arising in this way an bereast by NAMED_PRIM_STRIP_TAC as a numbered sequene of disjuntive ases.124

Withing eah subgoal produed by NAMED_STRIP_TAC on an impliativegoal, there may be various lauses (arising from the anteedent) whih areidenti�ed as wintness hypotheses, left or right disjunts, or left or right on-junts. From these labels, the onjunts' and disjunts' names an be reor-ganized in numbered sequenes.For example, in the third ase, it was mentioned earlier that the twovisible subgoals (to be solved) were>> left disjunt ase:"t"AssumingThe witness hypothesis: "x < 2"The left disjunt: "p3"The left disjunt: "p2"The left disjunt: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"and>> left disjunt ase:"t"AssumingThe witness hypothesis: "x < 2"The left disjunt: "p3"The left disjunt: "p2"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"These an be reast and printed, respetively, as>> disjuntive ase 1 of 2:"t"AssumingThe witness hypothesis: "x < 2"The disjunt 3: "p3"The disjunt 2: "p2"The disjunt 1: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"and>> disjuntive ase 2 of 2:"t"AssumingThe witness hypothesis: "x < 2"125

The disjunt 2: "p3"The disjunt 1: "p2"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"The primitive aount of the stripping step is then:This is the proof of the onjeture>> example3:"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t">>>> It is suffiient to prove the following:>> disjuntive ase 1 of 2:"t"AssumingThe witness hypothesis: "x < 2"The disjunt 3: "p3"The disjunt 2: "p2"The disjunt 1: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)">> disjuntive ase 2 of 2:"t"AssumingThe witness hypothesis: "x < 2"The disjunt 2: "p3"The disjunt 1: "p2"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"The proof of the>> disjuntive ase 1 of 2:"t"AssumingThe witness hypothesis: "x < 2"The disjunt 3: "p3"The disjunt 2: "p2"The disjunt 1: "p1"Assuming impliitlyThe anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"is as follows:...This establishesp1, p2, p3, x < 2 |- tThe proof of the>> disjuntive ase 2 of 2:"t" 126

AssumingThe witness hypothesis: "x < 2"The disjunt 2: "p3"The disjunt 1: "p2"Assuming impliitlyThe right disjunt: "T"The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"is as follows:...This establishesp2, p3, x < 2 |- tThis establishes|- (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> tThis ompletes the proof of the onjeture>> example3:"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t"This aount of applying NAMED_PRIM_STRIP_TAC does not explain the gen-eration and solution of the four internal subgoals, but it does mirror the tatiSTRIP_TAC, whih takes apart the anteedent of an impliative goal and dealswith the resulting lauses in a single proof step.NAMED_PRIM_STRIP_TAC is implemented as an elaboration of the more basiNAMED_STRIP_TAC; it gives similar subgoals (the same with some renaming),but a di�erent aount. That is, NAMED_PRIM_STRIP_TAC omputes the sub-goals and justi�ation (p, say) given by NAMED_STRIP_TAC, but then uses p toonstrut is own aount. Its own aount simply maps a given list of sub-aounts to an aount (i.e. a node) with a name of its own, ontaining thegiven list of sub-aounts, the list of (proessed) subgoals, and the theoremomponent of the aount got by applying p to the list of sub-aounts. Inthis way, the theorem ahieved is the only omponent of the long aount(the aount of NAMED_STRIP_TAC) that appears expliitly in the new aount(the aount of NAMED_PRIM_STRIP_TAC), although the same atual inferenesare generated in both ases.In a similar way, other patterns of inferene also ould be implementedto give one-step aounts. One simple instane of this would be a tati toapply and aount for NAMED_PRIM_STRIP_TAC repeatedly, in one step; thiswould be useful sine REPEAT STRIP_TAC is a very ommonly used beginningto proofs. 127

This idea forms the basis of a method for ompating long and exessivelydetailed aounts. Deiding whih further patterns of inferene ould bepresented oherently by being ompated into unit steps is a matter for futureresearh.10 Transforming Proof AountsOne the subgoal-proof tree has been extrated from the performane of aHOL proof, it an, in theory, be presented in a variety of ways { though justone style of presentation has been implemented to date. A further extension,however, is to transform the subgoal-proof tree itself before it is printed.This would be done in the interest of produing a learer or more elegantproof, removing unneessary proof steps, and so on. Suh transformationswould be based on a belief that the proof { in the sense of the sequene ofinferene steps orresponding to the subgoal-roof tree { were either preservedor were transformed in a validity-preserving way by the transformation ofthe tree18. This belief would be supported by a `meta-argument' about thetransformation rather than a re-derivation of the proof in the logi; that is,the orrespondene of the new tree to a proof would be informal.To date, two partiular kinds of transformations have been implemented,to test this idea. Under the �rst transformation, uninterrupted sequenes ofgeneralization steps are ompated into a single, multiple generalization step(and the subgoal-proof tree reassembled aordingly). Under the seond,steps whih have no e�et on a goal are removed and the remaining treesplied together appropriately.The following printed aount results from a repeated appliation ofNAMED_STRIP_TAC to the goal shown:This is the proof of the onjeture>> example:"!x y z. x < y /\ y < z ==> x < z">>>> Consider an arbitrary "x":We show:18The subgoal-proof tree as de�ned does not inlude the inferene sequene, but justthe subset onsisting of the theorems ahieving the subgoals. These are produed, whenthe proof is performed, by omputing the inferene sequenes in full; that is the sense inwhih there is a orrespondene. 128

>> "!y z. x < y /\ y < z ==> x < z">>>> Consider an arbitrary "y":We show:>> "!z. x < y /\ y < z ==> x < z">>>> Consider an arbitrary "z":We show:>> "x < y /\ y < z ==> x < z"...When the subgoal-proof tree whih underlies this aount is transformedin the �rst way, a new tree is produed. The new tree is printed as follows:This is the proof of the onjeture>> example:"!x y z. x < y /\ y < z ==> x < z">>>> Considering arbitrary "x", "y", "z",we show:>> "x < y /\ y < z ==> x < z"...This transformation is ahieved by olleting from the original tree alluninterrupted sequenes of steps whih are equivalent in e�et to general-izations and then representing eah sequene as a single node in a new tree.The single node is oneived as representing a multiple generalization tati{ a tati equivalent in its e�et to an appliation of REPEAT GEN_TAC butonsidered as a single proof step. Steps equivalent in e�et to generalizationsmight have been generated by appliation of GEN_TAC, or might have beengenerated indiretly, e.g. via appliation of STRIP_TAC, provided that indi-ret generalizations manage to reord the variable in question in the sameway that GEN_TAC does.That is, an aount of the formmk_node((`NAMED_GEN_TAC`, ["x"℄, [℄),[mk_node((`NAMED_GEN_TAC`, ["y"℄, [℄),[mk_node((`NAMED_GEN_TAC`, ["z"℄, [℄),... ,[mk_named_goal(`example`,[℄,"x < y /\ y < z ==> x < z")℄,|- !z. x < y /\ y < z ==> x < z)℄ ,[mk_named_goal(`example`,129

[℄,"!z. x < y /\ y < z ==> x < z")℄,|- !y z. x < y /\ y < z ==> x < z)℄,[mk_named_goal(`example`, [℄, "!y z. x < y /\ y < z ==> x < z")℄,|- !x y z. x < y /\ y < z ==> x < z)beomes an aount of the formmk_node((`MULTI_NAMED_GEN_TAC`, ["x"; "y"; "z"℄, [℄),... ,[mk_named_goal(`example`, [℄, "x < y /\ y < z ==> x < z")℄,|- !x y z. x < y /\ y < z ==> x < z)where MULTI_NAMED_GEN_TAC is a new kind of node (suggesting a hypothetialnew tati) with its own printing onvention. (The node and its printingformat must of ourse be known to the printing funtions in advane.)Redundant proof steps arise for a variety of reasons; for example, the useof tatis whih never fail (e.g. rewriting), or linear tatis whih advane onebranh of a proof but whih neither fail nor have any e�et on the anotherbranh. For example, if the goal of the previous example is attaked byapplying to it the (rather odd) tatiNAMED_REWRITE_TAC [℄ THENNAMED_STRIP_TAC THENNAMED_REWRITE_TAC [℄so that only the STRIP_TAC advanes the proof, the following aount isprinted:This is the proof of the onjeture>> example:"!x y z. x < y /\ y < z ==> x < z">>>> Using basi tautologies, it is suffiient to prove:>> "!x y z. x < y /\ y < z ==> x < z">>>> Consider an arbitrary "x":We show:>> "!y z. x < y /\ y < z ==> x < z">>>> Using basi tautologies, it is suffiient to prove:>> "!y z. x < y /\ y < z ==> x < z"...Under the seond transformation, the redundant steps are removed from thetree, and the resulting tree is printed as follows:130

This is the proof of the onjeture>> example:"!x y z. x < y /\ y < z ==> x < z">>>> Consider an arbitrary "x":We show:>> "!y z. x < y /\ y < z ==> x < z"...This transformation is ahieved by searhing for nodes whih have ex-atly one diret desendent node, and for whih the subgoal is the same asthe goal19. Where there is a single unhanged subgoal, the transformationinvolves removing the subgoal node from the tree and spliing up the restof the tree aordingly. The transformation applies reursively throughouttree.In the example above, the original aount has the formmk_node((`NAMED_REWRITE_TAC`, [℄, [℄),[mk_node((`NAMED_GEN_TAC`, ["x"℄, [℄),[mk_node((`NAMED_REWRITE_TAC`, [℄, [℄),... ,[mk_named_goal(`example`,[℄,"!y z. x < y /\ y < z ==> x < z")℄,|- !y z. x < y /\ y < z ==> x < z)℄,[mk_named_goal(`example`,[℄,"!y z. x < y /\ y < z ==> x < z")℄,|- !x y z. x < y /\ y < z ==> x < z)℄,[mk_named_goal(`example`,[℄,"!x y z. x < y /\ y < z ==> x < z")℄,|- !x y z. x < y /\ y < z ==> x < z)while the transformed tree has the formmk_node((`NAMED_GEN_TAC`, ["x"℄, [℄),...[mk_named_goal(`example`, [℄, "!y z. x < y /\ y < z ==> x < z")℄,|- !x y z. x < y /\ y < z ==> x < z)Both of the transformations an be done in a single ombined transfor-mation whih applies repeatedly until neither tranformation an assist.19`The same' is taken in the �rst instane to mean idential exept for the goals' names,though more subtlety may be alled for in treating impliit assumptions, et.131

Another use of suh transformations might be to print impliit assumptionmore seletively (e.g. where they are dupliated), or not at all (in ontextswhere they are not of interest).Some elaborations along these lines are mentioned in Chapter ... on futureresearh ideas. The two desribed here are very simple transformations, butthe idea ould be extended to more sophistiated transformations whih re-sulted in aounts whih are preferred for some purpose. It is worth stressingagain, however, that transforming and re-printing the internal respresenta-tion of a proof does not entail re-proving anything. The transformed treesmay indeed fail to represent valid proofs { despite any informal argumentsthat they do, the trees may no longer orrespond to valid proofs.To ahieve a diret orrespondene, it might be possible, as a side e�et oftransforming the tree, in some ases, to derive automatially the new tatithat orresponds to the transformed tree, and then to try to apply that tatito the original goal. If this worked, it would produe the new (genuine) treediretly. Clearly, this makes no sense where a hypothetial tati is suggested(suh as MULTI_NAMED_GEN_TAC, mentioned earlier), but it should be possible,for example, for the seond kind of transformation. However, this idea ismere speulation at present.11 Future ResearhWe mention briey in this Chapter some extensions of the aount failitywhih we hope to make in future work. These are grouped as pratial andtheoretial extensions.Some theoretial extensions are as follows:� The idea of transforming trees before printing (Chapter ...) ould beextended to more sophistiated transformations. One sort of transfor-mation whih might be helpful would be the seletive presentation ofproof steps, with the ellipsis or omission of other steps. For example, itmight be desired, partiularly in long proofs, to produe aounts on-sisting only of the major or important proof steps. The full aountsshown in this paper are probably too long and detailed for some pur-poses. Part of the researh would be to deide whih steps in whihontexts are `important'. 132

� We also mentioned (in Chapter ...) the idea of extrating from thetransformation proess enough information to be able to onstrut thetransformed tati, at least in ertain ases. A partiular appliationof this would be to rephrase HOL tatis in some desired style. Forexample, one the subgoal-proof tree is known, the ompound tatiwhih produed the tree might ould be rephrased to be more linear (sothat separate branhes are generated by one at sequene of tatis) orless linear (so that seletive sequening { THENL, for instane { were usedwhere branhing ours). This would be useful where suh uniformityof style is desired.� At present, it is required that a proof be suessfully ompleted in HOLbefore an aount an be generated { by re-performing the proof in adi�erent mode. It might also be useful to be able to work pieewise andinteratively; that is, to generate an aount of one step within a proof.This would be useful, for example, for understanding mysterious singlesteps in ompleted proofs, or for assessing the e�et of diÆult stepsin a proof in progress. An interative faility would involve hangingthe new ML types (Chapter ...) to some extent, sine an aount,as things stand, inludes the ahieving theorem assoiated with eahnode. However, the basi onepts should make some sort of interativefaility possible.� In onnetion with the above point, another role of the aount fail-ity might be as a proof debugging aid. That is, where a proof fails,or proeeds on an unexpeted ourse, the explanation of ertain stepsmay be valuable in traing the ause of the problem. Having aess tothe subgoal and its purported ahieving theorem at a problem pointmay provide the key to understanding the failure. Here, any impliitassumptions (whih will be aessible) may also shed light on the prob-lem. Aounts seem partiularly useful where a tati implemented bya user diretly in ML fails in some way.� It would also be useful if the aount faility ould be integrated withanother faility for explaining segments of forward proof. (A failityfor explaining forward proofs is part of a urrently proposed researhgrant.) If explanations of the interludes of forward proof whih some-times our in goal-oriented proofs ould be generated, it would be133

possible to give more information within aounts as presented so far.For example, where a rewrite rule is derived by a sequene of forwardinferenes, the existing aount faility would just report a rewritingevent based on the theorem resulting from the forward inferene. If theinferene ould itself be explained, the new theorem would not appearas if by magi, but would be aounted for meaningfully.� In relation to the above point, one slightly unsatisfatory feature of theaounts produed urrently for rewiting steps is that a rewriting stepof a proof is reported based on all of the (potential) rewrites provided.In fat, it would be more informative to be told whih rewrites were a-tually engaged and whih were not, in eah ase. There appeared to beno simple, aurate way to do this within the aounting sheme pre-sented. `Named' tatis were generally implemented by elaborating onthe results of the original tatis; original tatis were taken as `blakboxes'. Rewriting, in partiular, has a omplex and sensitive imple-mentation in HOL, it seemed sensible to avoid trying to re-implementit aurately. It also seemed within the spirit to the urrent aountpakage not to re-implement it. However, if there were already a wayof traing the atual steps of the rewriting proess as part of a systemfor explaining forward proofs, this would make a valuable addition tothe existing proof aount faility for rewriting.� It might be worth making a wider study of textbook-style proof presen-tations with the aim of improving the style of proof aount printouts.� The HOL pakage for introduing reursive data types and automati-ally generating indution rules for them was designed and implementedby Tom Melham (...). Derivation of indution rules follows from thede�nitions that haraterize the new reursive data type. We have dis-ussed numerial indution only in this paper (...), but it would be verydesirable if, from any new reursive type de�nition, one ould automat-ially generate the `named' tati whih would produe the appropriateaount. This seems in priniple to be possible, but has not yet beenstudied arefully.� It seems possible that the naming of assumptions in the new system ofML types needed for generating aounts may have other appliations.134

One obvious appliation is the aessing of assumptions by name ratherthan by position in the (arbitrary) order imposed by a partiular HOLimplementation. That is, if an indution hypothesis is identi�ed bythe string `indution hypothesis`, then one ought to be able to saysomething like `rewrite using the indution hypothesis as a rewrite rule'rather than `rewrite using the third assumption (whih I happen tobelieve is the indution hypothesis, at the moment)'. This would bea great onveniene to the user, and moreover would produe muhlearer aounts.� It would be desirable to test many more examples of ML onstrutswhih users employ in generating proofs in HOL, partiularly the moreomplex ones. There is probably too muh bias in examples onstrutedfor the purpose.Some pratial extensions are as follows:� The �rst projet is to prepare a leaner and more eÆient implemen-tation suitable for being released with the HOL system (along withsuitable doumentation). The faility should also be better interfaedto the HOL system, and easier to use. For example, one would liketo swith into a mode in whih aounts were generated (and swithout again, perhaps) without having to use new names for tatis (e.g.NAMED_STRIP_TAC for STRIP_TAC, et).� The existing aounts faility applies, of ourse, only to standard HOLtatis. For users who implement their own tatis (in ML rather thanas ombinations of standard funtions), there is no way to produeaounts exept by implementing diretly the original tatis as namedtatis. It might be possible to provide an interfae for allowing usersto aomplish this more easily. The interfae ould, for example, askthe user what to all the subgoals and any new assumptions, and soon, and then implement the original tati in a uniform way.� New printing styles should be tried; the one used in this paper is onlya �rst attempt.� A new pakage for managing goal-oriented proofs (i.e. a new subgoalpakage) has reently been implemented by Sara Kalvala (...). (This is135

a standard part of the HOL 12 implementation.) This pakage involvesan internal respresentation of the proof tree, and inludes a meansof extrating the text of a tati from the interation during whih aproof is developed. It would be interesting to explore the relation ofthat pakage to the aount faility, and any ways in whih the twoould be ombined, or ould bene�t from eah others' tehniques andideas.� It was mentioned (Chapter ...) that the standard funtion POP_ASSUMauses a slight anomaly in that its justi�ation does not `replae' thelost assumption in a given ahieving theorem. This was partiularlyapparent in tatis suh as POP_ASSUM(K ALL_TAC). One small futureexperiment would be to re-implement POP_ASSUM so that its justi�a-tion did add the popped assumption to the inoming theorem, and toestablish that this repair worked orretly with other funtions. If so,the idea of impliit assumptions would beome simpler. (This pointrelates to the disussion on pages ...).12 ConlusionsThe main purpose of the work desribed here has been to test the feasi-bility of extrating a onventional or `natural' explanation of a proof fromthe proess of performing the proof in HOL (in goal-oriented fashion). Itwas intended that this explanation be free of onepts spei� to HOL orto mehanized theorem-proving, even where the HOL tatis used were spe-ialized or obsure. The main questions were: ould enough information beextrated from the appliation fo tatis to a goal to ompose an explanationoif the proof? What was is the essential information? What is involved inpresenting it in readable form?So far, the ideas for assembling explanations seem to have worked well,and the explanations produed, at least for the basi tatis and tati on-strutions seem reasonable. However, a great deal more experimentationwith real proofs (and in partiular with other users' proofs) is still required.We plan to pursue this in future. As mentioned in Chapter ..., the aountsprodued at the moment are probably too detailed and exhaustive for somepurposes, and it is planned also in future to experiment with ideas for on-136

densing them. The partiular style and layout used in this paper are onlypreliminary, and these may hange with experiene. At prsent, what wehave is a basis for explaining proofs, and a framework in whih to introduere�nements.The main obstale thus far to produing aounts was dealing with tatisformed by applying `ontinuation' funtionals to tatis. Though this is aexible and onvenient method for the HOL user, suh onstruts have thee�et of performing some of the proof steps behind the senes, and doingmore than one major proof step at a time. The resulting leap is thereforediÆult to explain. We have proposed one way of spelling out suh steps (inChapter ...) whih seems to produe a omprehensible story. The methodproposed may appear slightly unsatisfatory in that it reverses the diretionof the HOL implementation, in whih the higher order funtionals (e.g. theontinuations) are primary and the ordinary tatis are de�ned in their terms;the method for produing aounts in these ases takes the tatis as primaryand the higher-order onstruts de�ned in terms of them. However, thereis no real reason to insist that the onepts and tools of the HOL user bedetermined by what happens to be the implementation of HOL. For example,the HOL system is normally taught by presenting simple tatis �rst, andtati onstrutions later on (if at all).A seond, related obstale (see Chapter ...) was the use of the set of ur-rent assumptions as a stak or array, in whih the position of an assumption{ whih is again just an artefat of the HOL implementation { provides ameans of aessing assumptions. This approah oasionally also involves theapparent `dropping' of assumptions one they are `used', partly as a meansof ontrolling the size of the assumption set. Our analysis points to variousoneptual problems in this style of proof, but as the method is now popularin the HOL ommunity, it seemed neessary to provide a way of aountingfor proof steps based on a stak or array of assumptions. We think that themethod proposed in Chapter ... is quite satisfatory.The means of overoming both of the above obstales, and to the prob-lem of invalid proof steps as well (see Chapter ...), suggested the notion ofimpliit assumptions. That onept is introdued in Chapter By makingaessible all the assumptions whih hold at a given stage in a goal-orientedproof, but whih are not normally made expliit, several mysteries aboutHOL proofs an be leared up. At the same time, always printing impliitassumptions reates a ertain amount of lutter. Further work is planned on137

how to deide exatly when printing impliit assumptions is useful.

138

13 Referenes

139

14 AppendixThis appendix lists (i) the ML funtions whih work as they are under thenew system of ML types (desribed in Chapter ...); (ii) the ML funtionswhih have been re-implemented for the new system of types; and (iii) newfuntions whih have been implemented for the new system of types. Eahfuntion is listed with its main appearane in the text.The funtions whih do not require modi�ation for HOL (Version 11) are:THENTHENLMAP_EVERYEVERYFIRSTMAP_FIRSTNO_TACORELSEREPEATTHENCThe funtions whih have been re-implemented are:NAMED_GEN_TACNAMED_X_GEN_TACNAMED_INDUCT_TACNAMED_SUBST_TACNAMED_SUBST1_TACNAMED_BOOL_CASES_TACNAMED_COND_CASES_TACNAMED_SPEC_TACNAMED_ASSUME_TACNAMED_ACCEPT_TACNAMED_ASM_CASES_TACNAMED_CONJ_TACNAMED_LIST_INDUCT_TACNAMED_ALL_TACNAMED_EQ_TACNAMED_CONV_TACNAMED_EXISTS_TACNAMED_MP_TACNAMED_UNDISCH_TACNAMED_CONTR_TACNAMED_DISCARD_TACNAMED_MATCH_MP_TACNAMED_MATCH_ACCEPT_TACNAMED_SUBST_OCCS_TACNAMED_BETA_TACNAMED_REWRITE_TACNAMED_ASM_REWRITE_TACNAMED_PURE_REWRITE_TACNAMED_ONCE_REWRITE_TACNAMED_PURE_ASM_REWRITE_TACNAMED_PURE_ONCE_REWRITE_TACNAMED_ONCE_ASM_REWRITE_TACNAMED_PURE_ONCE_ASM_REWRITE_TACNAMED_DISCH_TACNAMED_DISCH_THEN 140

NAMED_DISJ_CASES_TACNAMED_DISJ_CASES_THEN2NAMED_DISJ_CASES_THENNAMED_X_CHOOSE_TACNAMED_X_CHOOSE_THENNAMED_CHOOSE_TACNAMED_CHOOSE_THENNAMED_CONJ_ASSUME_TAC2NAMED_CONJUNCTS_THEN2NAMED_CONJUNCTS_THENNAMED_IMP_RES_TACNAMED_RES_TACNAMED_IMP_RES_ASSUME_TACNAMED_IMP_RES_THENNAMED_RES_ASSUME_TACNAMED_RES_THENMY_THEN_TCLMY_ORELSE_TCLMY_REPEAT_TCLMY_ALL_THENMY_NO_THENMY_EVERY_TCLMY_FIRST_TCLNAMED_CHECK_ASSUME_TACNAMED_STRIP_THM_THENNAMED_STRIP_ASSUME_TACNAMED_STRIP_GOAL_THENNAMED_STRIP_TACNAMED_SUBST_ALL_TACNAMED_ASSUME_LIST_TACNAMED_ASSUM_LISTNAMED_FIRST_ASSUMNAMED_CHANGED_TACNAMED_REFL_TACNAMED_THEN_TCLNAMED_ORELSE_TCLNAMED_REPEAT_TCLNAMED_EVERY_TCLNAMED_FIRST_TCLNAMED_ALL_THENNAMED_NO_THENThe new funtions whih have been implemented are:C_NAMED_ASSUME_TAC1C_NAMED_ASSUME_TAC2NAMED_POP_TRACENAMED_POP_TRACE'NAMED_POP_TRACE''NAMED_POP_TRACE'''NAMED_POP_ASSUMNAMED_POP_ASSUM'NAMED_POP_TRACE_LISTNAMED_POP_TRACE_LIST'NAMED_POP_TRACE_LIST''NAMED_POP_ASSUM_LISTNAMED_BASIC_IMP_RES_TACNAMED_PRIM_STRIP_TAC
141

