Title: Temporal Logic and Model Checking

Lecturer: Mike Gordon

Class: Computer Science Tripos, Part II

Term: Lent Term 2015

Lecture 1: 10:00 on Thu, 15 Jan, 2015
Lecture 2: 10:00 on Tue, 20 Jan, 2015
Lecture 3: 10:00 on Thu, 22 Jan, 2015
Lecture 4: 10:00 on Tue, 27 Jan, 2015
Lecture 5: 10:00 on Thu, 29 Jan, 2015
Lecture 6: 10:00 on Tue, 03 Feb, 2015
Lecture 7: 10:00 on Thu, 05 Feb, 2015
Lecture 8: 10:00 on Tue, 10 Feb, 2015

Location: Lecture Theatre 2, WGB

Duration: Eight lectures
Topics and corresponding slides

<table>
<thead>
<tr>
<th>Topic</th>
<th>Slides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to models</td>
<td>1 - 9</td>
</tr>
<tr>
<td>Atomic properties</td>
<td>10</td>
</tr>
<tr>
<td>Trees and paths</td>
<td>11 - 12</td>
</tr>
<tr>
<td>Examples of properties</td>
<td>13 - 16</td>
</tr>
<tr>
<td>Reachability</td>
<td>17</td>
</tr>
<tr>
<td>Introduction to model checking</td>
<td>18 - 26</td>
</tr>
<tr>
<td>Symbolic model checking</td>
<td>27 - 32</td>
</tr>
<tr>
<td>Disjunctive partitioning of BDDs</td>
<td>33 - 35</td>
</tr>
<tr>
<td>Generating counter-examples</td>
<td>36 - 42</td>
</tr>
<tr>
<td>Introduction to temporal logic</td>
<td>43 - 45</td>
</tr>
<tr>
<td>Linear Temporal Logic (LTL)</td>
<td>46 - 58</td>
</tr>
<tr>
<td>Computation Tree Logic (CTL)</td>
<td>59 - 75</td>
</tr>
<tr>
<td>CTL model checking</td>
<td>75 - 83</td>
</tr>
<tr>
<td>History of model checking</td>
<td>84</td>
</tr>
<tr>
<td>Expressibility of LTL and CTL</td>
<td>57 - 58, 85 - 87</td>
</tr>
<tr>
<td>CTL*</td>
<td>88 - 90</td>
</tr>
<tr>
<td>Fairness</td>
<td>91 - 92</td>
</tr>
<tr>
<td>Propositional modal μ-calculus</td>
<td>93</td>
</tr>
<tr>
<td>Sequential Extended Regular Expressions (SEREs)</td>
<td>94 - 95</td>
</tr>
<tr>
<td>Assertion Based Verification (ABV) and PSL</td>
<td>96 - 107</td>
</tr>
<tr>
<td>Dynamic verification: event semantics</td>
<td>108 - 117</td>
</tr>
<tr>
<td>Bisimulation</td>
<td>118 - 120</td>
</tr>
<tr>
<td>Abstraction</td>
<td>121 - 125</td>
</tr>
<tr>
<td>Counterexample Guided Abstraction Refinement (CEGAR)</td>
<td>126</td>
</tr>
<tr>
<td>Summary</td>
<td>127</td>
</tr>
</tbody>
</table>
Temporal Logic and Model Checking

- **Model**
 - mathematical structure extracted from hardware or software

- **Temporal logic**
 - provides a language for specifying functional properties

- **Model checking**
 - checks whether a given property holds of a model

- Model checking is a kind of **static verification**
 - dynamic verification is simulation (HW) or testing (SW)
Models

- A model is (for now) specified by a pair \((S, R)\)
 - \(S\) is a set of states
 - \(R\) is a transition relation

- Models will get more components later
 - \((S, R)\) also called a transition system

- \(R \; s \; s'\) means \(s'\) can be reached from \(s\) in one step
 - here \(R : S \to (S \to \mathbb{B})\) \((\text{where } \mathbb{B} = \{\text{true, false}\})\)
 - more conventional to have \(R \subseteq S \times S\), which is equivalent
 - i.e. \(R_{(\text{this course})} s \; s' \iff (s, s') \in R_{(\text{some textbooks})}\)
A simple example model

- A simple model: \[
\{0, 1, 2, 3\}, \lambda n\ n'. n' = n + 1(\text{mod} 4)
\]

- Where “\(\lambda x. \cdots x \cdots\)” is the function mapping \(x\) to \(\cdots x \cdots\)

- So \(R\ n\ n' = (n' = n + 1(\text{mod} 4))\)

- E.g. \(R\ 0\ 1 \land R\ 1\ 2 \land R\ 2\ 3 \land R\ 3\ 0\)

- Might be extracted from:

DIV: a software example

- Perhaps a familiar program:

```plaintext
0: R:=X;
1: Q:=0;
2: WHILE Y ≤ R DO
   3: (R:=R−Y;
   4: Q:=Q+1)
5:
```

- State \((pc, x, y, r, q)\)
 - \(pc \in \{0, 1, 2, 3, 4, 5\}\) program counter
 - \(x, y, r, q \in \mathbb{Z}\) are the values of \(X, Y, R, Q\)

- Model \((S_{DIV}, R_{DIV})\) where:
 \[
 S_{DIV} = [0..5] \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \quad \text{(where \([m..n] = \{m, m+1, \ldots, n\}\))}
 \]
 \[
 \forall x \ y \ r \ q. \quad R_{DIV} (0, x, y, r, q) (1, x, y, x, q) \quad \land
 R_{DIV} (1, x, y, r, q) (2, x, y, r, 0) \quad \land
 R_{DIV} (2, x, y, r, q) ((if \ y ≤ r then 3 else 5), x, y, r, q) \quad \land
 R_{DIV} (3, x, y, r, q) (4, x, y, (r−y), q) \quad \land
 R_{DIV} (4, x, y, r, q) (2, x, y, r, (q+1))
 \]

- [Above changed from lecture to make \(R_{DIV}\) partial!]
Deriving a transition relation from a state machine

- State machine transition function: \(\delta : \text{Inp} \times \text{Mem} \rightarrow \text{Mem} \)
 - \text{Inp} is a set of inputs
 - \text{Mem} is a memory (set of storable values)

- Model: \((S_\delta, R_\delta)\) where:
 \[S_\delta = \text{Inp} \times \text{Mem} \]
 \[R_\delta (i, m) (i', m') = (m' = \delta(i, m)) \]

- Deterministic machine, non-deterministic transition relation
 - inputs unspecified (determined by environment)
 - so called “input non-determinism”
RCV: a state machine specification of a circuit

- Part of a handshake circuit:

 ![Handshake Circuit Diagram]

- Input: \(\text{dreq} \), Memory: \((q_0, \text{dack})\)

- Relationships between Boolean values on wires:

 \[
 \begin{align*}
 q_{0\text{bar}} &= \neg q_0 \\
 a_0 &= q_{0\text{bar}} \land \text{dack} \\
 \text{or}_0 &= q_0 \lor a_0 \\
 a_1 &= \text{dreq} \land \text{or}_0 \\
 \end{align*}
 \]

- State machine: \(\delta_{\text{RCV}} : \mathbb{B} \times (\mathbb{B} \times \mathbb{B}) \rightarrow (\mathbb{B} \times \mathbb{B}) \)

 \[
 \delta_{\text{RCV}} \left(\text{dreq}, (q_0, \text{dack}) \right) = \left(\text{dreq}, \text{dreq} \land (q_0 \lor (\neg q_0 \land \text{dack})) \right)
 \]

- RTL model – could have lower level model with clock edges
RCV: a model of the circuit

- Circuit from previous slide:

- State represented by a triple of Booleans \((dreq, q_0, dack)\)

- By De Morgan Law: \(q_0 \lor (\neg q_0 \land dack) = q_0 \lor dack\)

- Hence \(\delta_{RCV}\) corresponds to model \((S_{RCV}, R_{RCV})\) where:
 \[
 S_{RCV} = B \times B \times B
 \]
 \[
 R_{RCV} (dreq, q_0, dack) (dreq', q_0', dack') = (q_0' = dreq) \land (dack' = (dreq \land (q_0 \lor dack)))
 \]

 [Note: we are identifying \(B \times B \times B\) with \(B \times (B \times B)\)]
Some comments

- R_{RCV} is **non-deterministic** and **total**
 - $R_{RCV} (1, 1, 1) (0, 1, 1)$ and $R_{RCV} (1, 1, 1) (1, 1, 1)$
 (where $1 = true$ and $0 = false$)
 - $R_{RCV} (dreq, q0, dack) (dreq', dreq, (dreq \land (q0 \lor dack)))$

- R_{DIV} is **deterministic** and **partial**
 - at most one successor state
 - no successor when $pc = 5$

- Non-deterministic models are very common, e.g. from:
 - asynchronous hardware
 - parallel software (more than one thread)

- Can extend any transition relation R to be total:
 \[
 R_{total} s s' = \text{if } (\exists s''. R s s'') \text{ then } R s s' \text{ else } (s' = s) \\
 = R s s' \lor (\neg (\exists s''. R s s'') \land (s' = s))
 \]
 - sometimes totality required
 (e.g. in the book *Model Checking* by Clarke et. al)
JM1: a non-deterministic software example

From Jhala and Majumdar’s tutorial:

<table>
<thead>
<tr>
<th>Thread 1</th>
<th>Thread 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: IF LOCK=0 THEN LOCK:=1;</td>
<td>0: IF LOCK=0 THEN LOCK:=1;</td>
</tr>
<tr>
<td>1: X:=1;</td>
<td>1: X:=2;</td>
</tr>
<tr>
<td>2: IF LOCK=1 THEN LOCK:=0;</td>
<td>2: IF LOCK=1 THEN LOCK:=0;</td>
</tr>
<tr>
<td>3:</td>
<td>3:</td>
</tr>
</tbody>
</table>

Two program counters, state: \(pc_1, pc_2, \text{lock}, x\)

\[S_{JM1} = [0..3] \times [0..3] \times \mathbb{Z} \times \mathbb{Z}\]

\[\forall pc_1 \ pc_2 \ \text{lock} \ x. R_{JM1} (0, pc_2, 0, x) \ (1, pc_2, 1, x) \land \]
\[R_{JM1} (1, pc_2, \text{lock}, x) (2, pc_2, \text{lock}, 1) \land \]
\[R_{JM1} (2, pc_2, 1, x) \ (3, pc_2, 0, x) \land \]
\[R_{JM1} (pc_1, 0, 0, x) \ (pc_1, 1, 1, x) \land \]
\[R_{JM1} (pc_1, 1, \text{lock}, x) (pc_1, 2, \text{lock}, 2) \land \]
\[R_{JM1} (pc_1, 2, 1, x) \ (pc_1, 3, 0, x) \]

Not-deterministic:

\[R_{JM1} (0, 0, 0, x) \ (1, 0, 1, x)\]
\[R_{JM1} (0, 0, 0, x) \ (0, 1, 1, x)\]

Not so obvious that \(R_{JM1}\) is a correct model
Atomic properties (properties of states)

- Atomic properties are true or false of individual states
 - an atomic property p is a function $p : S \rightarrow \mathbb{B}$
 - can also be regarded as a subset of state: $p \subseteq S$

- Example atomic properties of RCV
 (where $1 = \text{true}$ and $0 = \text{false}$)

 $\text{Dreq}(dreq, q0, dack) = (dreq = 1)$
 $\text{NotQ0}(dreq, q0, dack) = (q0 = 0)$
 $\text{Dack}(dreq, q0, dack) = (dack = 1)$
 $\text{NotDreqAndQ0}(dreq, q0, dack) = (dreq = 0) \land (q0 = 1)$

- Example atomic properties of DIV

 $\text{AtStart}(pc, x, y, r, q) = (pc = 0)$
 $\text{AtEnd}(pc, x, y, r, q) = (pc = 5)$
 $\text{InLoop}(pc, x, y, r, q) = (pc \in \{3, 4\})$
 $\text{YleqR}(pc, x, y, r, q) = (y \leq r)$
 $\text{Invariant}(pc, x, y, r, q) = (x = r + (y \times q))$
Model behaviour viewed as a computation tree

- Atomic properties are true or false of individual states
- General properties are true or false of whole behaviour
- Behaviour of \((S, R)\) starting from \(s \in S\) as a tree:

 ![Diagram showing a computation tree with initial state and states after one step, two steps, etc. A path is shown in red.]

- A path is shown in red
- Properties may look at all paths, or just a single path
 - CTL: Computation Tree Logic (all paths from a state)
 - LTL: Linear Temporal Logic (a single path)
Paths

- A path of \((S, R)\) is represented by a function \(\pi : \mathbb{N} \to S\)
 - \(\pi(i)\) is the \(i\)th element of \(\pi\) (first element is \(\pi(0)\))
 - might sometimes write \(\pi_i\) instead of \(\pi(i)\)
 - \(\pi \downarrow i\) is the \(i\)-th tail of \(\pi\) so \(\pi \downarrow i(n) = \pi(i + n)\)
 - successive states in a path must be related by \(R\)

- Path \(R\ s\ \pi\) is true if and only if \(\pi\) is a path starting at \(s\):

 \[
 \text{Path } R \ s \ \pi \ = \ (\pi(0) = s) \land \forall i. \ R(\pi(i)) \ (\pi(i+1))
 \]

where:

\[
\text{Path : } (S \to S \to \mathbb{B}) \to S \to (\mathbb{N} \to S) \to \mathbb{B}
\]

- transition relation
- initial state
- path
Consider this timing diagram:

- Following a rising edge on \(\text{dreq} \), the value of \(\text{dreq} \) remains 1 (i.e. \text{true}) until it is acknowledged by a rising edge on \(\text{dack} \).
- Following a falling edge on \(\text{dreq} \), the value on \(\text{dreq} \) remains 0 (i.e. \text{false}) until the value of \(\text{dack} \) is 0.

A property language is used to formalise such properties.
DIV: example program properties

Example properties of the program DIV.

- on every execution if \texttt{AtEnd} is true then \texttt{Invariant} is true and \texttt{YleqR} is not true
- on every execution there is a state where \texttt{AtEnd} is true
- on any execution if there exists a state where \texttt{YleqR} is true then there is also a state where \texttt{InLoop} is true

Compare these with what is expressible in Hoare logic

- execution: a path starting from a state satisfying \texttt{AtStart}
Recall \(\text{JM1} \): a non-deterministic program example

<table>
<thead>
<tr>
<th>Thread 1</th>
<th>Thread 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: IF LOCK=0 THEN LOCK:=1;</td>
<td>0: IF LOCK=0 THEN LOCK:=1;</td>
</tr>
<tr>
<td>1: X:=1;</td>
<td>1: X:=2;</td>
</tr>
<tr>
<td>2: IF LOCK=1 THEN LOCK:=0;</td>
<td>2: IF LOCK=1 THEN LOCK:=0;</td>
</tr>
<tr>
<td>3:</td>
<td>3:</td>
</tr>
</tbody>
</table>

\[
S_{\text{JM1}} = [0..3] \times [0..3] \times \mathbb{Z} \times \mathbb{Z}
\]

\[
\forall pc_1\ pc_2\ lock\ x. \ R_{\text{JM1}}(0, pc_2, 0, x) (1, pc_2, 1, x) \land
R_{\text{JM1}}(1, pc_2, lock, x) (2, pc_2, lock, 1) \land
R_{\text{JM1}}(2, pc_2, 1, x) (3, pc_2, 0, x) \land
R_{\text{JM1}}(pc_1, 0, 0, x) (pc_1, 1, 1, x) \land
R_{\text{JM1}}(pc_1, 1, lock, x) (pc_1, 2, lock, 2) \land
R_{\text{JM1}}(pc_1, 2, 1, x) (pc_1, 3, 0, x)
\]

- An atomic property:
 - \(\text{NotAt11}(pc_1, pc_2, lock, x) = \neg((pc_1 = 1) \land (pc_2 = 1)) \)

- A non-atomic property:
 - all states reachable from \((0, 0, 0, 0)\) satisfy \(\text{NotAt11} \)
 - this is an example of a reachability property
State satisfying NotAt11 unreachable from \((0, 0, 0, 0)\)

<table>
<thead>
<tr>
<th>Thread 1</th>
<th>Thread 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: IF LOCK=0 THEN LOCK:=1;</td>
<td>0: IF LOCK=0 THEN LOCK:=1;</td>
</tr>
<tr>
<td>1: X:=1;</td>
<td>1: X:=2;</td>
</tr>
<tr>
<td>2: IF LOCK=1 THEN LOCK:=0;</td>
<td>2: IF LOCK=1 THEN LOCK:=0;</td>
</tr>
<tr>
<td>3:</td>
<td></td>
</tr>
</tbody>
</table>

\[\begin{align*}
R_{JM1} (0, pc_2, 0, x) & \quad (1, pc_2, 1, x) \quad R_{JM1} (pc_1, 0, 0, x) \quad (pc_1, 1, 1, x) \\
R_{JM1} (1, pc_2, lock, x) & \quad (2, pc_2, lock, 1) \quad R_{JM1} (pc_1, 1, lock, x) \quad (pc_1, 2, lock, 2) \\
R_{JM1} (2, pc_2, 1, x) & \quad (3, pc_2, 0, x) \quad R_{JM1} (pc_1, 2, 1, x) \quad (pc_1, 3, 0, x) \\
\end{align*} \]

\[\text{NotAt11}(pc_1, pc_2, lock, x) = \neg((pc_1 = 1) \land (pc_2 = 1)) \]

\[\text{Can only reach } pc_1 = 1 \land pc_2 = 1 \text{ via:} \]

\[\begin{align*}
R_{JM1} (0, pc_2, 0, x) & \quad (1, pc_2, 1, x) \quad \text{i.e. a step} \quad R_{JM1} (0, 1, 0, x) \quad (1, 1, 1, x) \\
R_{JM1} (pc_1, 0, 0, x) & \quad (pc_1, 1, 1, x) \quad \text{i.e. a step} \quad R_{JM1} (1, 0, 0, x) \quad (1, 1, 1, x) \\
\end{align*} \]

\[\text{But:} \]

\[\begin{align*}
R_{JM1} (pc_1, pc_2, lock, x) (pc_1', pc_2', lock', x') & \land pc_1' = 0 \land pc_2' = 1 \Rightarrow lock' = 1 \\
\land R_{JM1} (pc_1, pc_2, lock, x) (pc_1', pc_2', lock', x') & \land pc_1' = 1 \land pc_2' = 0 \Rightarrow lock' = 1 \\
\end{align*} \]

\[\text{So can never reach } (0, 1, 0, x) \text{ or } (1, 0, 0, x) \]

\[\text{So can’t reach } (1, 1, 1, x), \text{ hence never } (pc_1 = 1) \land (pc_2 = 1) \]

\[\text{Hence all states reachable from } (0, 0, 0, 0) \text{ satisfy } \text{NotAt11} \]
Reachability

- \(R s s' \) means \(s' \) reachable from \(s \) in one step

- \(R^n s s' \) means \(s' \) reachable from \(s \) in \(n \) steps
 \[
 R^0 s s' = (s = s')
 \]
 \[
 R^{n+1} s s' = \exists s''. R s s'' \land R^n s'' s'
 \]

- \(R^* s s' \) means \(s' \) reachable from \(s \) in finite steps
 \[
 R^* s s' = \exists n. R^n s s'
 \]

- Note: \(R^* s s' \iff \exists \pi n. \text{Path } R s \pi \land (s' = \pi(n)) \)

- The set of states reachable from \(s \) is \(\{s' | R^* s s'\} \)

- Verification problem: all states reachable from \(s \) satisfy \(p \)
 - verify truth of \(\forall s'. R^* s s' \Rightarrow p(s') \)
 - e.g. all states reachable from \((0,0,0,0)\) satisfy \(\text{NotAt11} \)
 - i.e. \(\forall s'. R^*_\text{JM1} (0,0,0,0) s' \Rightarrow \text{NotAt11}(s') \)
Models and model checking

- Assume a model \((S, R)\)
- Assume also a set \(S_0 \subseteq S\) of initial states
- Assume also a set \(AP\) of atomic properties
 - allows different models to have same atomic properties
- Assume a labelling function \(L : S \rightarrow \mathcal{P}(AP)\)
 - \(p \in L(s)\) means “\(s\) labelled with \(p\)” or “\(p\) true of \(s\)”
 - previously properties were functions \(p : S \rightarrow \mathbb{B}\)
 - now \(p \in AP\) is distinguished from \(\lambda s. p \in L(s)\)
 - assume \(T, F \in AP\) with forall \(s: T \in L(s)\) and \(F \notin L(s)\)
- A Kripke structure is a tuple \((S, S_0, R, L)\)
 - often the term “model” is used for a Kripke structure
 - i.e. a model is \((S, S_0, R, L)\) rather than just \((S, R)\)
- Model checking computes whether \((S, S_0, R, L) \models \phi\)
 - \(\phi\) is a property expressed in a property language
 - informally \(M \models \phi\) means “wff \(\phi\) is true in model \(M\)”
Minimal property language: \(\phi \) is AG \(p \) where \(p \in AP \)

- Consider properties \(\phi \) of form AG \(p \) where \(p \in AP \)
 - “AG” stands for “Always Globally”
 - from CTL (same meaning, more elaborately expressed)

- Assume \(M = (S, S_0, R, L) \)

- Reachable states of \(M \) are \(\{s' | \exists s \in S_0. R^* s s'\} \)
 - i.e. the set of states reachable from an initial state

- Define Reachable \(M = \{s' | \exists s \in S_0. R^* s s'\} \)

- \(M \models AG p \) means \(p \) true of all reachable states of \(M \)

- If \(M = (S, S_0, R, L) \) then \(M \models \phi \) formally defined by:
 \[
 M \models AG p \iff \forall s'. s' \in \text{Reachable } M \Rightarrow p \in L(s')
 \]
Model checking $M \models AGp$

- $M \models AGp \iff \forall s'. s' \in \text{Reachable } M \Rightarrow p \in L(s')$
 \[\iff \text{Reachable } M \subseteq \{s' \mid p \in L(s')\} \]

checked by:
- first computing Reachable M
- then checking p true of all its members

Let S abbreviate $\{s' \mid \exists s \in S_0. R^* s s'\}$ (i.e. Reachable M)

Compute S iteratively: $S = S_0 \cup S_1 \cup \cdots \cup S_n \cup \cdots$
 - i.e. $S = \bigcup_{n=0}^{\infty} S_n$
 - where: $S_0 = S_0$ (set of initial states)
 - and inductively: $S_{n+1} = S_n \cup \{s' \mid \exists s \in S_n \land R s s'\}$

Clearly $S_0 \subseteq S_1 \subseteq \cdots \subseteq S_n \subseteq \cdots$

Hence if $S_m = S_{m+1}$ then $S = S_m$

Algorithm: compute S_0, S_1, \ldots, until no change; check all members of computed set labelled with p
compute S_0, S_1, \ldots, until no change; check p holds of all members of computed set

- Does the algorithm terminate?
 - yes, if set of states is finite, because then no infinite chains:
 $$S_0 \subset S_1 \subset \cdots \subset S_n \subset \cdots$$

- How to represent S_0, S_1, \ldots?
 - explicitly (e.g. lists or something more clever)
 - symbolic expression

- Huge literature on calculating set of reachable states
Example: RCV

- Recall the handshake circuit:

- State represented by a triple of Booleans \((dreq, q_0, dack)\)

- A model of RCV is \(M_{RCV}\) where:

\[
M = (S_{RCV}, \{(1, 1, 1)\}, R_{RCV}, L_{RCV})
\]

and

\[
R_{RCV} (dreq, q_0, dack) (dreq', q_0', dack') = (q_0' = dreq) \land (dack' = (dreq \land (q_0 \lor dack)))
\]

- \(AP\) and labelling function \(L_{RCV}\) discussed later
Possible states for RCV:
\{000, 001, 010, 011, 100, 101, 110, 111\}
where $b_2 b_1 b_0$ denotes state
\[d_{req} = b_2 \land q_0 = b_1 \land d_{ack} = b_0 \]

Graph of the transition relation:
Computing **Reachable** M_{RCV}

Define:

\[
S_0 = \{ b_2 b_1 b_0 \mid b_2 b_1 b_0 \in \{111\} \} \\
= \{111\}
\]

\[
S_{i+1} = S_i \cup \{ s' \mid \exists s \in S_i. \ R_{RCV} \ s \ s' \} \\
= S_i \cup \{ b'_2 b'_1 b'_0 \mid \\
\quad \exists b_2 b_1 b_0 \in S_i. (b'_1 = b_2) \land (b'_0 = b_2 \land (b_1 \lor b_0)) \}
\]
Computing **Reachable** M_{RCV} (continued)

Compute:

\[
\begin{align*}
S_0 &= \{111\} \\
S_1 &= \{111\} \cup \{011\} \\
 &= \{111, 011\} \\
S_2 &= \{111, 011\} \cup \{000, 100\} \\
 &= \{111, 011, 000, 100\} \\
S_3 &= \{111, 011, 000, 100\} \cup \{010, 110\} \\
 &= \{111, 011, 000, 100, 010, 110\} \\
S_i &= S_3 \quad (i > 3)
\end{align*}
\]

Hence **Reachable** $M_{RCV} = \{111, 011, 000, 100, 010, 110\}$
Model checking $M_{RCV} \models AG\ p$

- $M = (S_{RCV}, \{111\}, R_{RCV}, L_{RCV})$

- To check $M_{RCV} \models AG\ p$
 - compute $\text{Reachable } M_{RCV} = \{111, 011, 000, 100, 010, 110\}$
 - check $\text{Reachable } M_{RCV} \subseteq \{s \mid p \in L_{RCV}(s)\}$
 - i.e. check if $s \in \text{Reachable } M_{RCV}$ then $p \in L_{RCV}(s)$, i.e.:
 - $p \in L_{RCV}(111) \land$
 - $p \in L_{RCV}(011) \land$
 - $p \in L_{RCV}(000) \land$
 - $p \in L_{RCV}(100) \land$
 - $p \in L_{RCV}(010) \land$
 - $p \in L_{RCV}(110)$

- Example
 - if $AP = \{A, B\}$
 - and $L_{RCV}(s) = \text{if } s \in \{001, 101\} \text{ then } \{A\} \text{ else } \{B\}$
 - then $M_{RCV} \models AG\ A$ is not true, but $M_{RCV} \models AG\ B$ is true
Symbolic Boolean model checking of reachability

- Assume states are \(n \)-tuples of Booleans \((b_1, \ldots, b_n)\)
 - \(b_i \in \mathbb{B} = \{\text{true, false}\} (= \{1, 0\}) \)
 - \(S = \mathbb{B}^n \), so \(S \) is finite: \(2^n \) states

- Assume \(n \) distinct Boolean variables: \(v_1, \ldots, v_n \)
 - e.g. if \(n = 3 \) then could have \(v_1 = x \), \(v_2 = y \), \(v_3 = z \)

- Boolean formula \(f(v_1, \ldots, v_n) \) represents a subset of \(S \)
 - \(f(v_1, \ldots, v_n) \) only contains variables \(v_1, \ldots, v_n \)
 - \(f(b_1, \ldots, b_n) \) denotes result of substituting \(b_i \) for \(v_i \)
 - \(f(v_1, \ldots, v_n) \) determines \(\{(b_1, \ldots, b_n) \mid f(b_1, \ldots, b_n) \Leftrightarrow \text{true}\} \)

- Example \(\neg(x = y) \) represents \(\{(\text{true, false}), (\text{false, true})\} \)

- Transition relations also represented by Boolean formulae
 - e.g. \(R_{RCV} \) represented by:
 \[
 (q_0' = dreq) \land (dack' = (dreq \land (q_0 \lor (\neg q_0 \land dack))))
 \]
Symbolically represent Boolean formulae as BDDs

- Key features of Binary Decision Diagrams (BDDs):
 - canonical \textit{(given a variable ordering)}
 - efficient to manipulate

- Variables:
 \(v = \text{if } v \text{ then } 1 \text{ else } 0\)
 \(\neg v = \text{if } v \text{ then } 0 \text{ else } 1\)

- Example: BDDs of variable \(v\) and \(\neg v\)

- Example: BDDs of \(v_1 \land v_2\) and \(v_1 \lor v_2\)
More BDD examples

- BDD of $v_1 = v_2$

- BDD of $v_1 \neq v_2$
BDD of a transition relation

- BDDs of

\[(v_1' = (v_1 = v_2)) \land (v_2' = (v_1 \neq v_2))\]

with two different variable orderings

- Exercise: draw BDD of \(R_{RCV}\)
Standard BDD operations

- If formulae f_1, f_2 represents sets S_1, S_2, respectively then $f_1 \land f_2, f_1 \lor f_2$ represent $S_1 \cap S_2, S_1 \cup S_2$ respectively

- Standard algorithms compute Boolean operation on BDDs

- Abbreviate (v_1, \ldots, v_n) to \vec{v}

- If $f(\vec{v})$ represents S and $g(\vec{v}, \vec{v}')$ represents $\{(\vec{v}, \vec{v}') \mid R \vec{v} \vec{v}'\}$ then $\exists \vec{u}. f(\vec{u}) \land g(\vec{u}, \vec{v})$ represents $\{\vec{v} \mid \exists \vec{u}. \vec{u} \in S \land R \vec{u} \vec{v}\}$

- Can compute BDD of $\exists \vec{u}. h(\vec{u}, \vec{v})$ from BDD of $h(\vec{u}, \vec{v})$
 - e.g. BDD of $\exists v_1. h(v_1, v_2)$ is BDD of $h(T, v_2) \lor h(F, v_2)$

- From BDD of formula $f(v_1, \ldots, v_n)$ can compute b_1, \ldots, b_n such that if $v_1 = b_1, \ldots, v_n = b_n$ then $f(b_1, \ldots, b_n) \iff \text{true}$
 - b_1, \ldots, b_n is a satisfying assignment (SAT problem)
 - used for counterexample generation (see later)
Reachable States via BDDs

- Assume $M = (S, S_0, R, L)$ and $S = \mathbb{B}^n$
- Represent R by Boolean formulae $g(\vec{v}, \vec{v}')$
- Iteratively define formula $f_n(\vec{v})$ representing S_n
 \[
 f_0(\vec{v}) = \text{formula representing } S_0 \\
 f_{n+1}(\vec{v}) = f_n(\vec{v}) \lor (\exists \vec{u}. \ f_n(\vec{u}) \land g(\vec{u}, \vec{v}))
 \]
- Let B_0, B_R be BDDs representing $f_0(\vec{v}), g(\vec{v}, \vec{v}')$
- Iteratively compute BDDs B_n representing f_n
 \[
 B_{n+1} = B_n \lor (\exists \vec{u}. \ B_n[\vec{u}/\vec{v}] \land B_R[\vec{u}, \vec{v}/\vec{v}', \vec{v}'])
 \]
 - efficient using (blue underlined) standard BDD algorithms (renaming, conjunction, disjunction, quantification)
 - BDD B_n only contains variables \vec{v}: represents $S_n \subseteq S$
- At each iteration check $B_{n+1} = B_n$ efficient using BDDs
 - when $B_{n+1} = B_n$ can conclude B_n represents Reachable M
 - we call this BDD B_M in a later slide (i.e. $B_M = B_n$)
Example BDD optimisation: disjunctive partitioning

Three state transition functions in parallel

\[\delta_x, \delta_y, \delta_z : \mathbb{B} \times \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \]

Transition relation (asynchronous interleaving semantics):

\[
R (x, y, z) (x', y', z') = \\
(x' = \delta_x(x, y, z) \land y' = y \land z' = z) \lor \\
(x' = x \land y' = \delta_y(x, y, z) \land z' = z) \lor \\
(x' = x \land y' = y \land z' = \delta_z(x, y, z))
\]
Avoiding building big BDDs

Transition relation for three transition functions in parallel
\[R(x, y, z) (x', y', z') = \]
\[(x' = \delta_x(x, y, z) \land y' = y \land z' = z) \lor \]
\[(x' = x \land y' = \delta_y(x, y, z) \land z' = z) \lor \]
\[(x' = x \land y' = y \land z' = \delta_z(x, y, z)) \]

Recall symbolic iteration:
\[f_{n+1}(\vec{v}) = f_n(\vec{v}) \lor (\exists \vec{u}. f_n(\vec{u}) \land g(\vec{u}, \vec{v})) \]

For this particular \(R \) (see next slide):
\[f_{n+1}(x, y, z) \]
\[= f_n(x, y, z) \lor (\exists \overline{x} \overline{y} \overline{z}. f_n(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}, \overline{z}) (x, y, z)) \]
\[= f_n(x, y, z) \lor (\exists \overline{x}. f_n(\overline{x}, y, z) \land x = \delta_x(\overline{x}, y, z)) \lor \]
\[(\exists \overline{y}. f_n(x, \overline{y}, z) \land y = \delta_y(x, \overline{y}, z)) \lor \]
\[(\exists \overline{z}. f_n(x, y, \overline{z}) \land z = \delta_z(x, y, \overline{z})) \]

Don’t need to calculate BDD of \(R \)!
Disjunctive partitioning – Exercise: understand this

\[\exists x \, y \, z. \, f_n(x, y, z) \land R(x, y, z) (x, y, z) \]

\[= \exists x \, y \, z. \, f_n(x, y, z) \land ((x = \delta_x(x, y, z) \land y = \bar{y} \land z = \bar{z}) \lor (x = \bar{x} \land y = \delta_y(x, y, z) \land z = \bar{z}) \lor (x = \bar{x} \land y = \bar{y} \land z = \delta_z(x, y, z))) \]

\[= (\exists x \, y \, z. \, f_n(x, y, z) \land x = \delta_x(x, y, z) \land y = \bar{y} \land z = \bar{z}) \lor (\exists x \, y \, z. \, f_n(x, y, z) \land x = \bar{x} \land y = \delta_y(x, y, z) \land z = \bar{z}) \lor (\exists x \, y \, z. \, f_n(x, y, z) \land x = \bar{x} \land y = \bar{y} \land z = \delta_z(x, y, z)) \]

\[= ((\exists x. \, f_n(x, y, z) \land x = \delta_x(x, y, z)) \land (\exists y. \, y = \bar{y}) \land (\exists z. \, z = \bar{z})) \lor ((\exists x. \, x = \bar{x}) \land (\exists y. \, f_n(x, y, z) \land y = \delta_y(x, y, z)) \land (\exists z. \, z = \bar{z})) \lor ((\exists x. \, x = \bar{x}) \land (\exists \bar{y}. \, y = \bar{y}) \land (\exists \bar{z}. \, f_n(x, y, z) \land z = \delta_z(x, y, z)))) \]

\[= (\exists x. \, f_n(x, y, z) \land x = \delta_x(x, y, z)) \lor (\exists y. \, f_n(x, y, z) \land y = \delta_y(x, y, z)) \lor (\exists z. \, f_n(x, y, z) \land z = \delta_z(x, y, z)) \]
Verification and counterexamples

- Typical safety question:
 - is property p true in all reachable states?
 - i.e. check $M \models AGp$
 - i.e. is $\forall s. s \in \text{Reachable } M \Rightarrow p s$

- Check using BDDs
 - compute BDD B_M of Reachable M
 - compute BDD B_p of $p(\bar{v})$
 - check if BDD of $B_M \Rightarrow B_p$ is the single node 1

- Valid because $true$ represented by a unique BDD (canonical property)

- If BDD is not 1 can get counterexample
Generating counterexamples (general idea)

BDD algorithms can find **satisfying assignments** (SAT)

- Suppose not all reachable states of model M satisfy p
- i.e. $\exists s \in \text{Reachable } M. \neg(p(s))$
- Set of reachable state S given by: $S = \bigcup_{n=0}^{\infty} S_n$
- Iterate to find least n such that $\exists s \in S_n. \neg(p(s))$
- Use SAT to find b_n such that $b_n \in S_n \land \neg(p(b_n))$
- Use SAT to find b_{n-1} such that $b_{n-1} \in S_{n-1} \land R b_{n-1} b_n$
- Use SAT to find b_{n-2} such that $b_{n-2} \in S_{n-2} \land R b_{n-2} b_{n-1}$

 ...
- Iterate to find $b_0, b_1, \ldots, b_{n-1}, b_n$ where $b_i \in S_i \land R b_{i-1} b_i$
- Then $b_0 \ b_1 \ \cdots \ b_{n-1} \ b_n$ is a path to a counterexample
Use SAT to find s_{n-1} such that $s_{n-1} \in S_{n-1} \land R \ s_{n-1} \ s_n$

- Suppose states s, s' symbolically represented by \vec{v}, \vec{v}'
- Suppose BDD B_i represents $\vec{v} \in S_i \ (1 \leq i \leq n)$
- Suppose BDD B_R represents $R \ \vec{v} \ \vec{v}'$
- Then BDD
 \[
 \left(B_{n-1} \land B_R[\vec{b}_n/\vec{v}'] \right)
 \]
 represents
 $\vec{v} \in S_{n-1} \land R \ \vec{v} \ \vec{b}_n$

- Use SAT to find a valuation \vec{b}_{n-1} for \vec{v}

- Then BDD
 \[
 \left(B_{n-1} \land B_R[\vec{b}_n/\vec{v}'] \right)[\vec{b}_{n-1}/\vec{v}]
 \]
 represents
 $\vec{b}_{n-1} \in S_{n-1} \land R \ \vec{b}_{n-1} \ \vec{b}_n$
Generating counterexamples with BDDs

BDD algorithms can find **satisfying assignments** (SAT)

- $M = (S, S_0, R, L)$ and $B_0, B_1, \ldots , B_M, B_R, B_p$ as earlier
- Suppose $B_M \Rightarrow B_p$ is not \top
- Must exist a state $s \in \text{Reachable } M$ such that $\neg(p \ s)$
- Let $B_{\neg p}$ be the BDD representing $\neg(p \ \vec{v})$
- Iterate to find first n such that $B_n \Delta B_{\neg p}$
- Use SAT to find \vec{b}_n such that $(B_n \Delta B_{\neg p})[\vec{b}_n/\vec{v}]$
- Use SAT to find \vec{b}_{n-1} such that $(B_{n-1} \Delta B_R[\vec{b}_n/\vec{v}'])[\vec{b}_{n-1}/\vec{v}]$
- For $0 < i < n$ find \vec{b}_{i-1} such that $(B_{i-1} \Delta B_R[\vec{b}_i/\vec{v}'])[\vec{b}_{i-1}/\vec{v}]$
- $\vec{b}_0, \ldots, \vec{b}_i, \ldots, \vec{b}_n$ is a counterexample trace
- Sometimes can use partitioning to avoid constructing B_R
Example (from an exam)

Consider a 3x3 array of 9 switches

Suppose each switch 1, 2, ..., 9 can either be on or off, and that toggling any switch will automatically toggle all its immediate neighbours. For example, toggling switch 5 will also toggle switches 2, 4, 6 and 8, and toggling switch 6 will also toggle switches 3, 5 and 9.

(a) Devise a state space [4 marks] and transition relation [6 marks] to represent the behavior of the array of switches

You are given the problem of getting from an initial state in which even numbered switches are on and odd numbered switches are off, to a final state in which all the switches are off.

(b) Write down predicates on your state space that characterises the initial [2 marks] and final [2 marks] states.

(c) Explain how you might use a model checker to find a sequences of switches to toggle to get from the initial to final state. [6 marks]

You are not expected to actually solve the problem, but only to explain how to represent it in terms of model checking.
Solution

A state is a vector \((v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9)\), where \(v_i \in \mathbb{B}\)

A transition relation \(\text{Trans}\) is then defined by:

\[
\text{Trans}(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9)(v_1', v_2', v_3', v_4', v_5', v_6', v_7', v_8', v_9') =

\begin{align*}
&((v_1' = \neg v_1) \land (v_2' = \neg v_2) \land (v_3' = v_3) \land (v_4' = \neg v_4) \land (v_5' = v_5) \land \\
&(v_6' = v_6) \land (v_7' = v_7) \land (v_8' = v_8) \land (v_9' = v_9)) \quad \text{(toggle switch 1)}
\end{align*}

\begin{align*}
&\lor ((v_1' = v_1) \land (v_2' = \neg v_2) \land (v_3' = \neg v_3) \land (v_4' = v_4) \land (v_5' = v_5) \land \\
&(v_6' = v_6) \land (v_7' = v_7) \land (v_8' = v_8) \land (v_9' = v_9)) \quad \text{(toggle switch 2)}
\end{align*}

\begin{align*}
&\lor ((v_1' = \neg v_1) \land (v_2' = v_2) \land (v_3' = v_3) \land (v_4' = \neg v_4) \land (v_5' = \neg v_5) \land \\
&(v_6' = v_6) \land (v_7' = \neg v_7) \land (v_8' = v_8) \land (v_9' = v_9)) \quad \text{(toggle switch 3)}
\end{align*}

\begin{align*}
&\lor ((v_1' = v_1) \land (v_2' = \neg v_2) \land (v_3' = \neg v_3) \land (v_4' = v_4) \land (v_5' = v_5) \land \\
&(v_6' = \neg v_6) \land (v_7' = v_7) \land (v_8' = v_8) \land (v_9' = v_9)) \quad \text{(toggle switch 4)}
\end{align*}

\begin{align*}
&\lor ((v_1' = v_1) \land (v_2' = \neg v_2) \land (v_3' = \neg v_3) \land (v_4' = v_4) \land (v_5' = \neg v_5) \land \\
&(v_6' = \neg v_6) \land (v_7' = v_7) \land (v_8' = \neg v_8) \land (v_9' = v_9)) \quad \text{(toggle switch 5)}
\end{align*}

\begin{align*}
&\lor ((v_1' = v_1) \land (v_2' = v_2) \land (v_3' = v_3) \land (v_4' = v_4) \land (v_5' = v_5) \land \\
&(v_6' = \neg v_6) \land (v_7' = v_7) \land (v_8' = v_8) \land (v_9' = \neg v_9)) \quad \text{(toggle switch 6)}
\end{align*}

\begin{align*}
&\lor ((v_1' = v_1) \land (v_2' = v_2) \land (v_3' = v_3) \land (v_4' = \neg v_4) \land (v_5' = v_5) \land \\
&(v_6' = v_6) \land (v_7' = \neg v_7) \land (v_8' = v_8) \land (v_9' = v_9)) \quad \text{(toggle switch 7)}
\end{align*}

\begin{align*}
&\lor ((v_1' = v_1) \land (v_2' = v_2) \land (v_3' = v_3) \land (v_4' = v_4) \land (v_5' = \neg v_5) \land \\
&(v_6' = v_6) \land (v_7' = \neg v_7) \land (v_8' = v_8) \land (v_9' = \neg v_9)) \quad \text{(toggle switch 8)}
\end{align*}

\begin{align*}
&\lor ((v_1' = v_1) \land (v_2' = v_2) \land (v_3' = v_3) \land (v_4' = v_4) \land (v_5' = v_5) \land \\
&(v_6' = \neg v_6) \land (v_7' = v_7) \land (v_8' = \neg v_8) \land (v_9' = \neg v_9)) \quad \text{(toggle switch 9)}
\end{align*}
Predicates \textit{Init}, \textit{Final} characterising the initial and final states, respectively, are defined by:

\begin{align*}
\text{Init}(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9) &= \neg v_1 \land v_2 \land \neg v_3 \land v_4 \land \neg v_5 \land v_6 \land \neg v_7 \land v_8 \land \neg v_9 \\
\text{Final}(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9) &= \neg v_1 \land \neg v_2 \land \neg v_3 \land \neg v_4 \land \neg v_5 \land \neg v_6 \land \neg v_7 \land \neg v_8 \land \neg v_9
\end{align*}

Model checkers can find counter-examples to properties, and sequences of transitions from an initial state to a counter-example state. Thus we could use a model checker to find a trace to a counter-example to the property that

\[\neg \text{Final}(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9) \]
Properties

- \(\forall s \in S_0. \forall s'. R^* s s' \Rightarrow p \) says \(p \) true in all reachable states

- Might want to verify other properties
 1. DeviceEnabled holds infinitely often along every path
 2. From any state it is possible to get to a state where Restart holds
 3. After a three or more consecutive occurrences of Req there will eventually be an Ack

- Temporal logic can express such properties
- There are several temporal logics in use
 - LTL is good for the first example above
 - CTL is good for the second example
 - PSL is good for the third example

- Model checking:
 - Emerson, Clarke & Sifakis: Turing Award 2008
 - widely used in industry: first hardware, later software
Temporal logic (originally called “tense logic”)

Temporal logic: deductive system for reasoning about time
- temporal formulae for expressing temporal statements
- deductive system for proving theorems

Temporal logic model checking
- uses semantics to check truth of temporal formulae in models

Temporal logic proof systems also important in CS
- use pioneered by Amir Pnueli (1996 Turing Award)
- not considered in this course

Recommended: http://plato.stanford.edu/entries/prior/
Temporal logic formulae (statements)

- Many different languages of temporal statements
 - linear time (LTL)
 - branching time (CTL)
 - finite intervals (SEREs)
 - industrial languages (PSL, SVA)

- Prior used linear time, Kripke suggested branching time:

 ... we perhaps should not regard time as a linear series ... there are several possibilities for what the next moment may be like - and for each possible next moment, there are several possibilities for the moment after that. Thus the situation takes the form, not of a linear sequence, but of a 'tree'.

 [Saul Kripke, 1958 (aged 17, still at school)]

- CS issues different from philosophical issues
 - Moshe Vardi: “Branching vs. Linear Time: Final Showdown”

 [Link: http://www.computer.org/portal/web/awards/Vardi]

Moshe Vardi
www.computer.org

“For fundamental and lasting contributions to the development of logic as a unifying foundational framework and a tool for modeling computational systems”

2011 Harry H. Goode Memorial Award Recipient
Linear Temporal Logic (LTL)

- Grammar of *well formed formulae* (wff) ϕ

 $\phi ::= p \quad$ (Atomic formula: $p \in AP$)

 $\vdash \neg \phi \quad$ (Negation)

 $\vdash \phi_1 \lor \phi_2 \quad$ (Disjunction)

 $\vdash X\phi \quad$ (successor)

 $\vdash F\phi \quad$ (sometimes)

 $\vdash G\phi \quad$ (always)

 $\vdash [\phi_1 U \phi_2] \quad$ (Until)

- Details differ from Prior’s tense logic – but similar ideas

- Semantics define when ϕ true in model M

 - where $M = (S, S_0, R, L)$ – a Kripke structure

 - notation: $M \models \phi$ means ϕ true in model M

 - model checking algorithms compute this (when decidable)
$M \models \phi$ means “wff ϕ is true in model M”

- If $M = (S, S_0, R, L)$ then
 \[\pi \text{ is an } M\text{-path starting from } s \text{ iff } \text{Path } R s \pi \]

- If $M = (S, S_0, R, L)$ then we define $M \models \phi$ to mean:
 \[\phi \text{ is true on all } M\text{-paths starting from a member of } S_0 \]

- We will define $\mathcal{M}(\pi)$ to mean
 \[\phi \text{ is true on the } M\text{-path } \pi \]

- Thus $M \models \phi$ will be formally defined by:
 \[M \models \phi \iff \forall \pi \ s. \ s \in S_0 \land \text{Path } R s \pi \Rightarrow \mathcal{M}(\pi) \]

- It remains to actually define \mathcal{M} for all wffs ϕ
Definition of $\llbracket \phi \rrbracket_M(\pi)$

- $\llbracket \phi \rrbracket_M(\pi)$ is the application of function $\llbracket \phi \rrbracket_M$ to path π
 - thus $\llbracket \phi \rrbracket_M : (\mathbb{N} \rightarrow S) \rightarrow \mathbb{B}$

- Let $M = (S, S_0, R, L)$

 $\llbracket \phi \rrbracket_M$ is defined by structural induction on ϕ

 $\llbracket \rho \rrbracket_M(\pi) = \rho \in L(\pi \ 0)$
 $\llbracket \neg \phi \rrbracket_M(\pi) = \neg(\llbracket \phi \rrbracket_M(\pi))$
 $\llbracket \phi_1 \lor \phi_2 \rrbracket_M(\pi) = \llbracket \phi_1 \rrbracket_M(\pi) \lor \llbracket \phi_2 \rrbracket_M(\pi)$
 $\llbracket X \phi \rrbracket_M(\pi) = \llbracket \phi \rrbracket_M(\pi \downarrow 1)$
 $\llbracket F \phi \rrbracket_M(\pi) = \exists i. \llbracket \phi \rrbracket_M(\pi \downarrow i)$
 $\llbracket G \phi \rrbracket_M(\pi) = \forall i. \llbracket \phi \rrbracket_M(\pi \downarrow i)$
 $\llbracket [\phi_1 \mathbf{U} \phi_2] \rrbracket_M(\pi) = \exists i. \llbracket \phi_2 \rrbracket_M(\pi \downarrow i) \land \forall j. j<i \Rightarrow \llbracket \phi_1 \rrbracket_M(\pi \downarrow j)$

- We look at each of these semantic equations in turn
\[\llbracket p \rrbracket_M(\pi) = p(\pi 0)\]

- Assume \(M = (S, S_0, R, L) \)

- We have: \(\llbracket p \rrbracket_M(\pi) = p \in L(\pi 0) \)
 - \(p \) is an atomic property, i.e. \(p \in AP \)
 - \(\pi : \mathbb{N} \to S \) so \(\pi 0 \in S \)
 - \(\pi 0 \) is the first state in path \(\pi \)
 - \(p \in L(\pi 0) \) is true iff atomic property \(p \) holds of state \(\pi 0 \)

- \(\llbracket p \rrbracket_M(\pi) \) means \(p \) holds of the first state in path \(\pi \)

- \(T, F \in AP \) with \(T \in L(s) \) and \(F \not\in L(s) \) for all \(s \in S \)
 - \(\llbracket T \rrbracket_M(\pi) \) is always true
 - \(\llbracket F \rrbracket_M(\pi) \) is always false
\[
\neg \phi_M(\pi) = \neg ([\phi]_M(\pi)) \\
[\phi_1 \lor \phi_2]_M(\pi) = [\phi_1]_M(\pi) \lor [\phi_2]_M(\pi)
\]

- \([\neg \phi]_M(\pi) = \neg ([\phi]_M(\pi))\)
 - \([\neg \phi]_M(\pi)\) true iff \([\phi]_M(\pi)\) is not true

- \([\phi_1 \lor \phi_2]_M(\pi) = [\phi_1]_M(\pi) \lor [\phi_2]_M(\pi)\)
 - \([\phi_1 \lor \phi_2]_M(\pi)\) true iff \([\phi_1]_M(\pi)\) is true or \([\phi_2]_M(\pi)\) is true
\[
\llbracket X \phi \rrbracket_M(\pi) = \llbracket \phi \rrbracket_M(\pi \downarrow 1)
\]

- \(X \phi\) is true iff \(\phi\) is true starting at the second state of \(\pi\)

\(\pi \downarrow 1\) is \(\pi\) with the first state chopped off:

\[
\begin{align*}
\pi \downarrow 1(0) &= \pi(1 + 0) = \pi(1) \\
\pi \downarrow 1(1) &= \pi(1 + 1) = \pi(2) \\
\pi \downarrow 1(2) &= \pi(1 + 2) = \pi(3) \\
&\vdots
\end{align*}
\]
\[\text{[]F}\phi M(\pi) = \exists i. \text{[]}\phi M(\pi \downarrow i) \]

- **[]F\phi M(\pi) = \exists i. []\phi M(\pi \downarrow i)**

 - \(\pi \downarrow i \) is \(\pi \) with the first \(i \) states chopped off

 \[\begin{align*}
 \pi \downarrow i(0) &= \pi(i + 0) = \pi(i) \\
 \pi \downarrow i(1) &= \pi(i + 1) \\
 \pi \downarrow i(2) &= \pi(i + 2) \\
 &\vdots
 \end{align*} \]

 - **[]\phi M(\pi \downarrow i) true iff []\phi M true starting \(i \) states along \(\pi \)**

- **[]F\phi M(\pi) true iff []\phi M true starting somewhere along \(\pi \)**

- "F\phi" is read as "sometimes \(\phi \)"
\[
[G\phi]_M(\pi) = \forall i. [\phi]_M(\pi \downarrow i)
\]

- \([G\phi]_M(\pi) = \forall i. [\phi]_M(\pi \downarrow i)\)
 - \(\pi \downarrow i\) is \(\pi\) with the first \(i\) states chopped off
 - \([\phi]_M(\pi \downarrow i)\) true iff \([\phi]_M\) true starting \(i\) states along \(\pi\)

- \([G\phi]_M(\pi)\) true iff \([\phi]_M\) true starting anywhere along \(\pi\)

- “\(G\phi\)” is read as “always \(\phi\)” or “globally \(\phi\)”

- \(M \models AG\rho\) defined earlier: \(M \models AG\rho \iff M \models G(\rho)\)

- \(G\) is definable in terms of \(F\) and \(\neg\): \(G\phi = \neg(F(\neg\phi))\)

\[
\neg(F(\neg\phi))_M(\pi) = \neg(\neg(\exists i. [\neg\phi]_M(\pi \downarrow i))) \\
= \exists i. \neg([\phi]_M(\pi \downarrow i)) \\
= \forall i. [\phi]_M(\pi \downarrow i) \\
= [G\phi]_M(\pi)
\]
\([[[\phi_1 \ U \ \phi_2]]]_M(\pi) = \exists i. [[\phi_2]]_M(\pi \downarrow i) \land \forall j. j < i \Rightarrow [[\phi_1]]_M(\pi \downarrow j)\)

- \([[\phi_1 \ U \ \phi_2]]_M(\pi) = \exists i. [[\phi_2]]_M(\pi \downarrow i) \land \forall j. j < i \Rightarrow [[\phi_1]]_M(\pi \downarrow j)\)
 - \([[\phi_2]]_M(\pi \downarrow i)\) true iff \([[\phi_2]]_M\) true starting \(i\) states along \(\pi\)
 - \([[\phi_1]]_M(\pi \downarrow j)\) true iff \([[\phi_1]]_M\) true starting \(j\) states along \(\pi\)

- \([[\phi_1 \ U \ \phi_2]]_M(\pi)\) is true iff
 \([[\phi_2]]_M\) is true somewhere along \(\pi\) and up to then \([[\phi_1]]_M\) is true

- “[\(\phi_1 \ U \ \phi_2\)” is read as “\(\phi_1\) until \(\phi_2\)”

- \(F\) is definable in terms of \([- \ U -]: F\phi = [T \ U \ \phi]\)

\([[T \ U \ \phi]]_M(\pi)\)
= \(\exists i. [[\phi]]_M(\pi \downarrow i) \land \forall j. j < i \Rightarrow [[T]]_M(\pi \downarrow j)\)
= \(\exists i. [[\phi]]_M(\pi \downarrow i) \land \forall j. j < i \Rightarrow true\)
= \(\exists i. [[\phi]]_M(\pi \downarrow i) \land true\)
= \(\exists i. [[\phi]]_M(\pi \downarrow i)\)
= \([[F]]_M(\pi)\)
Review of Linear Temporal Logic (LTL)

- Grammar of well formed formulae (wff) ϕ

 $\phi ::= p$
 \hspace{5ex} (Atomic formula: $p \in AP$)
 \hspace{1ex} | $\neg \phi$
 \hspace{1ex} | $\phi_1 \lor \phi_2$
 \hspace{1ex} | $X\phi$
 \hspace{1ex} | $F\phi$
 \hspace{1ex} | $G\phi$
 \hspace{1ex} | $[\phi_1 U \phi_2]$
 \hspace{1ex} (successor)
 \hspace{1ex} (Disjunction)
 \hspace{1ex} (sometimes)
 \hspace{1ex} (always)
 \hspace{1ex} (Until)

- $M \models \phi$ means ϕ holds on all M-paths

 $M = (S, S_0, R, L)$

 $[\phi]_M(\pi)$ means ϕ is true on the M-path π

 $M \models \phi \iff \forall \pi. s. s \in S_0 \land \text{Path } R s \pi \Rightarrow [\phi]_M(\pi)$
LTL examples

- “DeviceEnabled holds infinitely often along every path”
 \[\text{G}(\text{F DeviceEnabled}) \]

- “Eventually the state becomes permanently Done”
 \[\text{F}(\text{G Done}) \]

- “Every Req is followed by an Ack”
 \[\text{G} (\text{Req} \Rightarrow \text{F Ack}) \]
 Number of Req and Ack may differ - no counting

- “If Enabled infinitely often then Running infinitely often”
 \[\text{G} (\text{F Enabled}) \Rightarrow \text{G} (\text{F Running}) \]

- “An upward going lift at the second floor keeps going up if a passenger requests the fifth floor”
 \[\text{G} (\text{AtFloor2} \land \text{DirectionUp} \land \text{RequestFloor5} \Rightarrow [\text{DirectionUp} \mathbin{U} \text{AtFloor5}]) \]
A property not expressible in LTL

Let \(AP = \{ P \} \) and consider models \(M \) and \(M' \) below

\[
\begin{align*}
M &= (\{s_0, s_1\}, \{s_0\}, \{(s_0, s_0), (s_0, s_1), (s_1, s_1)\}, L) \\
M' &= (\{s_0\}, \{s_0\}, \{(s_0, s_0)\}, L)
\end{align*}
\]

where: \(L = \lambda s. \text{if } s = s_0 \text{ then } \{\} \text{ else } \{P\} \)

- Every \(M' \)-path is also an \(M \)-path
- So if \(\phi \) true on every \(M \)-path then \(\phi \) true on every \(M' \)-path
- Hence in LTL for any \(\phi \) if \(M \models \phi \) then \(M' \models \phi \)
- Consider \(\phi_P \iff \text{"can always reach a state satisfying } P \"")
 - \(\phi_P \) holds in \(M \) but not in \(M' \)
 - but in LTL can’t have \(M \models \phi_P \) and not \(M' \models \phi_P \)
- hence \(\phi_P \) not expressible in LTL
LTL expressibility

“can always reach a state satisfying P”

- In LTL $M \models \phi$ says ϕ holds of all paths of M
- LTL formulae ϕ are evaluated on paths path formulae
- Want to say that from any state there exists a path to some state satisfying p
 - $\forall s. \exists \pi. \text{Path } R s \pi \land \exists i. p \in L(\pi(i))$
 - but this isn’t expressible in LTL (see slide 57)
- CTL properties are evaluated at a state . . . state formulae
 - they can talk about both some or all paths
 - starting from the state they are evaluated at
Computation Tree Logic (CTL)

- LTL formulae ϕ are evaluated on paths path formulae
- CTL formulae ψ are evaluated on states . . state formulae

Syntax of CTL well-formed formulae:

$$\psi ::= p \quad \text{(Atomic formula } p \in AP)$$
$$\quad | \neg \psi \quad \text{(Negation)}$$
$$\quad | \psi_1 \land \psi_2 \quad \text{(Conjunction)}$$
$$\quad | \psi_1 \lor \psi_2 \quad \text{(Disjunction)}$$
$$\quad | \psi_1 \Rightarrow \psi_2 \quad \text{(Implication)}$$
$$\quad | AX\psi \quad \text{(All successors)}$$
$$\quad | EX\psi \quad \text{(Some successors)}$$
$$\quad | A[\psi_1 U \psi_2] \quad \text{(Until – along all paths)}$$
$$\quad | E[\psi_1 U \psi_2] \quad \text{(Until – along some path)}$$
Semantics of CTL

Assume $M = (S, S_0, R, L)$ and then define:

\[
\begin{align*}
[p]_M(s) &= p \in L(s) \\
[\neg \psi]_M(s) &= \neg([\psi]_M(s)) \\
[\psi_1 \land \psi_2]_M(s) &= [\psi_1]_M(s) \land [\psi_2]_M(s) \\
[\psi_1 \lor \psi_2]_M(s) &= [\psi_1]_M(s) \lor [\psi_2]_M(s) \\
[\psi_1 \rightarrow \psi_2]_M(s) &= [\psi_1]_M(s) \rightarrow [\psi_2]_M(s) \\
[\textbf{AX}\psi]_M(s) &= \forall s'. R s s' \Rightarrow [\psi]_M(s') \\
[\textbf{EX}\psi]_M(s) &= \exists s'. R s s' \land [\psi]_M(s') \\
[\textbf{A}[\psi_1 \mathbf{U} \psi_2]]_M(s) &= \forall \pi. \text{Path } R s \pi \\
&\quad \Rightarrow \exists i. [\psi_2]_M(\pi(i)) \\
&\quad \land \forall j. j < i \Rightarrow [\psi_1]_M(\pi(j)) \\
[\textbf{E}[\psi_1 \mathbf{U} \psi_2]]_M(s) &= \exists \pi. \text{Path } R s \pi \\
&\quad \land \exists i. [\psi_2]_M(\pi(i)) \\
&\quad \land \forall j. j < i \Rightarrow [\psi_1]_M(\pi(j))
\end{align*}
\]
The defined operator **AF**

- Define **AF**\(\psi\) = **A**\([\top \ U \ \psi]\)

- **AF**\(\psi\) true at \(s\) iff \(\psi\) true somewhere on every \(R\)-path from \(s\)

\[
[\text{**AF}\psi]_M(s) = [\text{**A}[\top \ U \ \psi]]_M(s)
\]

\[
= \forall \pi. \text{Path } R \ s \ \pi \\
\Rightarrow \\
\exists i. [\psi]_M(\pi(i)) \land \forall j. j < i \Rightarrow [\top]_M(\pi(j))
\]

\[
= \forall \pi. \text{Path } R \ s \ \pi \\
\Rightarrow \\
\exists i. [\psi]_M(\pi(i)) \land \forall j. j < i \Rightarrow \text{true}
\]

\[
= \forall \pi. \text{Path } R \ s \ \pi \Rightarrow \exists i. [\psi]_M(\pi(i))
\]
The defined operator \(\text{EF} \)

- Define \(\text{EF}\psi = E[\top \text{ U } \psi] \)

- \(\text{EF}\psi \) true at \(s \) iff \(\psi \) true somewhere on some \(R \)-path from \(s \)

\[
\begin{align*}
\llbracket \text{EF}\psi \rrbracket_M(s) &= \llbracket E[\top \text{ U } \psi] \rrbracket_M(s) \\
&= \exists \pi. \text{Path } R \ s \ \pi \\
&\quad \land \exists i. \llbracket \psi \rrbracket_M(\pi(i)) \land \forall j. j < i \implies \llbracket \top \rrbracket_M(\pi(j)) \\
&= \exists \pi. \text{Path } R \ s \ \pi \\
&\quad \land \exists i. \llbracket \psi \rrbracket_M(\pi(i)) \land \forall j. j < i \implies \text{true} \\
&= \exists \pi. \text{Path } R \ s \ \pi \land \exists i. \llbracket \psi \rrbracket_M(\pi(i))
\end{align*}
\]

- “can reach a state satisfying \(\rho \)” is \(\text{EF} \ \rho \)
The defined operator AG

- Define $\text{AG}\psi = \neg \text{EF}(\neg \psi)$

- $\text{AG}\psi$ true at s iff ψ true everywhere on every R-path from s

 $$[\text{AG}\psi]_M(s) = \neg([\text{EF}(\neg \psi)]_M(s))$$
 $$= \neg((\exists \pi. \text{Path } R \ s \ \pi \land \exists i. \ [\neg \psi]_M(\pi(i)))$$
 $$= \forall \pi. \neg(\text{Path } R \ s \ \pi \land \exists i. \ \neg [\psi]_M(\pi(i)))$$
 $$= \forall \pi. \neg \text{Path } R \ s \ \pi \lor \neg(\exists i. \ \neg [\psi]_M(\pi(i)))$$
 $$= \forall \pi. \neg \text{Path } R \ s \ \pi \lor \forall i. \ \neg \neg [\psi]_M(\pi(i))$$
 $$= \forall \pi. \neg \text{Path } R \ s \ \pi \lor \forall i. \ [\psi]_M(\pi(i))$$
 $$= \forall \pi. \text{Path } R \ s \ \pi \Rightarrow \forall i. \ [\psi]_M(\pi(i))$$

- $\text{AG}\psi$ means ψ true at all reachable states

- $[\text{AG}(p)]_M(s) \equiv \forall s'. R^* \ s \ s' \Rightarrow p \in L(s')$

- “can always reach a state satisfying p" is $\text{AG}(\text{EF } p)$
The defined operator EG

- Define $\text{EG}\psi = \neg\text{AF}(\neg\psi)$

- $\text{EG}\psi$ true at s iff ψ true everywhere on some R-path from s

\[
\begin{align*}
\llbracket\text{EG}\psi\rrbracket_M(s) &= \llbracket\neg\text{AF}(\neg\psi)\rrbracket_M(s) \\
&= \neg(\llbracket\text{AF}(\neg\psi)\rrbracket_M(s)) \\
&= \neg(\forall \pi. \text{Path } R s \pi \Rightarrow \exists i. \llbracket\neg\psi\rrbracket_M(\pi(i))) \\
&= \neg(\forall \pi. \text{Path } R s \pi \Rightarrow \exists i. \neg\llbracket\psi\rrbracket_M(\pi(i))) \\
&= \exists \pi. \neg(\text{Path } R s \pi \Rightarrow \exists i. \neg\llbracket\psi\rrbracket_M(\pi(i))) \\
&= \exists \pi. \text{Path } R s \pi \land \neg(\exists i. \neg\llbracket\psi\rrbracket_M(\pi(i))) \\
&= \exists \pi. \text{Path } R s \pi \land \forall i. \llbracket\psi\rrbracket_M(\pi(i)) \\
&= \exists \pi. \text{Path } R s \pi \land \forall i. \llbracket\psi\rrbracket_M(\pi(i))
\end{align*}
\]
The defined operator $A[\psi_1 W \psi_2]$

- $A[\psi_1 W \psi_2]$ is a ‘partial correctness’ version of $A[\psi_1 U \psi_2]$
- It is true at s if along all R-paths from s:
 - ψ_1 always holds on the path, or
 - ψ_2 holds sometime on the path, and until it does ψ_1 holds

- Define

$$[[A[\psi_1 W \psi_2]]_M(s)] = [[\neg E[(\psi_1 \land \neg \psi_2) U (\neg \psi_1 \land \neg \psi_2)]]_M(s)$$
$$= \neg [[E[(\psi_1 \land \neg \psi_2) U (\neg \psi_1 \land \neg \psi_2)]]_M(s)$$
$$= \neg (\exists \pi. \text{Path } R s \pi$$
 $$\land$$
 $$\exists i. [[\neg \psi_1 \land \neg \psi_2]_M(\pi(i))$$
 $$\land$$
 $$\forall j. j < i \Rightarrow [[\psi_1 \land \neg \psi_2]_M(\pi(j))$$

- Exercise: understand the next two slides!
Continuing:

\[
\neg (\exists \pi. \text{Path } R s \pi \\
\land \\
\exists i. \left[\neg \psi_1 \land \neg \psi_2 \right]_M(\pi(i)) \land \forall j. j<i \Rightarrow \left[\psi_1 \land \neg \psi_2 \right]_M(\pi(j))
\]

\[
= \forall \pi. \neg (\exists \pi. \text{Path } R s \pi \\
\land \\
\exists i. \left[\neg \psi_1 \land \neg \psi_2 \right]_M(\pi(i)) \land \forall j. j<i \Rightarrow \left[\psi_1 \land \neg \psi_2 \right]_M(\pi(j))
\]

\[
= \forall \pi. \text{Path } R s \pi \\
\Rightarrow \\
\neg (\exists i. \left[\neg \psi_1 \land \neg \psi_2 \right]_M(\pi(i)) \land \forall j. j<i \Rightarrow \left[\psi_1 \land \neg \psi_2 \right]_M(\pi(j))
\]

\[
= \forall \pi. \text{Path } R s \pi \\
\Rightarrow \\
\forall i. \neg \left[\neg \psi_1 \land \neg \psi_2 \right]_M(\pi(i)) \lor \neg (\forall j. j<i \Rightarrow \left[\psi_1 \land \neg \psi_2 \right]_M(\pi(j)))
\]
Continuing:

\[\forall \pi. \text{Path } R \ s \ \pi \]

\[\Rightarrow \]

\[\forall i. \neg [\neg \psi_1 \land \neg \psi_2]_M(\pi(i)) \lor \neg (\forall j. j < i \Rightarrow [\psi_1 \land \neg \psi_2]_M(\pi(j))) \]

\[= \forall \pi. \text{Path } R \ s \ \pi \]

\[\Rightarrow \]

\[\forall i. \neg (\forall j. j < i \Rightarrow [\psi_1 \land \neg \psi_2]_M(\pi(j))) \lor \neg [\neg \psi_1 \land \neg \psi_2]_M(\pi(i)) \]

\[= \forall \pi. \text{Path } R \ s \ \pi \]

\[\Rightarrow \]

\[\forall i. (\forall j. j < i \Rightarrow [\psi_1 \land \neg \psi_2]_M(\pi(j))) \Rightarrow [\psi_1 \lor \psi_2]_M(\pi(i)) \]

Exercise: explain why this is \([A[\psi_1 \ W \ \psi_2]]_M(s)\)?

this exercise illustrates the subtlety of writing CTL!
Sanity check: \(A[\psi \ W \ F] = AG \psi \)

- From last slide:
 \[
 \left[[A[\psi_1 \ W \ \psi_2]] \right]_M(s) = \forall \pi. \text{ Path } R s \pi \\
 \Rightarrow \forall i. (\forall j. j < i \Rightarrow [[\psi_1 \land \neg \psi_2]]_M(\pi(j))) \Rightarrow [[\psi_1 \lor \psi_2]]_M(\pi(i))
 \]

- Set \(\psi_1 \) to \(\psi \) and \(\psi_2 \) to \(F \):
 \[
 \left[[A[\psi \ W \ F]] \right]_M(s) = \forall \pi. \text{ Path } R s \pi \\
 \Rightarrow \forall i. (\forall j. j < i \Rightarrow [[\psi \land \neg F]]_M(\pi(j))) \Rightarrow [[\psi \lor F]]_M(\pi(i))
 \]

- Simplify:
 \[
 \left[[A[\psi \ W \ F]] \right]_M(s) = \forall \pi. \text{ Path } R s \pi \\
 \Rightarrow \forall i. ([\psi]_M(\pi(j))) \Rightarrow [\psi]_M(\pi(i))
 \]

- By induction on \(i \):
 \[
 \left[[A[\psi \ W \ F]] \right]_M(s) = \forall \pi. \text{ Path } R s \pi \\
 \Rightarrow \forall i. [\psi]_M(\pi(i))
 \]

- Exercises
 1. Describe the property: \(A[T \ W \ \psi] \).
 2. Describe the property: \(\neg E[\neg \psi_2 \ U \ \neg (\psi_1 \lor \psi_2)] \).
 3. Define \(E[\psi_1 \ W \ \psi_2] = E[\psi_1 \ U \ \psi_2] \lor E G \psi_1 \).
 Describe the property: \(E[\psi_1 \ W \ \psi_2] \)?
Recall model behaviour computation tree

- Atomic properties are true or false of individual states
- General properties are true or false of whole behaviour
- Behaviour of \((S, R)\) starting from \(s \in S\) as a tree:

 ![Tree Diagram]

 - A path is shown in red
 - Properties may look at all paths, or just a single path
 - CTL: Computation Tree Logic (all paths from a state)
 - LTL: Linear Temporal Logic (a single path)
Summary of CTL operators (primitive + defined)

CTL formulae:

- p (Atomic formula - $p \in AP$)
- $\neg \psi$ (Negation)
- $\psi_1 \land \psi_2$ (Conjunction)
- $\psi_1 \lor \psi_2$ (Disjunction)
- $\psi_1 \Rightarrow \psi_2$ (Implication)
- $AX\psi$ (All successors)
- $EX\psi$ (Some successors)
- $AF\psi$ (Somewhere – along all paths)
- $EF\psi$ (Somewhere – along some path)
- $AG\psi$ (Everywhere – along all paths)
- $EG\psi$ (Everywhere – along some path)
- $A[\psi_1 U \psi_2]$ (Until – along all paths)
- $E[\psi_1 U \psi_2]$ (Until – along some path)
- $A[\psi_1 W \psi_2]$ (Unless – along all paths)
- $E[\psi_1 W \psi_2]$ (Unless – along some path)
Example CTL formulae

- **EF**(\(\text{Started} \land \neg \text{Ready}\))

 It is possible to get to a state where \text{Started} holds but \text{Ready} does not hold

- **AG**(\(\text{Req} \Rightarrow \text{AF Ack}\))

 If a request \text{Req} occurs, then it will eventually be acknowledged by \text{Ack}

- **AG**(\(\text{AF DeviceEnabled}\))

 DeviceEnabled is always true somewhere along every path starting anywhere: i.e. DeviceEnabled holds infinitely often along every path

- **AG**(\(\text{EF Restart}\))

 From any state it is possible to get to a state for which Restart holds

 Can’t be expressed in LTL!
More CTL examples (1)

- $\textbf{AG}(\text{Req} \Rightarrow \textbf{A}[\text{Req U Ack}])$

 If a request Req occurs, then it continues to hold, until it is eventually acknowledged

- $\textbf{AG}(\text{Req} \Rightarrow \textbf{AX}(\textbf{A}[\neg\text{Req U Ack}])))$

 Whenever Req is true either it must become false on the next cycle and remains false until Ack, or Ack must become true on the next cycle

 Exercise: is the \textbf{AX} necessary?

- $\textbf{AG}(\text{Req} \Rightarrow (\neg\text{Ack} \Rightarrow \textbf{AX}(\textbf{A}[\text{Req U Ack}])))$

 Whenever Req is true and Ack is false then Ack will eventually become true and until it does Req will remain true

 Exercise: is the \textbf{AX} necessary?
More CTL examples (2)

- **AG(Enabled ⇒ AG(Start ⇒ A[¬Waiting U Ack]))**

 If Enabled is ever true then if Start is true in any subsequent state then Ack will eventually become true, and until it does Waiting will be false

- **AG(¬Req₁ ∧ ¬Req₂ ⇒ A[¬Req₁ ∧ ¬Req₂ U (Start ∧ ¬Req₂)])**

 Whenever Req₁ and Req₂ are false, they remain false until Start becomes true with Req₂ still false

- **AG(Req ⇒ AX(Ack ⇒ AF ¬Req))**

 If Req is true and Ack becomes true one cycle later, then eventually Req will become false
Some abbreviations

- $\text{AX}_i \psi \equiv \text{AX}(\text{AX}(\cdots(\text{AX} \psi)\cdots))$
 - i instances of AX
 - ψ is true on all paths i units of time later

- $\text{ABF}_{i..j} \psi \equiv \text{AX}_i(\psi \vee \text{AX}(\psi \vee \cdots \text{AX}(\psi \vee \text{AX} \psi)\cdots))$
 - $j - i$ instances of AX
 - ψ is true on all paths sometime between i units of time later and j units of time later

- $\text{AG}(\text{Req} \Rightarrow \text{AX}(\text{Ack}_1 \land \text{ABF}_{1..6}(\text{Ack}_2 \land \text{A}[\text{Wait U Reply}])))$
 - One cycle after Req, Ack_1 should become true, and then Ack_2 becomes true 1 to 6 cycles later and then eventually Reply becomes true, but until it does Wait holds from the time of Ack_2

- More abbreviations in ‘Industry Standard’ language PSL
CTL model checking

- For LTL path formulae \(\phi \) recall that \(M \models \phi \) is defined by:
 \[
 M \models \phi \iff \forall \pi \; s. \; s \in S_0 \land \text{Path } R \; s \; \pi \Rightarrow [\phi]_M(\pi)
 \]

- For CTL state formulae \(\psi \) the definition of \(M \models \psi \) is:
 \[
 M \models \psi \iff \forall s. \; s \in S_0 \Rightarrow [\psi]_M(s)
 \]

- \(M \) common; LTL, CTL formulae and semantics \([\]_M\) differ

- CTL model checking algorithm:
 - compute \(\{ s \mid [\psi]_M(s) = \text{true} \} \) bottom up
 - check \(S_0 \subseteq \{ s \mid [\psi]_M(s) = \text{true} \} \)
 - symbolic model checking represents these sets as BDDs
CTL model checking: p, $\text{AX}\psi$, $\text{EX}\psi$

- For CTL formula ψ let $\{\psi\}_M = \{s \mid [\psi]_M(s) = \text{true}\}$
- When unambiguous will write $\{\psi\}$ instead of $\{\psi\}_M$
- $\{p\} = \{s \mid p \in L(s)\}$
 - scan through set of states S marking states labelled with p
 - $\{p\}$ is set of marked states

- To compute $\{\text{AX}\psi\}$
 - recursively compute $\{\psi\}$
 - marks those states all of whose successors are in $\{\psi\}$
 - $\{\text{AX}\psi\}$ is the set of marked states

- To compute $\{\text{EX}\psi\}$
 - recursively compute $\{\psi\}$
 - marks those states with at least one successor in $\{\psi\}$
 - $\{\text{EX}\psi\}$ is the set of marked states
CTL model checking: $\{E[\psi_1 U \psi_2]\}$, $\{A[\psi_1 U \psi_2]\}$

- To compute $\{E[\psi_1 U \psi_2]\}$
 - recursively compute $\{\psi_1\}$ and $\{\psi_2\}$
 - mark all states in $\{\psi_2\}$
 - mark all states in $\{\psi_1\}$ with a successor state that is marked
 - repeat previous line until no change
 - $\{E[\psi_1 U \psi_2]\}$ is set of marked states

- More formally: $\{E[\psi_1 U \psi_2]\} = \bigcup_{n=0}^{\infty} \{E[\psi_1 U \psi_2]\}_n$ where:
 $\{E[\psi_1 U \psi_2]\}_0 = \{\psi_2\}$
 $\{E[\psi_1 U \psi_2]\}_{n+1} = \{E[\psi_1 U \psi_2]\}_n \cup \{s \in \{\psi_1\} \mid \exists s' \in \{E[\psi_1 U \psi_2]\}_n. R s s'\}$

- $\{A[\psi_1 U \psi_2]\}$ similar, but with a more complicated iteration
 - details omitted (see Huth and Ryan)
Example: checking $\text{EF } p$

1. $\text{EF } p = \text{E}[\text{T } \text{U } p]$ holds if ψ holds along some path.

2. Note $\{\text{T}\} = S$.

3. Let $S_n = \{\text{E}[\text{T } \text{U } p]\}_n$ then:
 - $S_0 = \{\text{E}[\text{T } \text{U } p]\}_0 = \{p\} = \{s \mid p \in L(s)\}$
 - $S_{n+1} = S_n \cup \{s \in \{\text{T}\} \mid \exists s' \in \{\text{E}[\text{T } \text{U } p]\}_n. \ R \ s \ s'\}$
 - mark all the states labelled with p
 - mark all with at least one marked successor
 - repeat until no change
 - $\{\text{EF } p\}$ is set of marked states
Example: RCV

- Recall the handshake circuit:

 \[
 \begin{align*}
 & \text{dreq} \quad \text{q0} \quad \text{q0bar} \quad \text{a0} \quad \text{or0} \quad \text{a1} \quad \text{dack} \\
 \end{align*}
 \]

- State represented by a triple of Booleans \((dreq, q0, dack)\)

- A model of RCV is \(M_{\text{RCV}}\) where:

 \[M = (S_{\text{RCV}}, S_{0_{\text{RCV}}}, R_{\text{RCV}}, L_{\text{RCV}})\]

 and

 \[R_{\text{RCV}} (dreq, q0, dack) (dreq', q0', dack') =
 (q0' = dreq) \land (dack' = (dreq \land (q0 \lor dack))))\]
Possible states for RCV:
\{000, 001, 010, 011, 100, 101, 110, 111\}
where $b_2b_1b_0$ denotes state
\[\text{dreq} = b_2 \land q_0 = b_1 \land \text{dack} = b_0\]

Graph of the transition relation:
Computing \(\{ \text{EF } \text{At111} \} \) where \(\text{At111} \in L_{RCV}(s) \iff s = 111 \)

Define:

\[
S_0 = \{ s \mid \text{At111} \in L_{RCV}(s) \} \\
= \{ s \mid s = 111 \} \\
= \{ 111 \}
\]

\[
S_{n+1} = S_n \cup \{ s \mid \exists s' \in S_n. R(s, s') \} \\
= S_n \cup \{ b_2 b_1 b_0 \mid \exists b'_2 b'_1 b'_0 \in S_n. (b'_1 = b_2) \land (b'_0 = b_2 \land (b_1 \lor b_0)) \}
\]
Computing $\{\text{EF At111}\}$ (continued)

Compute:

$S_0 = \{111\}$

$S_1 = \{111\} \cup \{101, 110\}$
$= \{111, 101, 110\}$

$S_2 = \{111, 101, 110\} \cup \{100\}$
$= \{111, 101, 110, 100\}$

$S_3 = \{111, 101, 110, 100\} \cup \{000, 001, 010, 011\}$
$= \{111, 101, 110, 100, 000, 001, 010, 011\}$

$S_n = S_3$ $(n > 3)$

$\{\text{EF At111}\} = \mathbb{B}^3 = S_{\text{RCV}}$

$M_{\text{RCV}} \models \text{EF At111} \iff S_{0_{\text{RCV}}} \subseteq S$
Symbolic model checking

- Represent sets of states with BDDs
- Represent Transition relation with a BDD
- If BDDs of \(\{\psi\} \), \(\{\psi_1\} \), \(\{\psi_2\} \) are known, then:
 - BDDs of \(\{\neg\psi\} \), \(\{\psi_1 \land \psi_2\} \), \(\{\psi_1 \lor \psi_2\} \), \(\{\psi_1 \Rightarrow \psi_2\} \) computed using standard BDD algorithms
 - BDDs of \(\{AX\psi\} \), \(\{EX\psi\} \), \(\{A[\psi_1 U \psi_2]\} \), \(\{E[\psi_1 U \psi_2]\}\) computed using straightforward algorithms (see textbooks)
- Model checking CTL generalises reachable states iteration
History of Model checking

- CTL model checking due to Emerson, Clarke & Sifakis
- Symbolic model checking due to several people:
 - Clarke & McMillan (idea usually credited to McMillan’s PhD)
 - Coudert, Berthet & Madre
 - Pixley

- SMV (McMillan) is a popular symbolic model checker:
 - http://www.cs.cmu.edu/~modelcheck/smv.html (original)
 - http://nusmv.irst.itc.it/ (new implementation)

- Other temporal logics
 - CTL*: combines CTL and LTL
 - Engineer friendly industrial languages: PSL, SVA
Expressibility of CTL

Consider the property

“on every path there is a point after which \(p \) is always true on that path”

Consider

\((((\ast) \text{ non-deterministically chooses } T \text{ or } F) \)

\[
\begin{array}{ll}
0: & P:=1; \\
\text{s0} 1: & \text{WHILE } (\ast) \text{ DO SKIP; } \\
\text{s1} 2: & P:=0; \\
\text{s2} 3: & P:=1; \\
4: & \text{WHILE } T \text{ DO SKIP; } \\
5: & \\
\end{array}
\]

Property true, but cannot be expressed in CTL

\(\text{would need something like } \text{AF}\psi \)

\(\text{where } \psi \text{ is something like “property } p \text{ true from now on”} \)

\(\text{but in CTL } \psi \text{ must start with a path quantifier } A \text{ or } E \)

\(\text{cannot talk about current path, only about all or some paths} \)

\(\text{AF(AG p) is false (consider path } s0 s0 s0 \cdots \text{)} \)
LTL can express things CTL can’t

- Recall:
 \[
 \llbracket F\phi \rrbracket_M(\pi) = \exists i. \llbracket \phi \rrbracket_M(\pi\downarrow i)
 \]
 \[
 \llbracket G\phi \rrbracket_M(\pi) = \forall i. \llbracket \phi \rrbracket_M(\pi\downarrow i)
 \]

- \(FG\phi\) is true if there is a point after which \(\phi\) is always true
 \[
 \llbracket FG\phi \rrbracket_M(\pi) = \llbracket F(G(\phi)) \rrbracket_M(\pi)
 \]
 \[
 = \exists m_1. \llbracket G(\phi) \rrbracket_M(\pi\downarrow m_1)
 \]
 \[
 = \exists m_1. \forall m_2. \llbracket \phi \rrbracket_M((\pi\downarrow m_1)\downarrow m_2)
 \]
 \[
 = \exists m_1. \forall m_2. \llbracket \phi \rrbracket_M(\pi\downarrow (m_1+m_2))
 \]

- LTL can express things that CTL can’t express

- Note: it’s tricky to prove CTL can’t express \(FG\phi\)
CTL can express things that LTL can’t express

- **AG(EF p)** says:

 “from every state it is possible to get to a state for which p holds”

- Can’t say this in LTL (easy proof given earlier - slide 57)

- Consider disjunction:

 “on every path there is a point after which p is always true on that path or from every state it is possible to get to a state for which p holds”

- Can’t say this in either CTL or LTL!

- CTL* combines CTL and LTL and can express this property
Both \textit{state formulae} (ψ) and \textit{path formulae} (ϕ)

- state formulae ψ are true of a state s like CTL
- path formulae ϕ are true of a path π like LTL

Defined mutually recursively

\[
\begin{align*}
\psi & ::= p \quad \text{(Atomic formula)} \\
& \quad \neg \psi \quad \text{(Negation)} \\
& \quad \psi_1 \lor \psi_2 \quad \text{(Disjunction)} \\
& \quad \text{A} \phi \quad \text{(All paths)} \\
& \quad \text{E} \phi \quad \text{(Some paths)}
\end{align*}
\]

\[
\begin{align*}
\phi & ::= \psi \quad \text{(Every state formula is a path formula)} \\
& \quad \neg \phi \quad \text{(Negation)} \\
& \quad \phi_1 \lor \phi_2 \quad \text{(Disjunction)} \\
& \quad \text{X} \phi \quad \text{(Successor)} \\
& \quad \text{F} \phi \quad \text{(Sometimes)} \\
& \quad \text{G} \phi \quad \text{(Always)} \\
& \quad \lbrack \phi_1 \text{ U } \phi_2 \rbrack \quad \text{(Until)}
\end{align*}
\]

- CTL is CTL* with X, F, G, $\lbrack \leftarrow \text{U} \rightarrow \rbrack$ preceded by A or E
- LTL consists of CTL* formulae of form $\text{A} \phi$, where the only state formulae in ϕ are atomic
CTL* semantics

- Combines CTL state semantics with LTL path semantics:

\[
\begin{align*}
[p]_M(s) &= p \in L(s) \\
[\neg \psi]_M(s) &= \neg([\psi]_M(s)) \\
[\psi_1 \lor \psi_2]_M(s) &= [\psi_1]_M(s) \lor [\psi_2]_M(s) \\
[A \phi]_M(s) &= \forall \pi. \text{Path } R s \pi \Rightarrow \phi(\pi) \\
[E \phi]_M(s) &= \exists \pi. \text{Path } R s \pi \land [\phi]_M(\pi)
\end{align*}
\]

\[
\begin{align*}
[\psi]_M(\pi) &= [\psi]_M(\pi(0)) \\
[\neg \phi]_M(\pi) &= \neg([\phi]_M(\pi)) \\
[\phi_1 \lor \phi_2]_M(\pi) &= [\phi_1]_M(\pi) \lor [\phi_2]_M(\pi) \\
[X \phi]_M(\pi) &= [\phi]_M(\pi\downarrow 1) \\
[F \phi]_M(\pi) &= \exists m. [\phi]_M(\pi\downarrow m) \\
[G \phi]_M(\pi) &= \forall m. [\phi]_M(\pi\downarrow m) \\
[[\phi_1 U \phi_2]]_M(\pi) &= \exists i. [\phi_2]_M(\pi\downarrow i) \land \forall j. j < i \Rightarrow [\phi_1]_M(\pi\downarrow j)
\end{align*}
\]

- Note $[\psi]_M : S \rightarrow \mathbb{B}$ and $[\phi]_M : (\mathbb{N} \rightarrow S) \rightarrow \mathbb{B}$
LTL and CTL as CTL*

- As usual: \(M = (S, S_0, R, L) \)
- If \(\psi \) is a CTL* state formula: \(M \models \psi \iff \forall s \in S_0. \left[\psi \right]_M(s) \)
- If \(\phi \) is an LTL path formula then: \(M \models_{\text{LTL}} \phi \iff M \models_{\text{CTL}*} A\phi \)
- If \(R \) is total (\(\forall s. \exists s'. R s s' \)) then (exercise):
 \(\forall s s'. R s s' \iff \exists \pi. \text{Path } R s \pi \land (\pi(1) = s') \)
- The meanings of CTL formulae are the same in CTL*

\[
\begin{align*}
\left[A(X\psi) \right]_M(s) &= \forall \pi. \text{Path } R s \pi \Rightarrow \left[X\psi \right]_M(\pi) \\
&= \forall \pi. \text{Path } R s \pi \Rightarrow \left[\psi \right]_M(\pi \downarrow 1) \\
&= \forall \pi. \text{Path } R s \pi \Rightarrow \left[\psi \right]_M((\pi \downarrow 1)(0)) \\
&= \forall \pi. \text{Path } R s \pi \Rightarrow \left[\psi \right]_M(\pi(1)) \\
\end{align*}
\]

\[
\begin{align*}
\left[AX\psi \right]_M(s) &= \forall s'. R s s' \Rightarrow \left[\psi \right]_M(s') \\
&= \forall s'. (\exists \pi. \text{Path } R s \pi \land (\pi(1) = s')) \Rightarrow \left[\psi \right]_M(s') \\
&= \forall s'. \forall \pi. \text{Path } R s \pi \land (\pi(1) = s') \Rightarrow \left[\psi \right]_M(s') \\
&= \forall \pi. \text{Path } R s \pi \Rightarrow \left[\psi \right]_M(\pi(1)) \\
\end{align*}
\]

Exercise: do similar proofs for other CTL formulae
Fairness

- May want to assume system or environment is ‘fair’

- Example 1: fair arbiter
 - the arbiter doesn’t ignore one of its requests forever
 - not every request need be granted
 - want to exclude infinite number of requests and no grant

- Example 2: reliable channel
 - no message continuously transmitted but never received
 - not every message need be received
 - want to exclude an infinite number of sends and no receive
Handling fairness in CTL and LTL

- Consider:

 \(p \) holds infinitely often along a path then so does \(q \)

- In LTL is expressible as \(G(F p) \Rightarrow G(F q) \)

- Can’t say this in CTL
 - why not – what’s wrong with \(AG(AF p) \Rightarrow AG(AF q) \)?
 - in CTL* expressible as \(A(G(F p) \Rightarrow G(F q)) \)
 - fair CTL model checking implemented in checking algorithm
 - fair LTL just a fairness assumption like \(G(F p) \Rightarrow \cdots \)

- Fairness is a tricky and subtle subject
 - many kinds of fairness:
 - ‘weak fairness’, ‘strong fairness’ etc
 - exist whole books on fairness
Propositional modal μ-calculus

- You may learn this in *Topics in Concurrency*
- μ-calculus is an even more powerful property language
 - has fixed-point operators
 - both maximal and minimal fixed points
 - model checking consists of calculating fixed points
 - many logics (e.g. CTL*) can be translated into μ-calculus

- Strictly stronger than CTL*
 - expressibility strictly increases as allowed nesting increases
 - need fixed point operators nested 2 deep for CTL*

- The μ-calculus is very non-intuitive to use!
 - intermediate code rather than a practical property language
 - nice meta-theory and algorithms, but terrible usability!
SEREs: Sequential Extended Regular Expressions

- SEREs are from the industrial PSL (more on PSL later)

Syntax:

\[
\begin{align*}
 r & ::= p & \text{(Atomic formula } p \in AP) \\
 & | ! p & \text{(Negated atomic formula } p \in AP) \\
 & | r_1 \mid r_2 & \text{(Disjunction)} \\
 & | r_1 \& \& r_2 & \text{(Conjunction)} \\
 & | r_1 ; r_2 & \text{(Concatenation)} \\
 & | r_1 : r_2 & \text{(Fusion)} \\
 & | r[\ast] & \text{(Repeat)}
\end{align*}
\]

Semantics:

\((w\text{ ranges over finite lists of states } s; \vert w \vert \text{ is length of } w; w_1 . w_2 \text{ is concatenation; } \text{head } w \text{ is head; } \langle \rangle \text{ is empty word})\)

\[
\begin{align*}
 \llbracket p \rrbracket(w) &= p \in L(\text{head } w) \land \vert w \vert = 1 \\
 \llbracket ! p \rrbracket(w) &= \neg (p \in L(\text{head } w)) \land \vert w \vert = 1 \\
 \llbracket r_1 \mid r_2 \rrbracket(w) &= \llbracket r_1 \rrbracket(w) \lor \llbracket r_2 \rrbracket(w) \\
 \llbracket r_1 \& \& r_2 \rrbracket(w) &= \llbracket r_1 \rrbracket(w) \land \llbracket r_2 \rrbracket(w) \\
 \llbracket r_1 ; r_2 \rrbracket(w) &= \exists w_1 \ w_2. \ w = w_1 . w_2 \land \llbracket r_1 \rrbracket(w_1) \land \llbracket r_2 \rrbracket(w_2) \\
 \llbracket r_1 : r_2 \rrbracket(w) &= \exists w_1 \ s \ w_2. \ w = w_1 . s . w_2 \land \llbracket r_1 \rrbracket(w_1 . s) \land \llbracket r_2 \rrbracket(s . w_2) \\
 \llbracket r[\ast] \rrbracket(w) &= w = \langle \rangle \lor \exists w_1 \cdots w_l. \ w = w_1 . \cdots . w_l \land \llbracket r \rrbracket(w_1) \land \cdots \land \llbracket r \rrbracket(w_l)
\end{align*}
\]
Example SERE

Example

A sequence in which req is asserted, followed four cycles later by an assertion of grant, followed by a cycle in which abortin is not asserted.

Define \(p[*3] = p; p; p \)

Then the example above can be represented by the SERE:

\[
\text{req; } T[*3]; \text{grant; } !\text{abortin}
\]

In PSL this could be written as:

\[
\text{req; } [*3]; \text{grant; } !\text{abortin}
\]

where \([*3] \) abbreviates \(T[*3] \)

more ‘syntactic sugar’ later

e.g. true, false for T, F
It has been claimed that assertion based verification: "is likely to be the next revolution in hardware design verification"

Basic idea:
- document designs with formal properties
- use simulation (dynamic) and model checking (static)

Problem: too many languages
- academic logics: LTL, CTL
- tool-specific industrial versions: Intel, Cadence, Motorola, IBM, Synopsys

What to do? Solution: a competition!
- run by Accellera organisation
- results standardised by IEEE
- lots of politics
IBM’s *Sugar* and Accellera’s PSL

- **Sugar 1**: property language of IBM RuleBase checker
 - CTL plus *Sugar* Extended Regular Expressions (SEREs)
- Competition finalists: IBM’s *Sugar 2* and Motorola’s *CBV*
 - Intel/Synopsys ForSpec eliminated earlier (apparently industry politics involved)
- *Sugar 2* is based on LTL rather than CTL
 - has CTL constructs: “Optional Branching Extension” (OBE)
 - has clocking constructs for temporal abstraction
- Accellera purged “Sugar” from it property language
 - the word “Sugar” was too associated with IBM
 - language renamed to PSL
 - SEREs now *Sequential Extended Regular Expressions*
- Lobbying to make PSL more like ForSpec (align with SVA)
PSL Foundation Language (FL is LTL + SEREs)

Syntax:
\[
f ::= p \\ (!f) \\ (f_1 \lor f_2) \\ \text{next } f \\ \{r\}(f) \\ \{r_1\} \rightarrow \{r_2\} \\ [f_1 \text{ until } f_2]
\]

(Atomic formula - \(p \in AP \))
(Negation)
(Disjunction)
(Successor)
(Suffix implication: \(r \) a SERE)
(Suffix next implication: \(r_1, r_2 \) SEREs)
(Until)

Semantics (omits clocking, weak/strong distinction)
\[
[p]_M(\pi) = p \in L(\pi(0)) \\
[!f]_M(\pi) = \neg([f]_M(\pi)) \\
[f_1 \lor f_2]_M(\pi) = [f_1]_M(\pi) \lor [f_2]_M(\pi) \\
[\text{next } f]_M(\pi) = [f]_M(\pi\downarrow 1) \\
\{r\}(f)_M(\pi) = \forall \pi' \ w. (\pi = w.\pi' \land [r]_M(w)) \Rightarrow [f]_M(\pi') \\
\{r_1\} \rightarrow \{r_2\}_M(\pi) = \forall \pi' \ w_1 \ s. (\pi = w_1.s.\pi' \land [r_1]_M(w_1.s)) \\
\Rightarrow \exists \pi'' w_2. \pi' = w_2.\pi'' \land [r_2]_M(s.w_2) \\
[f_1 \text{ until } f_2]_M(\pi) = \exists i. [f_2]_M(\pi\downarrow i) \land \forall j. j<i \Rightarrow [f_1]_M(\pi\downarrow j)
\]

There is also an Optional Branching Extension (OBE)

- completely standard CTL: \(\text{EX, E[\text{--- U ---]}, EG etc.} \)
Combining SEREs with LTL formulae

- Formula $\{r\}f$ means LTL formula f true after SERE r
- Example

 After a sequence in which req is asserted, followed four cycles later by an assertion of grant, followed by a cycle in which abortin is not asserted, we expect to see an assertion of ack some time in the future.

 Can represent by

 $\text{always } \{\text{req;}[*3];\text{grant;}!\text{abortin}\}(\text{eventually ack})$

 where *eventually* and *always* are defined by:

 eventually $f = [\text{true until } f]$

 always $f = !(\text{eventually } !f)$

- N.B. Ignoring strong/weak distinction

 - strong/weak distinction important for dynamic checking
 - semantics when simulator halts before expected event
 - strictly should write *until!, eventually!*
How can we modify
always reqin;ackout;!abortin |→ ackin;ackin
so that the two cycles of ackin start the cycle after
!abortin

Two ways of doing this
always\{reqin;ackout;!abortin\}|→\{true;ackin;ackin\}
always\{reqin;ackout;!abortin\}|⇒\{ackin;ackin\}

|=⇒ is a defined operator
\{r1\}|⇒\{r2\} = \{r1\}|→\{true;r2\}

Note: true and T are synonyms
Examples of defined notations: consecutive repetition

- Define

 \[r[+] = r;r[*] \]
 \[\text{false[*]} \text{ if } i=0 \]
 \[r[*i] = | \]
 \[| r;...;r \text{ otherwise (i repetitions)} \]
 \[r[*i..j] = r[*i] | r[*i+1] | ... | r[*j] \]
 \[[+]; = \text{true[+]} \]
 \[[*]; = \text{true[*]} \]

- Example

 Whenever we have a sequence of req followed by ack, we should see a full transaction starting the following cycle. A full transaction starts with an assertion of the signal `start_trans`, followed by one to eight consecutive data transfers, followed by the assertion of signal `end_trans`. A data transfer is indicated by the assertion of signal `data`

 \[
 \text{always}\{\text{req;ack}\} |\Rightarrow\{\text{start_trans;data[*1..8];end_trans}\}
 \]
Fixed number of non-consecutive repetitions

Example

Whenever we have a sequence of \texttt{req} followed by \texttt{ack}, we should see a full transaction starting the following cycle. A full transaction starts with an assertion of the signal \texttt{start_trans}, followed by eight not necessarily consecutive data transfers, followed by the assertion of signal \texttt{end_trans}. A data transfer is indicated by the assertion of signal \texttt{data}.

Can represent by

```verbatim
always
{req;ack} |=>
{start\_trans;
 {{!data[\ast];data}[\ast8];!data[\ast]}};
end\_trans}
```

Define: \[b[= i] = {{!b[\ast];b}[\ast i];!b[\ast]} \]

Then have a nicer representation

```verbatim
always{req;ack} |=>{start\_trans;data[= 8];end\_trans}
```
Variable number of non-consecutive repetitions

- Example
 Whenever we have a sequence of `req` followed by `ack`, we should see a full transaction starting the following cycle. A full transaction starts with an assertion of the signal `start_trans`, followed by one to eight not necessarily consecutive data transfers, followed by the assertion of signal `end_trans`. A data transfer is indicated by the assertion of signal `data`.

- Define
 \[
 b[= i..j] = \{b[= i]\} | \{b[= (i+1)]\} | \ldots | \{b[= j]\}
 \]

- Then
 \[
 \text{always } \{\text{req};\text{ack}\} \implies \{\text{start_trans};\text{data}[= 1..8];\text{end_trans}\}
 \]

- These examples are meant to illustrate how PSL/Sugar is much more readable than raw CTL or LTL.
Clocking

- Basic idea: \(b@clk \) samples \(b \) on rising edges of \(clk \)
- Can clock SEREs (\(r@clk \)) and formulae (\(f@clk \))
- Can have several clocks
- Official semantics messy due to clocking
- Can ‘translate away’ clocks by pushing \(@clk \) inwards
 - rules given in PSL manual
 - roughly: \(b@clk \leadsto \neg clk[*];clk \odot b \)
Model checking PSL (outline)

- SEREs checked by generating a finite automaton
 - recognise regular expressions
 - these automata are called “satellites”

- FL checked using standard LTL methods

- OBE checked by standard CTL methods

- Can also check formula for runs of a simulator
 - this is dynamic verification
 - semantics handles possibility of finite paths – messy!

- Commercial checkers only handle a subset of PSL
PSL layer structure

- **Boolean layer** has atomic predicates
- **Temporal layer** has LTL (FL) and CTL (OBE) properties
- **Verification layer** has commands for how to use properties
 - e.g. `assert`, `assume`
  ```
  assert always (!en1 & en2))
  | | | |
  | | | |--- Boolean layer
  | | |
  | | |------------------- temporal layer
  | | |------------------- verification layer
  ```
- **Modelling layer**: HDL specification of e.g. inputs, checkers
 - e.g. augment `always(Req -> eventually! Ack)`
 - add counter to keep track of numbers of Req and Ack
PSL/Sugar summary

- Combines together LTL and CTL
- Regular expressions – SEREs
- LTL – Foundation Language formulae
- CTL – Optional Branching Extension
- Relatively simple set of primitives + definitional extension
- Boolean, temporal, verification, modelling layers
- Semantics for static and dynamic verification (needs strong/weak distinction)
Simulation semantics (a.k.a. event semantics)

- HDLs use *discrete event simulation*
 - changes to variables \Rightarrow threads enabled
 - enabled threads executed non-deterministically
 - execution of threads \Rightarrow more events

- Combinational thread:

 $$\text{always } @ (v_1 \text{ or } \cdots \text{ or } v_n) \; v := E$$

 - enabled by any change to v_1, \ldots, v_n

- Positive edge triggered sequential threads:

 $$\text{always } @(\text{posedge } clk) \; v := E$$

 - enabled by clk changing to T

- Negative edge triggered sequential threads:

 $$\text{always } @(\text{negedge } clk) \; v := E$$

 - enabled by clk changing to F
Simulation

Given

- a set of threads
- initial values for variables read or written by threads
- a sequence of input values
 (inputs are variables not in LHS of assignments)

simulation algorithm \Rightarrow a sequence of states

- Choose an enabled thread
- Execute the chosen thread
- Fire event controls to enable new threads
- Execute until quiescent then advance simulation time

- Simulation is non-deterministic
Combinational threads in series

\[\text{in} \rightarrow f \xrightarrow{l_1} g \xrightarrow{l_2} h \rightarrow \text{out} \]

- **HDL-like specification:**

 \[
 \begin{align*}
 \text{always @}(\text{in}) & \quad l_1 := f(\text{in}) \quad \ldots \quad \text{thread T1} \\
 \text{always @}(l_1) & \quad l_2 := g(l_1) \quad \ldots \quad \text{thread T2} \\
 \text{always @}(l_2) & \quad \text{out} := h(l_2) \quad \ldots \quad \text{thread T3}
 \end{align*}
 \]

- **Suppose** \text{in} **changes** to \(x \) at simulation time \(t \)

 - T1 will become enabled and assign \(f(x) \) to \(l_1 \)
 - if \(l_1 \)'s value changes then T2 will become enabled (still simulation time \(t \))
 - T2 will assign \(g(f(x)) \) to \(l_2 \)
 - if \(l_2 \)'s value changes then T3 will become enabled (still simulation time \(t \))
 - T3 will assign \(h(g(f(x))) \) to \(\text{out} \)
 - simulation quiesces (still simulation time \(t \))

- **Steps at same simulation time happen in “δ-time”** (VHDL jargon)
Semantic gap

- Designers use HDLs and verify via simulation
 - event semantics
- Formal verifiers use logic and verify via proof
 - path semantics
- **Problem:** do path and simulation semantics agree?
- Would like:

 \[
 \text{paths} = \text{sequences of quiescent simulation states}
 \]
Sequential threads: alternative simulation semantics

Consider two Dtypes in series:

always @(posedge clk) \(l := in \)
always @(posedge clk) \(out := l \)

If \(\text{posedge} \ \text{clk} \):
- both threads become enabled
- race condition

Right thread executed first:
- \(out \) gets previous value of \(l \)
- then left thread executed
- so \(l \) gets value input at \(in \)

Left thread executed first:
- \(l \) gets input value at \(in \)
- then right thread executed
- so \(out \) gets input value at \(in \)
Sequential threads: aligning semantics

If right thread executed first get formal model semantics
\[R(in, l, out)(in', l', out') = (l' = in) \land (out' = l) \]

If left thread executed first get weird semantics
\[R(in, l, out)(in', l', out') = (l' = in) \land (out' = in) \]

How to ensure formal model semantics?

Method 1: use non-blocking assignments:

```Verilog
always @(posedge clk) l <= in;
always @(posedge clk) out <= l;
```

- non-blocking assignments (<=) in Verilog
- RHS of all non-blocking assignments first computed
- assignments done at end of simulation cycle

Method 2: make simulation cycle VHDL-like
Verilog versus VHDL simulation cycles

➢ Verilog-like simulation cycle:

```
Choose an enabled thread

Execute the chosen thread

Fire event controls to enable new threads
```

Execute
until
quiescent
then
advance
simulation
time

➢ VHDL-like simulation cycle:

```
Execute all enabled threads in parallel

Fire event controls to enable new threads
```

Execute
until
quiescent
then
advance
simulation
time

Choose an enabled thread

Execute the chosen thread

Fire event controls to enable new threads
Recall HDL:

- `always @(posedge clk) l := in`
- `always @(posedge clk) out := l`

If `posedge clk`:
- both threads become enabled

VHDL semantics:
- both threads executed in parallel
- `out` gets previous value of `l`
- in parallel `l` gets value input at `in`

Now no race

Event semantics matches path semantics
Another example: combinational + sequential

Exercise: Do VHDL and Verilog event semantics agree?

- Ignoring race if input does change at clock edge
 - in real world might get meta-stability problems
 - also in previous example
 - need analogue simulation (e.g. using SPICE)

Summary of dynamic versus static semantics

- Simulation (event) semantics different from path semantics

- No standard event semantics (Verilog versus VHDL)

- Verilog: need non-blocking assignments

- VHDL semantics closer path semantics

- Simulation runs generate finite sequences
 - better fit with LTL than CTL
Bisimulation equivalence: general idea

- M, M' bisimilar if they have ‘corresponding executions’
 - to each step of M there is a corresponding step of M'
 - to each step of M' there is a corresponding step of M

- Bisimilar models satisfy same CTL* properties
- Bisimilar: same truth/falsity of model properties
- Simulation gives property-truth preserving abstraction (see later)
Let $R : S \rightarrow S \rightarrow B$ and $R' : S' \rightarrow S' \rightarrow B$ be transition relations.

B is a bisimulation relation between R and R' if:

1. $B : S \rightarrow S' \rightarrow B$

2. $\forall s s'. B s s' \Rightarrow \forall s_1 \in S. R s s_1 \Rightarrow \exists s'_1. R' s' s'_1 \land B s_1 s'_1$

(to each step of R there is a corresponding step of R')

3. $\forall s s'. B s s' \Rightarrow \forall s'_1 \in S. R' s' s'_1 \Rightarrow \exists s_1. R s s_1 \land B s_1 s'_1$

(to each step of R' there is a corresponding step of R)
Bisimulation equivalence: definition and theorem

Let $M = (S, S_0, R, L)$ and $M' = (S', S'_0, R', L')$

$M \equiv M'$ if:

- there is a bisimulation B between R and R'
- $\forall s_0 \in S_0. \exists s'_0 \in S'_0. B s_0 s'_0$
- $\forall s'_0 \in S'_0. \exists s_0 \in S_0. B s_0 s'_0$
- there is a bijection $\theta : AP \rightarrow AP'$
- $\forall s s'. B s s' \Rightarrow L(s) = L'(s')$

Theorem: if $M \equiv M'$ then for any CTL* state formula ψ:

$M \models \psi \iff M' \models \psi$

See Q14 in the Exercises
Abstraction

- Abstraction creates a simplification of a model
 - separate states may get merged
 - an abstract path can represent several concrete paths
- $M \preceq \overline{M}$ means \overline{M} is an abstraction of M
 - to each step of M there is a corresponding step of \overline{M}
 - atomic properties of M correspond to atomic properties of \overline{M}
- Special case is when \overline{M} is a subset of M such that:
 - $\overline{M} = (\overline{S}_0, \overline{S}, \overline{R}, \overline{L})$ and $M = (S_0, S, R, L)$
 - $\overline{S} \subseteq S$
 - $\overline{S}_0 = S_0$
 - $\forall s, s' \in \overline{S}. \overline{R} s s' \iff R s s'$
 - $\forall s \in \overline{S}. \overline{L} s = L s$
 - \overline{S} contain all reachable states of M
 - $\forall s \in \overline{S}. \forall s' \in S. R s s' \Rightarrow s' \in \overline{S}$
- All paths of M from initial states are \overline{M}-paths
 - hence for all CTL formulas ψ: $\overline{M} \models \psi \Rightarrow M \models \psi$
Recall JM1

Thread 1

0: IF LOCK=0 THEN LOCK:=1;
1: X:=1;
2: IF LOCK=1 THEN LOCK:=0;
3:

Thread 2

0: IF LOCK=0 THEN LOCK:=1;
1: X:=2;
2: IF LOCK=1 THEN LOCK:=0;
3:

![Two program counters, state: \((pc_1, pc_2, lock, x)\)]

\[
S_{JM1} = [0..3] \times [0..3] \times \mathbb{Z} \times \mathbb{Z}
\]

\[
R_{JM1}(0, pc_2, 0, x) \quad (1, pc_2, 1, x) \quad R_{JM1}(pc_1, 0, 0, x) \quad (pc_1, 1, 1, x)
\]

\[
R_{JM1}(1, pc_2, lock, x) \quad (2, pc_2, lock, 1) \quad R_{JM1}(pc_1, 1, lock, x) \quad (pc_1, 2, lock, 2)
\]

\[
R_{JM1}(2, pc_2, 1, x) \quad (3, pc_2, 0, x) \quad R_{JM1}(pc_1, 2, 1, x) \quad (pc_1, 3, 0, x)
\]

Assume NotAt11 \(\in L_{JM1}(pc_1, pc_2, lock, x) \iff \neg((pc_1 = 1) \land (pc_2 = 1))\)

Model \(M_{JM1} = (S_{JM1}, \{(0,0,0,0)\}, R_{JM1}, L_{JM1})\)

\(S_{JM1}\) not finite, but actually \(lock \in \{0,1\}, x \in \{0,1,2\}\)

Clear by inspection that \(M_{JM1} \preceq \overline{M}_{JM1}\) where:

\[
\overline{M}_{JM1} = (\overline{S}_{JM1}, \{(0,0,0,0)\}, \overline{R}_{JM1}, \overline{L}_{JM1})
\]

- \(\overline{S}_{JM1} = [0..3] \times [0..3] \times [0..1] \times [0..3]\)
- \(\overline{R}_{JM1}\) is \(R_{JM1}\) restricted to arguments from \(\overline{S}_{JM1}\)
- NotAt11 \(\in \overline{L}_{JM1}(pc_1, pc_2, lock, x) \iff \neg((pc_1 = 1) \land (pc_2 = 1))\)
- \(\overline{L}_{JM1}\) is \(L_{JM1}\) restricted to arguments from \(\overline{S}_{JM1}\)
Simulation relations

- Let $R : S \rightarrow S \rightarrow B$ and $\overline{R} : \overline{S} \rightarrow \overline{S} \rightarrow B$ be transition relations.

- H is a simulation relation between R and \overline{R} if:
 - H is a relation between S and \overline{S} – i.e. $H : S \rightarrow \overline{S} \rightarrow B$
 - to each step of R there is a corresponding step of \overline{R} – i.e.:
 $$\forall s \bar{s}. \ H s \bar{s} \Rightarrow \forall s' \in S. \ R s s' \Rightarrow \exists \bar{s}' \in \overline{S}. \ \overline{R} \bar{s} \bar{s}' \land H s' \bar{s}'$$

- Also need to consider abstraction of atomic properties
 - $H_{AP} : AP \rightarrow \overline{AP} \rightarrow B$
 - details glossed over here
Simulation preorder: definition and theorem

- Let $M = (S, S_0, R, L)$ and $\overline{M} = (\overline{S}, \overline{S}_0, \overline{R}, \overline{L})$

- $M \preceq \overline{M}$ if:
 - there is a simulation H between R and \overline{R}
 - $\forall s_0 \in S_0. \exists \overline{s}_0 \in \overline{S}_0. H s_0 \overline{s}_0$
 - $\forall s \overline{s}. H s \overline{s} \Rightarrow L(s) = \overline{L}(\overline{s})$

- ACTL is the subset of CTL without E-properties
 - e.g. AG AFp – from anywhere can always reach a p-state

- Theorem: if $M \preceq \overline{M}$ then for any ACTL state formula ψ: $\overline{M} \models \psi \Rightarrow M \models \psi$

- If $\overline{M} \models \psi$ fails then cannot conclude $M \models \psi$ false
Example (Grumberg)

\[
\begin{align*}
\text{H} & \text{ a simulation} \\
\text{H RED STOP} & \land \\
\text{H YELLOW GO} & \land \\
\text{H GREEN GO} & \\
\text{HAP} : \{r, y, g\} & \rightarrow \{r, yg\} \rightarrow \mathbb{B} \\
\text{HAP} r & r \land \\
\text{HAP} y & yg \land \\
\text{HAP} g & yg
\end{align*}
\]

\[
\begin{align*}
\text{\textup{\texttt{\texttt{◮}}}} \quad \overline{M} & \models \text{AG AF } \neg r \text{ hence } M \models \text{AG AF } \neg r \\
\text{\textup{\texttt{\texttt{◮}}}} \quad \text{but } \neg (\overline{M} \models \text{AG AF } r) \text{ doesn’t entail } \neg (M \models \text{AG AF } r) \\
\text{\textup{\texttt{\texttt{◮}}}} \quad \text{[AG AF } r]_{\overline{M}}(\text{STOP}) \text{ is false} \\
\text{ (consider } \overline{M}\text{-path } \pi' \text{ where } \pi' = \text{STOP.GO.GO.GO} \ldots \text{)} \\
\text{\textup{\texttt{\texttt{◮}}}} \quad \text{[AG AF } r]_{M}(\text{RED}) \text{ is true} \\
\text{ (abstract path } \pi' \text{ doesn’t correspond to a real path in } M)
\end{align*}
\]
CEGAR

- **Counter Example Guided Abstraction Refinement**

 ![CEGAR Diagram]

 - Lots of details to fill out (several different solutions)
 - how to generate abstraction
 - how to check counterexamples
 - how to refine abstractions
 - Microsoft SLAM driver verifier is a CEGAR system
Temporal Logic and Model Checking – Summary

- Various property languages: LTL, CTL, PSL (Prior, Pnueli)
- Models abstracted from hardware or software designs
- Model checking checks $M \models \psi$ (Clarke et al.)
- Symbolic model checking uses BDDs (McMillan)
- Avoid state explosion via simulation and abstraction
- CEGAR refines abstractions by analysing counterexamples
- Triumph of application of computer science theory
 - two Turing awards, McMillan gets 2010 CAV award
 - widespread applications in industry
THE END