
Title: Temporal Logic and Model Checking

Lecturer: Mike Gordon

Class: Computer Science Tripos, Part II

Term: Lent Term 2015

Lecture 1: 10:00 on Thu, 15 Jan, 2015

Lecture 2: 10:00 on Tue, 20 Jan, 2015

Lecture 3: 10:00 on Thu, 22 Jan, 2015

Lecture 4: 10:00 on Tue, 27 Jan, 2015

Lecture 5: 10:00 on Thu, 29 Jan, 2015

Lecture 6: 10:00 on Tue, 03 Feb, 2015

Lecture 7: 10:00 on Thu, 05 Feb, 2015

Lecture 8: 10:00 on Tue, 10 Feb, 2015

Location: Lecture Theatre 2, WGB

Duration: Eight lectures

Document created December 1, 2014

Topics and corresponding slides

Topic Slides

Introduction to models 1 - 9

Atomic properties 10

Trees and paths 11 - 12

Examples of properties 13 - 16

Reachability 17

Introduction to model checking 18 - 26

Symbolic model checking 27 - 32

Disjunctive partitioning of BDDs 33 - 35

Generating counter-examples 36 - 42

Introduction to temporal logic 43 - 45

Linear Temporal Logic (LTL) 46 - 58

Computation Tree Logic (CTL) 59 - 75

CTL model checking 75 - 83

History of model checking 84

Expressibility of LTL and CTL 57 - 58, 85 - 87

CTL* 88 - 90

Fairness 91 - 92

Propositional modal µ-calculus 93

Sequential Extended Regular Expressions (SEREs) 94 - 95

Assertion Based Verification (ABV) and PSL 96 - 107

Dynamic verification: event semantics 108 - 116

Bisimulation 117 - 119

Abstraction 120 - 124

Counterexample Guided Abstraction Refinement (CEGAR) 125

Summary 126

Temporal Logic and Model Checking

◮ Model

◮ mathematical structure extracted from hardware or software

◮ Temporal logic

◮ provides a language for specifying functional properties

◮ Model checking

◮ checks whether a given property holds of a model

◮ Model checking is a kind of static verification

◮ dynamic verification is simulation (HW) or testing (SW)

Mike Gordon 1 / 127

Models

◮ A model is (for now) specified by a pair (S,R)

◮ S is a set of states

◮ R is a transition relation

◮ Models will get more components later

◮ (S,R) also called a transition system

◮ R s s′ means s′ can be reached from s in one step

◮ here R : S → (S → B) (where B = {true, false})

◮ more conventional to have R ⊆ S × S, which is equivalent

◮ i.e. R(this course) s s′ ⇔ (s, s′) ∈ R(some textbooks)

Mike Gordon 2 / 127

A simple example model

◮ A simple model: ({0, 1, 2, 3}
︸ ︷︷ ︸

S

, λn n′. n′ = n+1(mod 4)
︸ ︷︷ ︸

R

)

◮ where “λx . · · · x · · · ” is the function mapping x to · · · x · · ·

◮ so R n n′ = (n′ = n+1(mod 4))

◮ e.g. R 0 1 ∧ R 1 2 ∧ R 2 3 ∧ R 3 0

0 1 2 3

◮ Might be extracted from:

[Acknowledgement: http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm]

Mike Gordon 3 / 127

http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm

DIV: a software example
◮ Perhaps a familiar program:

0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

◮ State (pc, x , y , r ,q)
◮ pc ∈ {0,1,2,3,4,5} program counter
◮ x , y , r , q ∈ Z are the values of X, Y, R, Q

◮ Model (SDIV,RDIV) where:

SDIV = [0..5]× Z× Z× Z× Z (where [m..n] = {m,m+1, . . . ,n})

RDIV (pc, x , y , r ,q) (pc′, x ′, y ′, r ′,q′) =

(pc = 0) ⇒ ((pc′, x ′, y ′, r ′,q′) = (1, x , y , x ,q)) ∧
(pc = 1) ⇒ ((pc′, x ′, y ′, r ′,q′) = (2, x , y , r ,0)) ∧
(pc = 2) ⇒ ((pc′, x ′, y ′, r ′,q′) =

if y≤r then (3, x , y , r ,q) else (5, x , y , r ,q)) ∧
(pc = 3) ⇒ ((pc′, x ′, y ′, r ′,q′) = (4, x , y , (r−y),q)) ∧
(pc = 4) ⇒ ((pc′, x ′, y ′, r ′,q′) = (2, x , y , r , (q+1))

Mike Gordon 4 / 127

Deriving a transition relation from a state machine

◮ State machine transition function : δ : Inp × Mem→Mem

◮ Inp is a set of inputs
◮ Mem is a memory (set of storable values)

◮ Model: (Sδ,Rδ) where:

Sδ = Inp × Mem

Rδ (i ,m) (i ′,m′) = (m′ = δ(i ,m))

and

◮ i ′ arbitrary: determined by environment not by machine

◮ m′ determined by input and current state of machine

◮ Deterministic machine, non-deterministic transition relation

◮ inputs unspecified (determined by environment)

◮ so called “input non-determinism”

Mike Gordon 5 / 127

RCV: a state machine specification of a circuit
◮ Part of a handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

◮ Input: dreq, Memory: (q0,dack)

◮ Relationships between Boolean values on wires:
q0bar = ¬q0
a0 = q0bar ∧ dack
or0 = q0 ∨ a0
a1 = dreq ∧ or0

◮ State machine: δRCV : B× (B×B)→(B×B)

δRCV (dreq
︸︷︷︸

Inp

, (q0,dack)
︸ ︷︷ ︸

Mem

) = (dreq, dreq ∧ (q0 ∨ (¬q0 ∧ dack)))

◮ RTL model – could have lower level model with clock edges

Mike Gordon 6 / 127

RCV: a model of the circuit

◮ Circuit from previous slide:

dackdreq
q0

q0bar
a0

or0
a1

◮ State represented by a triple of Booleans (dreq,q0,dack)

◮ By De Morgan Law: q0 ∨ (¬q0 ∧ dack) = q0 ∨ dack

◮ Hence δRCV corresponds to model (SRCV,RRCV) where:

SRCV = B× B× B

RRCV (dreq,q0,dack) (dreq′,q0′,dack ′) =
(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))

[Note: we are identifying B× B× B with B× (B× B)]

Mike Gordon 7 / 127

Some comments

◮ RRCV is non-deterministic and total

◮ RRCV (1,1,1) (0,1,1) and RRCV (1,1,1) (1,1,1)
(where 1 = true and 0 = false)

◮ RRCV (dreq,q0,dack) (dreq′,dreq, (dreq ∧ (q0 ∨ dack)))

◮ RDIV is deterministic and partial

◮ at most one successor state
◮ no successor when pc = 5

◮ Non-deterministic models are very common, e.g. from:

◮ asynchronous hardware
◮ parallel software (more than one thread)

◮ Can extend any transition relation R to be total:

Rtotal s s′ = if (∃s′′. R s s′′) then R s s′ else (s′ = s)

= R s s′ ∨ (¬(∃s′′. R s s′′) ∧ (s′ = s))

◮ sometimes totality required

(e.g. in the book Model Checking by Clarke et. al)

Mike Gordon 8 / 127

JM1: a non-deterministic software example

◮ From Jhala and Majumdar’s tutorial:
Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;

1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;

3: 3:

◮ Two program counters, state: (pc1,pc2, lock , x)

SJM1 = [0..3]× [0..3]× Z× Z

RJM1 (0,pc2,0, x) (1,pc2,1, x)
RJM1 (1,pc2, lock , x) (2,pc2, lock ,1)
RJM1 (2,pc2,1, x) (3,pc2,0, x)
RJM1 (pc1,0,0, x) (pc1,1,1, x)
RJM1 (pc1,1, lock , x) (pc1,2, lock ,2)
RJM1 (pc1,2,1, x) (pc1,3,0, x)

◮ Not-deterministic:
RJM1 (0,0,0, x) (1,0,1, x)
RJM1 (0,0,0, x) (0,1,1, x)

◮ Not so obvious that RJM1 is a correct model

Mike Gordon 9 / 127

Atomic properties (properties of states)

◮ Atomic properties are true or false of individual states

◮ an atomic property p is a function p : S → B

◮ can also be regarded as a subset of state: p ⊆ S

◮ Example atomic properties of RCV

(where 1 = true and 0 = false)

Dreq(dreq, q0, dack) = (dreq = 1)
NotQ0(dreq, q0, dack) = (q0 = 0)
Dack(dreq, q0, dack) = (dack = 1)
NotDreqAndQ0(dreq, q0, dack) = (dreq=0) ∧ (q0=1)

◮ Example atomic properties of DIV

AtStart (pc, x , y , r , q) = (pc = 0)
AtEnd (pc, x , y , r , q) = (pc = 5)
InLoop (pc, x , y , r , q) = (pc ∈ {3, 4})
YleqR (pc, x , y , r , q) = (y ≤ r)
Invariant (pc, x , y , r , q) = (x = r + (y × q))

Mike Gordon 10 / 127

Model behaviour viewed as a computation tree

◮ Atomic properties are true or false of individual states

◮ General properties are true or false of whole behaviour

◮ Behaviour of (S,R) starting from s ∈ S as a tree:

s

initial state states after
one step

states after
two steps

◮ A path is shown in red

◮ Properties may look at all paths, or just a single path

◮ CTL: Computation Tree Logic (all paths from a state)
◮ LTL: Linear Temporal Logic (a single path)

Mike Gordon 11 / 127

Paths

◮ A path of (S,R) is represented by a function π : N → S

◮ π(i) is the i th element of π (first element is π(0))
◮ might sometimes write π i instead of π(i)
◮ π↓i is the i-th tail of π so π↓i(n) = π(i + n)
◮ successive states in a path must be related by R

◮ Path R s π is true if and only if π is a path starting at s:

Path R s π = (π(0) = s) ∧ ∀i . R (π(i)) (π(i+1))

where:

Path : (S → S → B)
︸ ︷︷ ︸

transition
relation

→ S
︸︷︷︸

initial
state

→ (N → S)
︸ ︷︷ ︸

path

→ B

Mike Gordon 12 / 127

RCV: example hardware properties

◮ Consider this timing diagram:

dreq

dack

◮ Two handshake properties representing the diagram:

◮ following a rising edge on dreq, the value of dreq

remains 1 (i.e. true) until it is acknowledged by a rising

edge on dack

◮ following a falling edge on dreq, the value on dreq

remains 0 (i.e. false) until the value of dack is 0

◮ A property language is used to formalise such properties

Mike Gordon 13 / 127

DIV: example program properties

0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

AtStart (pc, x , y , r , q) = (pc = 0)
AtEnd (pc, x , y , r , q) = (pc = 5)
InLoop (pc, x , y , r , q) = (pc ∈ {3, 4})
YleqR (pc, x , y , r , q) = (y ≤ r)
Invariant (pc, x , y , r , q) = (x = r + (y × q))

◮ Example properties of the program DIV.

◮ on every execution if AtEnd is true then Invariant is true

and YleqR is not true

◮ on every execution there is a state where AtEnd is true

◮ on any execution if there exists a state where YleqR is true

then there is also a state where InLoop is true

◮ Compare these with what is expressible in Hoare logic

◮ execution: a path starting from a state satisfying AtStart

Mike Gordon 14 / 127

Recall JM1: a non-deterministic program example

Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;

1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;

3: 3:

RJM1 (0,pc2,0, x) (1,pc2,1, x)
RJM1 (1,pc2, lock , x) (2,pc2, lock ,1)
RJM1 (2,pc2,1, x) (3,pc2,0, x)
RJM1 (pc1,0,0, x) (pc1,1,1, x)
RJM1 (pc1,1, lock , x) (pc1,2, lock ,2)
RJM1 (pc1,2,1, x) (pc1,3,0, x)

◮ An atomic property:
◮ NotAt11(pc1,pc2, lock , x) = ¬((pc1 = 1) ∧ (pc2 = 1))

◮ A non-atomic property:

◮ all states reachable from (0,0,0,0) satisfy NotAt11

◮ this is an example of a reachability property

Mike Gordon 15 / 127

State satisfying NotAt11 unreachable from (0,0,0,0)

Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;

1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;

3: 3:

RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (1, pc2, lock , x) (2, pc2, lock , 1)
RJM1 (2, pc2, 1, x) (3, pc2, 0, x)

RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)
RJM1 (pc1, 1, lock , x) (pc1, 2, lock , 2)
RJM1 (pc1, 2, 1, x) (pc1, 3, 0, x)

◮ NotAt11(pc1, pc2, lock , x) = ¬((pc1 = 1) ∧ (pc2 = 1))

◮ Can only reach pc1 = 1 ∧ pc2 = 1 via:
RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)

i.e. a step RJM1 (0, 1, 0, x) (1, 1, 1, x)
i.e. a step RJM1 (1, 0, 0, x) (1, 1, 1, x)

◮ But:
RJM1 (pc1, pc2, lock , x) (pc′

1
, pc′

2
, lock ′, x ′) ∧ pc′

1
=0 ∧ pc′

2
=1 ⇒ lock ′=1

∧
RJM1 (pc1, pc2, lock , x) (pc′

1
, pc′

2
, lock ′, x ′) ∧ pc′

1
=1 ∧ pc′

2
=0 ⇒ lock ′=1

◮ So can never reach (0, 1, 0, x) or (1, 0, 0, x)

◮ So can’t reach (1, 1, 1, x), hence never (pc1 = 1) ∧ (pc2 = 1)

◮ Hence all states reachable from (0, 0, 0, 0) satisfy NotAt11
Mike Gordon 16 / 127

Reachability

◮ R s s′ means s′ reachable from s in one step

◮ Rn s s′ means s′ reachable from s in n steps

R0 s s′ = (s = s′)

Rn+1 s s′ = ∃s′′. R s s′′ ∧ Rn s′′ s′

◮ R∗ s s′ means s′ reachable from s in finite steps

R∗ s s′ = ∃n. Rn s s′

◮ Note: R∗ s s′ ⇔ ∃π n. Path R s π ∧ (s′ = π(n))

◮ The set of states reachable from s is {s′ | R∗ s s′}

◮ Verification problem: all states reachable from s satisfy p

◮ verify truth of ∀s′. R∗ s s′ ⇒ p(s′)

◮ e.g. all states reachable from (0,0,0,0) satisfy NotAt11

◮ i.e. ∀s′. R∗

JM1 (0,0,0,0) s′ ⇒ NotAt11(s′)

Mike Gordon 17 / 127

Models and model checking

◮ Assume a model (S,R)

◮ Assume also a set S0 ⊆ S of initial states

◮ Assume also a set AP of atomic properties

◮ Assume a labeling function L : S → P(AP)
◮ p ∈ L(s) means “s labelled with p” or “p true of s”

◮ previously properties were functions p : S → B

◮ now p ∈ AP is distinguished from λs. p ∈ L(s)

◮ assume T,F ∈ AP with forall s: T ∈ L(s) and F /∈ L(s)

◮ A Kripke structure is a tuple (S,S0,R, L)
◮ often the term “model” is used for a Kripke structure

◮ i.e. a model is (S,S0,R,L) rather than just (S,R)

◮ Model checking computes whether (S,S0,R, L) |= φ

◮ φ is a property expressed in a property language

◮ informally M |= φ means “wff φ is true in model M”

Mike Gordon 18 / 127

Minimal property language: φ is AGp where p ∈ AP

◮ Consider properties φ of form AGp where p ∈ AP

◮ “AG ” stands for “Always Globally”

◮ Assume M = (S,S0,R, L)

◮ Reachable states of M are {s′ | ∃s ∈ S0. R∗ s s′}

◮ i.e. the set of states reachable from an initial state

◮ define Reachable M = {s′ | ∃s ∈ S0. R∗ s s′}

◮ M |= AGp means p true of all reachable states of M

◮ If M = (S,S0,R, L) then M |= φ formally defined by:

M |= AGp ⇔ ∀s′. s′ ∈ Reachable M ⇒ p ∈ L(s′)

Mike Gordon 19 / 127

Model checking M |= AGp
◮ M |= AGp ⇔ ∀s′. s′ ∈ Reachable M ⇒ p ∈ L(s′)

⇔ Reachable M ⊆ {s′ | p ∈ L(s′)}
so:

◮ compute Reachable M i.e. compute {s′ | ∃s ∈ S0. R∗ s s′}

◮ check p true of all its members

◮ Let S = {s′ | ∃s ∈ S0. R∗ s s′}

◮ Compute S iteratively: S = S0 ∪ S1 ∪ · · · ∪ Sn ∪ · · ·
◮ i.e. S =

⋃
∞

n=0 Sn

◮ where: S0 = S0 (set of initial states)

◮ and inductively: Sn+1 = Sn ∪ {s′ | ∃s ∈ Sn ∧ R s s′}

◮ Clearly S0 ⊆ S1 ⊆ · · · ⊆ Sn ⊆ · · ·

◮ Hence if Sm = Sm+1 then S = Sm

◮ Algorithm: compute S0, S1, . . . , until no change;

check all members of computed set labelled with p

Mike Gordon 20 / 127

compute S0, S1, . . . , until no change;
check p holds of all members of computed set

◮ Does the algorithm terminate?

◮ yes, if set of states is finite, because then no infinite chains:

S0 ⊂ S1 ⊂ · · · ⊂ Sn ⊂ · · ·

◮ How to represent S0, S1, . . . ?

◮ explicitly (e.g. lists or something more clever)

◮ symbolic expression

◮ Huge literature on calculating set of reachable states

Mike Gordon 21 / 127

Example: RCV

◮ Recall the handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

◮ State represented by a triple of Booleans (dreq,q0,dack)

◮ A model of RCV is MRCV where:

M = (SRCV, {(1,1,1)},RRCV,LRCV)

and
RRCV (dreq,q0,dack) (dreq′,q0′,dack ′) =

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))

Mike Gordon 22 / 127

RCV state transition diagram

◮ Possible states for RCV:

{000, 001, 010, 011, 100, 101, 110, 111}

where b2b1b0 denotes state

dreq = b2 ∧ q0 = b1 ∧ dack = b0

◮ Graph of the transition relation:

000 100 110 111

101

011

001

010

Mike Gordon 23 / 127

Computing Reachable MRCV

000 100 110 111

101

011

001

010

◮ Define:

S0 = {b2b1b0 | b2b1b0 ∈ {111}}

= {111}

Si+1 = Si ∪ {s′ | ∃s ∈ Si . RRCV s s′ }

= Si ∪ {b′

2b′

1b′

0 |
∃b2b1b0 ∈ Si . (b

′

1 = b2) ∧ (b′

0 = b2 ∧ (b1 ∨ b0))}

Mike Gordon 24 / 127

Computing Reachable MRCV (continued)

000 100 110 111

101

011

001

010

0322

3

1

◮ Compute:

S0 = {111}

S1 = {111} ∪ {011}
= {111,011}

S2 = {111,011} ∪ {000,100}
= {111,011,000,100}

S3 = {111,011,000,100} ∪ {010,110}
= {111,011,000,100,010,110}

Si = S3 (i > 3)

◮ Hence Reachable MRCV = {111,011,000,100,010,110}
Mike Gordon 25 / 127

Model checking MRCV |= AGp

◮ M = (SRCV, {111},RRCV,LRCV)

◮ To check MRCV |= AG p

◮ compute Reachable MRCV = {111,011,000,100,010,110}

◮ check Reachable MRCV ⊆ {s | p ∈ LRCV(s)}, i.e. check:

p ∈ LRCV(111)
p ∈ LRCV(011)
p ∈ LRCV(000)
p ∈ LRCV(100)
p ∈ LRCV(010)
p ∈ LRCV(110)

Mike Gordon 26 / 127

Symbolic Boolean model checking of reachability

◮ Assume states are n-tuples of Booleans (b1, . . . , bn)
◮ bi ∈ B = {true, false}

◮ S = B
n, so S is finite: 2n states

◮ Assume n distinct Boolean variables: v1,. . .,vn

◮ e.g. if n = 3 then could have v1 = x, v2 = y, v3 = z

◮ Boolean formula f (v1, . . . , vn) represents a subset of S
◮ f (v1, . . . , vn) only contains variables v1,. . .,vn

◮ f (b1, . . . ,bn) denotes result of substituting bi for vi

◮ f (v1, . . . , vn)determines{(b1, . . . ,bn)|f (b1, . . . ,bn) ⇔ true}

◮ Example ¬(x = y) represents {(true, false), (false, true)}

◮ Transition relations also represented by Boolean formulae

◮ e.g. RRCV represented by:

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ (¬q0 ∧ dack))))

Mike Gordon 27 / 127

Symbolically represent Boolean formulae as BDDs

◮ Key features of Binary Decision Diagrams (BDDs):

◮ canonical (given a variable ordering)

◮ efficient to manipulate

◮ Variables:
v = if v then 1 else 0

¬v = if v then 0 else 1

◮ Example: BDDs of variable v and ¬v

0 1

v

0 1

v

◮ Example: BDDs of v1 ∧ v2 and v1 ∨ v2

0 1

v1

v2

01

v1

v2

Mike Gordon 28 / 127

More BDD examples

◮ BDD of v1 = v2

0 1

v1

v2 v2

◮ BDD of v1 6= v2

0 1

v1

v2 v2

Mike Gordon 29 / 127

BDD of a transition relation

◮ BDDs of

(v1′ = (v1 = v2)) ∧ (v2′ = (v1 6= v2))

with two different variable orderings

0 1

v1

v2 v2

v1’ v1’

v2’ v2’

01

v1’

v1 v1

v2v2 v2 v2

v2’ v2’

◮ Exercise: draw BDD of RRCV

Mike Gordon 30 / 127

Standard BDD operations

◮ If formulae f1, f2 represents sets S1, S2, respectively

then f1 ∧ f2, f1 ∨ f2 represent S1 ∩ S2, S1 ∪ S2 respectively

◮ Standard algorithms compute Boolean operation on BDDs

◮ Abbreviate (v1, . . . , vn) to ~v

◮ If f (~v) represents S

and g(~v , ~v ′) represents {(~v , ~v ′) | R ~v ~v ′)}
then ∃~u. f (~u) ∧ g(~u, ~v) represents {~v | ∃~u. ~u ∈ S ∧ R ~u ~v}

◮ Can compute BDD of ∃~u. h(~u, ~v) from BDD of h(~u, ~v)
◮ e.g. BDD of ∃v1. h(v1, v2) is BDD of h(T, v2) ∨ h(F, v2)

◮ From BDD of formula f (v1, . . . , vn) can compute b1, . . ., bn

such that if v1 = b1, . . ., vn = bn then f (b1, . . . , bn) ⇔ true
◮ b1, . . ., bn is a satisfying assignment (SAT problem)
◮ used for counterexample generation (see later)

Mike Gordon 31 / 127

Reachable States via BDDs
◮ Assume M = (S,S0,R, L) and S = B

n

◮ Represent R by Boolean formulae g(~v , ~v ′)

◮ Iteratively define formula fn(~v) representing Sn

f0(~v) = formula representing S0

fn+1(~v) = fn(~v) ∨ (∃~u. fn(~u) ∧ g(~u, ~v))

◮ Let B0, BR be BDDs representing f0(~v), g(~v , ~v ′)

◮ Iteratively compute BDDs Bn representing fn

Bn+1 = Bn ∨ (∃~u. Bn[~u/~v] ∧ BR[~u, ~v/~v , ~v
′])

◮ efficient using (blue underlined) standard BDD algorithms
(renaming, conjunction, disjunction, quantification)

◮ BDD Bn only contains variables ~v : represents Sn ⊆ S

◮ At each iteration check Bn+1 = Bn efficient using BDDs

◮ when Bn+1 = Bn can conclude Bn represents Reachable M
◮ we call this BDD BM in a later slide (i.e. BM = Bn)

Mike Gordon 32 / 127

Example BDD optimisation: disjunctive partitioning

δ

δ

δ

x

y

z

x

y

z

Three state transition functions in parallel

δx , δy , δz : B× B× B→B

◮ Transition relation (asynchronous interleaving semantics):

R (x , y , z) (x ′, y ′, z ′) =
(x ′ = δx(x , y , z) ∧ y ′ = y ∧ z ′ = z) ∨
(x ′ = x ∧ y ′ = δy (x , y , z) ∧ z ′ = z) ∨
(x ′ = x ∧ y ′ = y ∧ z ′ = δz(x , y , z))

Mike Gordon 33 / 127

Avoiding building big BDDs

◮ Transition relation for three transition functions in parallel
R(x , y , z) (x ′, y ′, z ′) =
(x ′ = δx(x , y , z) ∧ y ′ = y ∧ z ′ = z) ∨
(x ′ = x ∧ y ′ = δy (x , y , z) ∧ z ′ = z) ∨
(x ′ = x ∧ y ′ = y ∧ z ′ = δz(x , y , z))

◮ Recall symbolic iteration:

fn+1(~v) = fn(~v) ∨ (∃~u. fn(~u) ∧ g(~u, ~v))

◮ For this particular R (see next slide):
fn+1(x , y , z)

= fn(x , y , z) ∨ (∃x y z. fn(x , y , z) ∧ R (x , y , z) (x , y , z))

= fn(x , y , z) ∨
(∃x . fn(x , y , z) ∧ x = δx(x , y , z)) ∨
(∃y . fn(x , y , z) ∧ y = δy (x , y , z)) ∨
(∃z. fn(x , y , z) ∧ z = δz(x , y , z))

◮ Don’t need to calculate BDD of R!

Mike Gordon 34 / 127

Disjunctive partitioning – Exercise: understand this
∃x y z. fn(x , y , z) ∧ R (x , y , z) (x , y , z)

= ∃x y z. fn(x , y , z) ∧ ((x = δx(x , y , z) ∧ y = y ∧ z = z) ∨
(x = x ∧ y = δy (x , y , z) ∧ z = z) ∨
(x = x ∧ y = y ∧ z = δz(x , y , z)))

= (∃x y z. fn(x , y , z) ∧ x = δx(x , y , z) ∧ y = y ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = δy (x , y , z) ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = y ∧ z = δz(x , y , z))

= (∃x y z. fn(x , y , z) ∧ x = δx(x , y , z) ∧ y = y ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = δy (x , y , z) ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = y ∧ z = δz(x , y , z))

= ((∃x . fn(x , y , z) ∧ x=δx(x , y , z)) ∧ (∃y . y=y) ∧ (∃z. z=z)) ∨
((∃x . x=x) ∧ (∃y . fn(x , y , z) ∧ y=δy (x , y , z)) ∧ (∃z. z=z)) ∨
((∃x . x=x) ∧ (∃y . y=y) ∧ (∃z. fn(x , y , z) ∧ z=δz(x , y , z)))

= (∃x . fn(x , y , z) ∧ x = δx(x , y , z)) ∨
(∃y . fn(x , y , z) ∧ y = δy (x , y , z)) ∨
(∃z. fn(x , y , z) ∧ z = δz(x , y , z))

Mike Gordon 35 / 127

Verification and counterexamples

◮ Typical safety question:

◮ is property p true in all reachable states?
◮ i.e. check M |= AG p
◮ i.e. is ∀s. s ∈ Reachable M ⇒ p s

◮ Check using BDDs

◮ compute BDD BM of Reachable M

◮ compute BDD Bp of p(~v)

◮ check if BDD of BM ⇒ Bp is the single node 1

◮ Valid because true represented by a unique BDD

(canonical property)

◮ If BDD is not 1 can get counterexample

Mike Gordon 36 / 127

Generating counterexamples (general idea)

BDD algorithms can find satisfying assignments (SAT)

◮ Suppose not all reachable states of model M satisfy p

◮ i.e. ∃s ∈ Reachable M. ¬(p(s))

◮ Set of reachable state S given by: S =
⋃∞

n=0 Sn

◮ Iterate to find least n such that ∃s ∈ Sn. ¬(p(s))

◮ Use SAT to find bn such that bn ∈ Sn ∧ ¬(p(bn))

◮ Use SAT to find bn−1 such that bn−1 ∈ Sn−1 ∧ R bn−1 bn

◮ Use SAT to find bn−2 such that bn−2 ∈ Sn−2 ∧ R bn−2 bn−1
...

◮ Iterate to find b0, b1, . . ., bn−1, bn where bi ∈ Si ∧ R bi−1 i

◮ Then b0 b1 · · · bn−1 bn is a path to a counterexample

Mike Gordon 37 / 127

Use SAT to find sn−1 such that sn−1 ∈ Sn−1 ∧ R sn−1 sn

◮ Suppose states s, s′ symbolically represented by ~v , ~v ′

◮ Suppose BDD Bi represents ~v ∈ Si (1 ≤ i ≤ n)

◮ Suppose BDD BR represents R ~v ~v ′

◮ Then BDD

(Bn−1 ∧ BR[~bn/~v ′])
represents
~v ∈ Sn−1 ∧ R ~v ~bn

◮ Use SAT to find a valuation ~bn−1 for ~v

◮ Then BDD

(Bn−1 ∧ BR[~bn/~v ′])[~bn−1/~v]
represents
~bn−1 ∈ Sn−1 ∧ R ~bn−1

~bn = 1

Mike Gordon 38 / 127

Generating counterexamples with BDDs

BDD algorithms can find satisfying assignments (SAT)

◮ M = (S,S0,R, L) and B0, B1, . . . , BM , BR, Bp as earlier

◮ Suppose BM ⇒ Bp is not 1

◮ Must exist a state s ∈ Reachable M such that ¬(p s)

◮ Let B¬p be the BDD representing ¬(p ~v)

◮ Iterate to find first n such that Bn ∧ B¬p

◮ Use SAT to find ~bn such that (Bn ∧ B¬p)[~bn/~v]

◮ Use SAT to find ~bn−1 such that (Bn−1 ∧ BR[~bn/~v ′])[~bn−1/~v]

◮ For 0 < i < n find ~bi−1 such that (Bi−1 ∧ BR[~bi/~v ′])[~bi−1/~v]

◮ ~b0,. . .,~bi ,. . .,~bn is a counterexample trace

◮ Sometimes can use partitioning to avoid constructing BR

Mike Gordon 39 / 127

Example (from an exam)
Consider a 3x3 array of 9 switches

1 2 3

4 5 6

7 8 9

Suppose each switch 1,2,...,9 can either be on or off, and that toggling any switch will
automatically toggle all its immediate neighbours. For example, toggling switch 5 will
also toggle switches 2, 4, 6 and 8, and toggling switch 6 will also toggle switches 3, 5
and 9.

(a) Devise a state space [4 marks] and transition relation [6 marks] to represent the
behavior of the array of switches

You are given the problem of getting from an initial state in which even numbered
switches are on and odd numbered switches are off, to a final state in which all the
switches are off.

(b) Write down predicates on your state space that characterises the initial [2 marks]
and final [2 marks] states.

(c) Explain how you might use a model checker to find a sequences of switches to
toggle to get from the initial to final state. [6 marks]

You are not expected to actually solve the problem, but only to explain how to represent
it in terms of model checking.

Mike Gordon 40 / 127

Solution

A state is a vector (v1,v2,v3,v4,v5,v6,v7,v8,v9), where vi ∈ B

A transition relation Trans is then defined by:

Trans(v1,v2,v3,v4,v5,v6,v7,v8,v9)(v1’,v2’,v3’,v4’,v5’,v6’,v7’,v8’,v9’)

= ((v1’=¬v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=v5)∧
(v6’=v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 1)

∨ ((v1’=¬v1)∧(v2’=¬v2)∧(v3’=¬v3)∧(v4’=v4)∧(v5’=¬v5)∧
(v6’=v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 2)

∨ ((v1’=v1)∧(v2’=¬v2)∧(v3’=¬v3)∧(v4’=v4)∧(v5’=v5)∧
(v6’=¬v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 3)

∨ ((v1’=¬v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=¬v5)∧
(v6’=v6)∧(v7’=¬v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 4)

∨ ((v1’=v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=¬v5)∧
(v6’=¬v6)∧(v7’=v7)∧(v8’=¬v8)∧(v9’=v9)) (toggle switch 5)

∨ ((v1’=v1)∧(v2’=v2)∧(v3’=¬v3)∧(v4’=v4)∧(v5’=¬v5)∧
(v6’=¬v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=¬v9)) (toggle switch 6)

∨ ((v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=v5)∧
(v6’=v6)∧(v7’=¬v7)∧(v8’=¬v8)∧(v9’=v9)) (toggle switch 7)

∨ ((v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=v4)∧(v5’=¬v5)∧
(v6’=v6)∧(v7’=¬v7)∧(v8’=¬v8)∧(v9’=¬v9)) (toggle switch 8)

∨ ((v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=v4)∧(v5’=v5)∧
(v6’=¬v6)∧(v7’=v7)∧(v8’=¬v8)∧(v9’=¬v9)) (toggle switch 9)

Mike Gordon 41 / 127

Solution (continued)

Predicates Init, Final characterising the initial and final states,

respectively, are defined by:

Init(v1,v2,v3,v4,v5,v6,v7,v8,v9) =

¬v1 ∧ v2 ∧ ¬v3 ∧ v4 ∧ ¬v5 ∧ v6 ∧ ¬v7 ∧ v8 ∧ ¬v9

Final(v1,v2,v3,v4,v5,v6,v7,v8,v9) =

¬v1 ∧ ¬v2 ∧ ¬v3 ∧ ¬v4 ∧ ¬v5 ∧ ¬v6 ∧ ¬v7 ∧ ¬v8 ∧ ¬v9

Model checkers can find counter-examples to properties, and

sequences of transitions from an initial state to a

counter-example state. Thus we could use a model checker to

find a trace to a counter-example to the property that

¬Final(v1,v2,v3,v4,v5,v6,v7,v8,v9)

Mike Gordon 42 / 127

Properties
◮ ∀s∈S0.∀s′.R∗ s s′ ⇒ p s′ says p true in all reachable states

◮ Might want to verify other properties

1. DeviceEnabled holds infinitely often along every path

2. From any state it is possible to get to a state where

Restart holds

3. After a three or more consecutive occurrences of Req there

will eventually be an Ack

◮ Temporal logic can express such properties

◮ There are several temporal logics in use

◮ LTL is good for the first example above

◮ CTL is good for the second example

◮ PSL is good for the third example

◮ Model checking:

◮ Emerson, Clarke & Sifakis: Turing Award 2008

◮ widely used in industry: first hardware, later software

Mike Gordon 43 / 127

Temporal logic (originally called “tense logic”)
Originally devised for investigating: “the relationship
between tense and modality attributed to the Megarian
philosopher Diodorus Cronus (ca. 340-280 BCE)”.

Mary Prior, his wife, recalls “I remember his waking me
one night [in 1953], coming and sitting on my bed, ... and
saying he thought one could make a formalised tense logic”.

A. N. Prior
1914-1969

◮ Temporal logic: deductive system for reasoning about time
◮ temporal formulae for expressing temporal statements
◮ deductive system for proving theorems

◮ Temporal logic model checking
◮ uses semantics to check truth of temporal formulae in models

◮ Temporal logic proof systems also important in CS
◮ use pioneered by Amir Pnueli (1996 Turing Award)
◮ not considered in this course

Recommended: http://plato.stanford.edu/entries/prior/

Mike Gordon 44 / 127

http://plato.stanford.edu/entries/prior/

Temporal logic formulae (statements)
◮ Many different languages of temporal statements

◮ linear time (LTL)
◮ branching time (CTL)
◮ finite intervals (SEREs)
◮ industrial languages (PSL, SVA)

◮ Prior used linear time, Kripke suggested branching time:
... we perhaps should not regard time as a linear series ... there are
several possibilities for what the next moment may be like - and for
each possible next moment, there are several possibilities for the
moment after that. Thus the situation takes the form, not of a linear
sequence, but of a ’tree’.
[Saul Kripke, 1958 (aged 17, still at school)]

◮ CS issues different from philosophical issues
◮ Moshe Vardi: “Branching vs. Linear Time: Final Showdown”

2011 Harry H. Goode Memorial Award Recipient

Mike Gordon 45 / 127

Linear Temporal Logic (LTL)

◮ Grammar of well formed formulae (wff) φ

φ ::= p (Atomic formula: p ∈ AP)

| ¬φ (Negation)

| φ1 ∨ φ2 (Disjunction)

| Xφ (successor)

| Fφ (sometimes)

| Gφ (always)

| [φ1 U φ2] (Until)

◮ Details differ from Prior’s tense logic – but similar ideas

◮ Semantics define when φ true in model M

◮ where M = (S,R,S0,L) – a Kripke structure

◮ notation: M |= φ means φ true in model M

◮ model checking algorithms compute this (when decidable)

Mike Gordon 46 / 127

M |= φ means “wff φ is true in model M”

◮ If M = (S,S0,R, L) then

π is an M-path starting from s iff Path R s π

◮ If M = (S,S0,R, L) then we define M |= φ to mean:

φ is true on all M-paths starting from a member of S0

◮ We will define [[φ]]M(π) to mean

φ is true on the M-path π

◮ Thus M |= φ will be formally defined by:

M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M(π)

◮ It remains to actually define [[φ]]M for all wffs φ

Mike Gordon 47 / 127

Definition of [[φ]]M(π)

◮ [[φ]]M(π) is the application of function [[φ]]M to path π

◮ thus [[φ]]M : (N → S) → B

◮ Let M = (S,S0,R, L)

[[φ]]M is defined by structural induction on φ

[[p]]M(π) = p ∈ L(π 0)
[[¬φ]]M(π) = ¬([[φ]]M(π))
[[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)
[[Xφ]]M(π) = [[φ]]M(π↓1)
[[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)
[[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)
[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ We look at each of these semantic equations in turn

Mike Gordon 48 / 127

[[p]]M(π) = p(π 0)

◮ Assume M = (S,S0,R, L)

◮ We have: [[p]]M(π) = p ∈ L(π 0)
◮ p is an atomic property, i.e. p ∈ AP
◮ π : N → S so π 0 ∈ S
◮ π 0 is the first state in path π
◮ p ∈ L(π 0) is true iff atomic property p holds of state π 0

◮ [[p]]M(π) means p holds of the first state in path π

◮ Assume T,F ∈ AP with for all s: T ∈ L(s) and F /∈ L(s)

◮ [[T]]M(π) is always true

◮ [[F]]M(π) is always false

Mike Gordon 49 / 127

[[¬φ]]M(π) = ¬([[φ]]M(π))

[[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)

◮ [[¬φ]]M(π) = ¬([[φ]]M(π))

◮ [[¬φ]]M(π) true iff [[φ]]M(π) is not true

◮ [[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)

◮ [[φ1 ∨ φ2]]M(π) true iff [[φ1]]M(π) is true or [[φ2]]M(π) is true

Mike Gordon 50 / 127

[[Xφ]]M(π) = [[φ]]M(π↓1)

◮ [[Xφ]]M(π) = [[φ]]M(π↓1)

◮ π↓1 is π with the first state chopped off

π↓1(0) = π(1 + 0) = π(1)
π↓1(1) = π(1 + 1) = π(2)
π↓1(2) = π(1 + 2) = π(3)

...

◮ [[Xφ]]M(π) true iff [[φ]]M true starting at the next state of π

Mike Gordon 51 / 127

[[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)

◮ [[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)

◮ π↓i is π with the first i states chopped off

π↓i(0) = π(i + 0) = π(i)
π↓i(1) = π(i + 1)
π↓i(2) = π(i + 2)

...
◮ [[φ]]M(π↓i) true iff [[φ]]M true starting i states along π

◮ [[Fφ]]M(π) true iff [[φ]]M true starting somewhere along π

◮ “Fφ” is read as “sometimes φ”

Mike Gordon 52 / 127

[[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)
◮ [[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)

◮ π↓i is π with the first i states chopped off
◮ [[φ]]M(π↓i) true iff [[φ]]M true starting i states along π

◮ [[Gφ]]M(π) true iff [[φ]]M true starting anywhere along π

◮ “Gφ” is read as “always φ” or “globally φ”

◮ M |= AGp defined earlier: M |= AGp ⇔ M |= G(p)

◮ G is definable in terms of F and ¬: Gφ = ¬(F(¬φ))

[[¬(F(¬φ))]]M(π) = ¬([[F(¬φ)]]M(π))
= ¬(∃i . [[¬φ]]M(π↓i))
= ¬(∃i . ¬([[φ]]M(π↓i)))
= ∀i . [[φ]]M(π↓i)
= [[Gφ]]M(π)

Mike Gordon 53 / 127

[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ [[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ [[φ2]]M(π↓i) true iff [[φ2]]M true starting i states along π

◮ [[φ1]]M(π↓j) true iff [[φ1]]M true starting j states along π

◮ [[[φ1 U φ2]]]M(π) is true iff

[[φ2]]M is true somewhere along π and up to then [[φ1]]M is true

◮ “[φ1 U φ2]” is read as “φ1 until φ2”

◮ F is definable in terms of [− U −]: Fφ = [T U φ]

[[[T U φ]]]M(π)
= ∃i . [[φ]]M(π↓i) ∧ ∀j . j<i ⇒ [[T]]M(π↓j)
= ∃i . [[φ]]M(π↓i) ∧ ∀j . j<i ⇒ true

= ∃i . [[φ]]M(π↓i) ∧ true

= ∃i . [[φ]]M(π↓i)
= [[Fφ]]M(π)

Mike Gordon 54 / 127

Review of Linear Temporal Logic (LTL)

◮ Grammar of well formed formulae (wff) φ

φ ::= p (Atomic formula: p ∈ AP)

| ¬φ (Negation)

| φ1 ∨ φ2 (Disjunction)

| Xφ (successor)

| Fφ (sometimes)

| Gφ (always)

| [φ1 U φ2] (Until)

◮ M |= φ means φ holds on all M-paths

◮ M = (S,S0,R,L)

◮ [[φ]]M(π) means φ is true on the M-path π

◮ M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M(π)

Mike Gordon 55 / 127

LTL examples

◮ “DeviceEnabled holds infinitely often along every path”

G(F DeviceEnabled)

◮ “Eventually the state becomes permanently Done“

F(G Done)

◮ “Every Req is followed by an Ack”

G(Req⇒ F Ack)
Number of Req and Ack may differ - no counting

◮ “If Enabled infinitely often then Running infinitely often”

G(F Enabled) ⇒ G(F Running)

◮ “An upward going lift at the second floor keeps going up if

a passenger requests the fifth floor”

G(AtFloor2 ∧ DirectionUp ∧ RequestFloor5

⇒ [DirectionUp U AtFloor5])

(acknowledgement: http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf)

Mike Gordon 56 / 127

http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf

A property not expressible in LTL
◮ Consider models M and M ′ below

¬P P ¬P

s0 s1 s0

M M ′

M = ({s0, s1}, {s0}, {(s0, s0), (s0, s1), (s1, s1)}, L)
M ′ = ({s0}, {s0}, {(s0, s0)}, L)

where: L = λs. if s = s0 then {} else {P}

◮ Every M ′-path is also an M-path
◮ So if φ true on every M-path then φ true on every M ′-path
◮ Hence for any φ if M |= φ then M ′ |= φ
◮ Consider property “can always reach a state satisfying P”

◮ true: M |= “can always reach a state satisfying P”
◮ false: M ′ |= “can always reach a state satisfying P”

◮ “can always reach a state satisfying P” not expressible in LTL
(acknowledgement: http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf)Mike Gordon 57 / 127

http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf

LTL expressibility

“can always reach a state satisfying P”

◮ In LTL M |= φ says φ holds of all paths of M

◮ LTL formulae φ are evaluated on paths path formulae

◮ Want to say there exists a path to p ∈ AP

◮ ∃π. Path R s π ∧ ∃i . p ∈ L(π(i))

◮ CTL properties are evaluated at a state . . . state formulae

◮ they can talk about both some or all paths

◮ starting from the state they are evaluated at

Mike Gordon 58 / 127

Computation Tree Logic (CTL)

◮ LTL formulae φ are evaluated on paths path formulae

◮ CTL formulae ψ are evaluated on states . . state formulae

◮ Syntax of CTL well-formed formulae:

ψ ::= p (Atomic formula p ∈ AP)

| ¬ψ (Negation)

| ψ1 ∧ ψ2 (Conjunction)

| ψ1 ∨ ψ2 (Disjunction)

| ψ1 ⇒ ψ2 (Implication)

| AXψ (All successors)

| EXψ (Some successors)

| A[ψ1 U ψ2] (Until – along all paths)

| E[ψ1 U ψ2] (Until – along some path)

Mike Gordon 59 / 127

Semantics of CTL
◮ Assume M = (S,S0,R, L) and then define:

[[p]]M(s) = p ∈ L(s)

[[¬ψ]]M(s) = ¬([[ψ]]M(s))

[[ψ1 ∧ ψ2]]M(s) = [[ψ1]]M(s) ∧ [[ψ2]]M(s)

[[ψ1 ∨ ψ2]]M(s) = [[ψ1]]M(s) ∨ [[ψ2]]M(s)

[[ψ1 ⇒ ψ2]]M(s) = [[ψ1]]M(s) ⇒ [[ψ2]]M(s)

[[AXψ]]M(s) = ∀s′. R s s′ ⇒ [[ψ]]M(s′)

[[EXψ]]M(s) = ∃s′. R s s′ ∧ [[ψ]]M(s′)

[[A[ψ1 U ψ2]]]M(s) = ∀π. Path R s π
⇒ ∃i . [[ψ2]]M(π(i))

∧
∀j . j<i ⇒ [[ψ1]]M(π(j))

[[E[ψ1 U ψ2]]]M(s) = ∃π. Path R s π
∧ ∃i . [[ψ2]]M(π(i))

∧
∀j . j<i ⇒ [[ψ1]]M(π(j))

Mike Gordon 60 / 127

The defined operator AF

◮ Define AFψ = A[T U ψ]

◮ AFψ true at s iffψ true somewhere on every R-path from s

[[AFψ]]M(s) = [[A[T U ψ]]]M(s)

= ∀π. Path R s π
⇒
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ [[T]]M(π(j))

= ∀π. Path R s π
⇒
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ true

= ∀π. Path R s π ⇒ ∃i . [[ψ]]M(π(i))

Mike Gordon 61 / 127

The defined operator EF

◮ Define EFψ = E[T U ψ]

◮ EFψ true at s iffψ true somewhere on some R-path from s

[[EFψ]]M(s) = [[E[T U ψ]]]M(s)

= ∃π. Path R s π
∧
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ [[T]]M(π(j))

= ∃π. Path R s π
∧
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ true

= ∃π. Path R s π ∧ ∃i . [[ψ]]M(π(i))

◮ “can reach a state satisfying p ∈ AP” is EF p

Mike Gordon 62 / 127

The defined operator AG
◮ Define AGψ = ¬EF(¬ψ)

◮ AGψ true at s iffψ true everywhere on every R-path from s

[[AGψ]]M(s) = [[¬EF(¬ψ)]]M(s)
= ¬([[EF(¬ψ)]]M(s))
= ¬(∃π. Path R s π ∧ ∃i . [[¬ψ]]M(π(i)))
= ¬(∃π. Path R s π ∧ ∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬(Path R s π ∧ ∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬Path R s π ∨ ¬(∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬Path R s π ∨ ∀i . ¬¬[[ψ]]M(π(i))
= ∀π. ¬Path R s π ∨ ∀i . [[ψ]]M(π(i))
= ∀π. Path R s π ⇒ ∀i . [[ψ]]M(π(i))

◮ AGψ means ψ true at all reachable states

◮ [[AG(p)]]M(s) ≡ ∀s′. R∗ s s′ ⇒ p ∈ L(s′)

◮ “can always reach a state satisfying p ∈ AP” is AG(EF p)

Mike Gordon 63 / 127

The defined operator EG

◮ Define EGψ = ¬AF(¬ψ)

◮ EGψ true at s iffψ true everywhere on some R-path from s

[[EGψ]]M(s) = [[¬AF(¬ψ)]]M(s)
= ¬([[AF(¬ψ)]]M(s))
= ¬(∀π. Path R s π ⇒ ∃i . [[¬ψ]]M(π(i)))
= ¬(∀π. Path R s π ⇒ ∃i . ¬[[ψ]]M(π(i)))
= ∃π. ¬(Path R s π ⇒ ∃i . ¬[[ψ]]M(π(i)))
= ∃π. Path R s π ∧ ¬(∃i . ¬[[ψ]]M(π(i)))
= ∃π. Path R s π ∧ ∀i . ¬¬[[ψ]]M(π(i))
= ∃π. Path R s π ∧ ∀i . [[ψ]]M(π(i))

Mike Gordon 64 / 127

The defined operator A[ψ1 W ψ2]

◮ A[ψ1 W ψ2] is a ‘partial correctness’ version of A[ψ1 U ψ2]

◮ It is true at s if along all R-paths from s:

◮ ψ1 always holds on the path, or

◮ ψ2 holds sometime on the path, and until it does ψ1 holds

◮ Define

[[A[ψ1 W ψ2]]]M(s)
= [[¬E[(ψ1∧¬ψ2) U (¬ψ1∧¬ψ2)]]]M(s)
= ¬[[E[(ψ1∧¬ψ2) U (¬ψ1∧¬ψ2)]]]M(s)
= ¬(∃π. Path R s π

∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i))

∧
∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

◮ Exercise: understand the next two slides!

Mike Gordon 65 / 127

A[ψ1 W ψ2] continued (1)

◮ Continuing:

¬(∃π. Path R s π
∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. ¬(Path R s π
∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
¬(∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
∀i . ¬[[¬ψ1∧¬ψ2]]M(π(i)) ∨ ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

Mike Gordon 66 / 127

A[ψ1 W ψ2] continued (2)

◮ Continuing:

= ∀π. Path R s π
⇒
∀i . ¬[[¬ψ1∧¬ψ2]]M(π(i)) ∨ ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
∀i . ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j))) ∨ ¬[[¬ψ1∧¬ψ2]]M(π(i))

= ∀π. Path R s π
⇒
∀i . (∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j))) ⇒ [[ψ1∨ψ2]]M(π(i))

◮ Exercise: explain why this is [[A[ψ1 W ψ2]]]M(s)?

◮ this exercise illustrates the subtlety of writing CTL!

Mike Gordon 67 / 127

Sanity check: A[ψ W F] = AG ψ
◮ From last slide:

[[A[ψ1 W ψ2]]]M(s)
= ∀π. Path R s π

⇒ ∀i . (∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j))) ⇒ [[ψ1∨ψ2]]M(π(i))

◮ Set ψ1 to ψ and ψ2 to F:
[[A[ψ W F]]]M(s)
= ∀π. Path R s π

⇒ ∀i . (∀j . j<i ⇒ [[ψ∧¬F]]M(π(j))) ⇒ [[ψ∨F]]M(π(i))

◮ Simplify:
[[A[ψ W F]]]M(s)
= ∀π. Path R s π ⇒ ∀i . (∀j . j<i ⇒ [[ψ]]M(π(j))) ⇒ [[ψ]]M(π(i))

◮ By induction on i :

[[A[ψ W F]]]M(s) = ∀π. Path R s π ⇒ ∀i . [[ψ]]M(π(i))

◮ Exercises
1. Describe the property: A[T W ψ] .

2. Describe the property: ¬E[¬ψ2 U ¬(ψ1∨ψ2)] .

3. Define E[ψ1 W ψ2] = E[ψ1 U ψ2] ∨ EGψ1.
Describe the property: E[ψ1 W ψ2]?

Mike Gordon 68 / 127

Recall model behaviour computation tree

◮ Atomic properties are true or false of individual states

◮ General properties are true or false of whole behaviour

◮ Behaviour of (S,R) starting from s ∈ S as a tree:

s

initial state states after
one step

states after
two steps

◮ A path is shown in red

◮ Properties may look at all paths, or just a single path

◮ CTL: Computation Tree Logic (all paths from a state)
◮ LTL: Linear Temporal Logic (a single path)

Mike Gordon 69 / 127

Summary of CTL operators (primitive + defined)

◮ CTL formulae:

p (Atomic formula - p ∈ AP)

¬ψ (Negation)

ψ1 ∧ ψ2 (Conjunction)

ψ1 ∨ ψ2 (Disjunction)

ψ1 ⇒ ψ2 (Implication)

AXψ (All successors)

EXψ (Some successors)

AFψ (Somewhere – along all paths)

EFψ (Somewhere – along some path)

AGψ (Everywhere – along all paths)

EGψ (Everywhere – along some path)

A[ψ1 U ψ2] (Until – along all paths)

E[ψ1 U ψ2] (Until – along some path)

A[ψ1 W ψ2] (Unless – along all paths)

E[ψ1 W ψ2] (Unless – along some path)

Mike Gordon 70 / 127

Example CTL formulae

◮ EF(Started ∧ ¬Ready)

It is possible to get to a state where Started holds

but Ready does not hold

◮ AG(Req ⇒ AFAck)

If a request Req occurs, then it will eventually be

acknowledged by Ack

◮ AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along

every path starting anywhere: i.e. DeviceEnabled

holds infinitely often along every path

◮ AG(EFRestart)

From any state it is possible to get to a state for

which Restart holds

Can’t be expressed in LTL!

Mike Gordon 71 / 127

More CTL examples (1)

◮ AG(Req ⇒ A[Req U Ack])

If a request Req occurs, then it continues to hold,

until it is eventually acknowledged

◮ AG(Req ⇒ AX(A[¬Req U Ack]))

Whenever Req is true either it must become false

on the next cycle and remains false until Ack, or

Ack must become true on the next cycle

Exercise: is the AX necessary?

◮ AG(Req ⇒ (¬Ack ⇒ AX(A[Req U Ack])))

Whenever Req is true and Ack is false then Ack

will eventually become true and until it does Req

will remain true

Exercise: is the AX necessary?

Mike Gordon 72 / 127

More CTL examples (2)

◮ AG(Enabled ⇒ AG(Start ⇒ A[¬Waiting U Ack]))

If Enabled is ever true then if Start is true in any

subsequent state then Ack will eventually become

true, and until it does Waiting will be false

◮ AG(¬Req1∧¬Req2⇒A[¬Req1∧¬Req2 U (Start∧¬Req2)])

Whenever Req1 and Req2 are false, they remain

false until Start becomes true with Req2 still false

◮ AG(Req ⇒ AX(Ack ⇒ AF ¬Req))

If Req is true and Ack becomes true one cycle

later, then eventually Req will become false

Mike Gordon 73 / 127

Some abbreviations

◮ AXi ψ ≡ AX(AX(· · · (AX ψ) · · ·))
︸ ︷︷ ︸

i instances of AX

ψ is true on all paths i units of time later

◮ ABFi..j ψ ≡ AXi (ψ ∨ AX(ψ ∨ · · · AX(ψ ∨ AX ψ) · · ·))
︸ ︷︷ ︸

j − i instances of AX

ψ is true on all paths sometime between i units of

time later and j units of time later

◮ AG(Req ⇒ AX(Ack1 ∧ ABF1..6(Ack2 ∧ A[Wait U Reply])))

One cycle after Req, Ack1 should become true,

and then Ack2 becomes true 1 to 6 cycles later

and then eventually Reply becomes true, but until

it does Wait holds from the time of Ack2

◮ More abbreviations in ‘Industry Standard’ language PSL

Mike Gordon 74 / 127

CTL model checking

◮ For LTL path formulae φ recall that M |= φ is defined by:

M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M(π)

◮ For CTL state formulae ψ the definition of M |= ψ is:

M |= ψ ⇔ ∀s. s ∈ S0 ⇒ [[ψ]]M(s)

◮ M common; LTL, CTL formulae and semantics [[]]M differ

◮ CTL model checking algorithm:

◮ compute {s | [[ψ]]M(s) = true} bottom up

◮ check S0 ⊆ {s | [[ψ]]M(s) = true}

◮ symbolic model checking represents these sets as BDDs

Mike Gordon 75 / 127

CTL model checking: p, AXψ, EXψ

◮ For CTL formula ψ let {[ψ]}M = {s | [[ψ]]M(s) = true}

◮ When unambiguous will write {[ψ]} instead of {[ψ]}M

◮ {[p]} = {s | p ∈ L(s)}

◮ scan through set of states S marking states labelled with p
◮ {[p]} is set of marked states

◮ To compute {[AXψ]}

◮ recursively compute {[ψ]}
◮ marks those states all of whose successors are in {[ψ]}
◮ {[AXψ]} is the set of marked states

◮ To compute {[EXψ]}

◮ recursively compute {[ψ]}
◮ marks those states with at least one successor in {[ψ]}
◮ {[EXψ]} is the set of marked states

Mike Gordon 76 / 127

CTL model checking: {[E[ψ1 U ψ2]]}, {[A[ψ1 U ψ2]]}

◮ To compute {[E[ψ1 U ψ2]]}

◮ recursively compute {[ψ1]} and {[ψ2]}
◮ mark all states in {[ψ2]}
◮ mark all states in {[ψ1]} with a successor state that is marked
◮ repeat previous line until no change
◮ {[E[ψ1 U ψ2]]} is set of marked states

◮ More formally: {[E[ψ1 U ψ2]]} =
⋃∞

n=0{[E[ψ1 U ψ2]]}n where:

{[E[ψ1 U ψ2]]}0 = {[ψ2]}
{[E[ψ1 U ψ2]]}n+1 = {[E[ψ1 U ψ2]]}n

∪
{s ∈ {[ψ1]} | ∃s′ ∈ {[E[ψ1 U ψ2]]}n. R s s′}

◮ {[A[ψ1 U ψ2]]} similar, but with a more complicated iteration

◮ details omitted

Mike Gordon 77 / 127

Example: checking EF p

◮ EFp = E[T U p]

◮ holds if ψ holds along some path

◮ Note {[T]} = S

◮ Let Sn = {[E[T U p]]}n then:

S0 = {[E[T U p]]}0

= {[p]}
= {s | p ∈ L(s)}

Sn+1 = Sn ∪ {s ∈ {[T]} | ∃s′ ∈ {[E[T U p]]}n. R s s′}
= Sn ∪ {s | ∃s′ ∈ Sn. R s s′}

◮ mark all the states labelled with p
◮ mark all with at least one marked successor
◮ repeat until no change
◮ {[EF p]} is set of marked states

Mike Gordon 78 / 127

Example: RCV

◮ Recall the handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

◮ State represented by a triple of Booleans (dreq,q0,dack)

◮ A model of RCV is MRCV where:

M = (SRCV,S0RCV,RRCV,LRCV)

and
RRCV (dreq,q0,dack) (dreq′,q0′,dack ′) =

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))

Mike Gordon 79 / 127

RCV state transition diagram

◮ Possible states for RCV:

{000, 001, 010, 011, 100, 101, 110, 111}

where b2b1b0 denotes state

dreq = b2 ∧ q0 = b1 ∧ dack = b0

◮ Graph of the transition relation:

000 100 110 111

101

011

001

010

Mike Gordon 80 / 127

Computing {[EF At111]} where At111 ∈ LRCV(s) ⇔ s = 111

000 100 110 111

101

011

001

010

◮ Define:

S0 = {s | At111 ∈ LRCV(s)}
= {s | s = 111}
= {111}

Sn+1 = Sn ∪ {s | ∃s′ ∈ Sn. R(s, s′)}
= Sn ∪ {b2b1b0 |

∃b′

2b′

1b′

0 ∈ Sn. (b
′

1 = b2) ∧ (b′

0 = b2 ∧ (b1 ∨ b0))}

Mike Gordon 81 / 127

Computing {[EF At111]} (continued)

000 100 110 111

101

011

001

010

0

1

123

3

3

3

◮ Compute:

S0 = {111}
S1 = {111} ∪ {101,110}

= {111,101,110}
S2 = {111,101,110} ∪ {100}

= {111,101,110,100}
S3 = {111,101,110,100} ∪ {000,001,010,011}

= {111,101,110,100,000,001,010,011}
Sn = S3 (n > 3)

◮ {[EF At111]} = B
3 = SRCV

◮ MRCV |= EF At111 ⇔ S0RCV ⊆ S

Mike Gordon 82 / 127

Symbolic model checking

◮ Represent sets of states with BDDs

◮ Represent Transition relation with a BDD

◮ If BDDs of {[ψ]}, {[ψ1]}, {[ψ2]} are known, then:

◮ BDDs of {[¬ψ]}, {[ψ1 ∧ ψ2]}, {[ψ1 ∨ ψ2]}, {[ψ1 ⇒ ψ2]}
computed using standard BDD algorithms

◮ BDDs of {[AXψ]}, {[EXψ]}, {[A[ψ1 U ψ2]]}, {[E[ψ1 U ψ2]]]}
computed using straightforward algorithms (see textbooks)

◮ Model checking CTL generalises reachable states Iteration

Mike Gordon 83 / 127

History of Model checking

◮ CTL model checking due to Emerson, Clarke & Sifakis

◮ Symbolic model checking due to several people:

◮ Clarke & McMillan (idea usually credited to McMillan’s PhD)
◮ Coudert, Berthet & Madre
◮ Pixley

◮ SMV (McMillan) is a popular symbolic model checker:
http://www.cs.cmu.edu/~modelcheck/smv.html (original)

http://www.kenmcmil.com/smv.html (Cadence extension by McMillan)

http://nusmv.irst.itc.it/ (new implementation)

◮ Other temporal logics

◮ CTL*: combines CTL and LTL
◮ Engineer friendly industrial languages: PSL, SVA

Mike Gordon 84 / 127

http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.kenmcmil.com/smv.html
http://nusmv.irst.itc.it/

Expressibility of CTL
◮ Consider the property

“on every path there is a point after which p is

always true on that path ”

◮ Consider

((⋆) non-deterministically chooses T or F)

0: P:=1;
s0 1: WHILE (⋆) DO SKIP;
s1 2: P:=0;
s2 3: P:=1;

4: WHILE T DO SKIP;
5:

p ~p p

s0 s1 s2

s0

s0

s0

s0

s1

s1

s1

s1

s2

s2

s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2

◮ Property true, but cannot be expressed in CTL
◮ would need something like AFψ
◮ where ψ is something like “property p true from now on”
◮ but in CTL ψ must start with a path quantifier A or E
◮ cannot talk about current path, only about all or some paths
◮ AF(AG p) is false (consider path s0s0s0 · · ·)

Mike Gordon 85 / 127

LTL can express things CTL can’t

◮ Recall:

[[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)
[[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)

◮ FGφ is true if there is a point after which φ is always true

[[FGφ]]M(π) = [[F(G(φ))]]M(π)
= ∃m1. [[G(φ)]]M(π↓m1)
= ∃m1. ∀m2. [[φ]]M((π↓m1)↓m2)
= ∃m1. ∀m2. [[φ]]M(π↓(m1+m2))

◮ LTL can express things that CTL can’t express

◮ Note: it’s tricky to prove CTL can’t express FGφ

Mike Gordon 86 / 127

CTL can express things that LTL can’t express

◮ AG(EF p) says:

“from every state it is possible to get to a state for

which p holds”

◮ Can’t say this in LTL (easy proof given earlier)

◮ Consider disjunction:

“along every path there is a state from which p

will hold forever

or

from every state it is possible to get to a state for

which p holds”

◮ Can’t say this in either CTL or LTL!

◮ CTL* combines CTL and LTL and can express this property

Mike Gordon 87 / 127

CTL*
◮ Both state formulae (ψ) and path formulae (φ)

◮ state formulae ψ are true of a state s like CTL
◮ path formulae φ are true of a path π like LTL

◮ Defined mutually recursively
ψ ::= p (Atomic formula)

| ¬ψ (Negation)
| ψ1 ∨ ψ2 (Disjunction)
| Aφ (All paths)
| Eφ (Some paths)

φ ::= ψ (Every state formula is a path formula)
| ¬φ (Negation)
| φ1 ∨ φ2 (Disjunction)
| Xφ (Successor)
| Fφ (Sometimes)
| Gφ (Always)
| [φ1 U φ2] (Until)

◮ CTL is CTL* with X, F, G, [−U−] preceded by A or E

◮ LTL consists of CTL* formulae of form Aφ,

where the only state formulae in φ are atomic
Mike Gordon 88 / 127

CTL* semantics

◮ Combines CTL state semantics with LTL path semantics:

[[p]]M(s) = p ∈ L(s)
[[¬ψ]]M(s) = ¬([[ψ]]M(s))
[[ψ1 ∨ ψ2]]M(s) = [[ψ1]]M(s) ∨ [[ψ2]]M(s)
[[Aφ]]M(s) = ∀π. Path R s π ⇒ φ(π)
[[Eφ]]M(s) = ∃π. Path R s π ∧ [[φ]]M(π)

[[ψ]]M(π) = [[ψ]]M(π(0))
[[¬φ]]M(π) = ¬([[φ]]M(π))
[[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)
[[Xφ]]M(π) = [[φ]]M(π↓1)
[[Fφ]]M(π) = ∃m. [[φ]]M(π↓m)
[[Gφ]]M(π) = ∀m. [[φ]]M(π↓m)
[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ Note [[ψ]]M : S→B and [[φ]]M : (N→S)→B

Mike Gordon 89 / 127

LTL and CTL as CTL*
◮ As usual: M = (S,S0,R, L)
◮ If ψ is a CTL* state formula: M |= ψ ⇔ ∀s ∈ S0. [[ψ]]M(s)
◮ If φ is an LTL path formula then: M |=LTL φ ⇔ M |=CTL* Aφ
◮ If R is total (∀s. ∃s′. R s s′) then (exercise):

∀s s′. R s s′ ⇔ ∃π. Path R s π ∧ (π(1) = s′)
◮ The meanings of CTL formulae are the same in CTL*

[[A(Xψ)]]M(s)
= ∀π. Path R s π ⇒ [[Xψ]]M(π)
= ∀π. Path R s π ⇒ [[ψ]]M(π↓1) (ψ as path formula)

= ∀π. Path R s π ⇒ [[ψ]]M((π↓1)(0)) (ψ as state formula)

= ∀π. Path R s π ⇒ [[ψ]]M(π(1))

[[AXψ]]M(s)
= ∀s′. R s s′ ⇒ [[ψ]]M(s′)
= ∀s′. (∃π. Path R s π ∧ (π(1) = s′)) ⇒ [[ψ]]M(s′)
= ∀s′. ∀π. Path R s π ∧ (π(1) = s′) ⇒ [[ψ]]M(s′)
= ∀π. Path R s π ⇒ [[ψ]]M(π(1))

Exercise: do similar proofs for other CTL formulae
Mike Gordon 90 / 127

Fairness

◮ May want to assume system or environment is ‘fair’

◮ Example 1: fair arbiter

the arbiter doesn’t ignore one of its requests forever

◮ not every request need be granted
◮ want to exclude infinite number of requests and no grant

◮ Example 2: reliable channel

no message continuously transmitted but never received

◮ not every message need be received
◮ want to exclude an infinite number of sends and no receive

Mike Gordon 91 / 127

Handling fairness in CTL and LTL
◮ Consider:

p holds infinitely often along a path then so does q

◮ In LTL is expressible as G(F p) ⇒ G(F q)

◮ Can’t say this in CTL
◮ why not – what’s wrong with AG(AF p) ⇒ AG(AF q)?
◮ in CTL* expressible as A(G(F p) ⇒ G(F q))
◮ fair CTL model checking implemented in checking algorithm
◮ fair LTL just a fairness assumption like G(F p) ⇒ · · ·

◮ Fairness is a tricky and subtle subject
◮ many kinds of fairness:

‘weak fairness’, ‘strong fairness’ etc

◮ exist whole books on fairness

Mike Gordon 92 / 127

Propositional modal µ-calculus

◮ You may learn this in Topics in Concurrency

◮ µ-calculus is an even more powerful property language

◮ has fixed-point operators
◮ both maximal and minimal fixed points
◮ model checking consists of calculating fixed points
◮ many logics (e.g. CTL*) can be translated into µ-calculus

◮ Strictly stronger than CTL*

◮ expressibility strictly increases as allowed nesting increases
◮ need fixed point operators nested 2 deep for CTL*

◮ The µ-calculus is very non-intuitive to use!

◮ intermediate code rather than a practical property language
◮ nice meta-theory and algorithms, but terrible usability!

Mike Gordon 93 / 127

SEREs: Sequential Extended Regular Expressions
◮ SEREs are from the industrial PSL (more on PSL later)

◮ Syntax :

r ::= p (Atomic formula p ∈ AP)
| !p (Negated atomic formula p ∈ AP)
| r1 | r2 (Disjunction)
| r1 && r2 (Conjunction)
| r1 ; r2 (Concatenation)
| r1 : r2 (Fusion)
| r [∗] (Repeat)

◮ Semantics:
(w ranges over finite lists of states s; |w | is length of w ;
w1.w2 is concatenation; head w is head; 〈〉 is empty word)

[[p]](w) = p ∈ L(head w) ∧ |w | = 1

[[!p]](w) = ¬(p ∈ L(head w)) ∧ |w | = 1

[[r1|r2]](w) = [[r1]](w) ∨ [[r2]](w)
[[r1&&r2]](w) = [[r1]](w) ∧ [[r2]](w)
[[r1;r2]](w) = ∃w1 w2. w = w1.w2 ∧ [[r1]](w1) ∧ [[r2]](w2)
[[r1:r2]](w) = ∃w1 s w2. w = w1.s.w2 ∧ [[r1]](w1.s) ∧ [[r2]](s.w2)
[[r [∗]]](w) = w=〈〉 ∨ ∃w1 · · ·wl . w=w1. · · · .wl∧[[r]](w1)∧ · · · ∧[[r]](wl)

Mike Gordon 94 / 127

Example SERE
◮ Example

A sequence in which req is asserted, followed

four cycles later by an assertion of grant,

followed by a cycle in which abortin is not

asserted.

◮ Define p[*3] = p;p;p

◮ Then the example above can be represented by the SERE:

req;T[*3];grant;!abortin

◮ In PSL this could be written as:

req;[*3];grant;!abortin

◮ where [*3] abbreviates T[*3]

◮ more ‘syntactic sugar’ later

◮ e.g. true, false for T, F

Mike Gordon 95 / 127

Assertion-Based Verification (ABV)

◮ It has been claimed that assertion based verification:

“is likely to be the next revolution in hardware design

verification”

◮ Basic idea:

◮ document designs with formal properties
◮ use simulation (dynamic) and model checking (static)

◮ Problem: too many languages

◮ academic logics: LTL, CTL
◮ tool-specific industrial versions:

Intel, Cadence, Motorola, IBM, Synopsys

◮ What to do? Solution: a competition!

◮ run by Accellera organisation
◮ results standardised by IEEE
◮ lots of politics

Mike Gordon 96 / 127

IBM’s Sugar and Accellera’s PSL

◮ Sugar 1: property language of IBM RuleBase checker

◮ CTL plus Sugar Extended Regular Expressions (SEREs)

◮ Competition finalists: IBM’s Sugar 2 and Motorola’s CBV

◮ Intel/Synopsys ForSpec eliminated earlier

(apparently industry politics involved)

◮ Sugar 2 is based on LTL rather than CTL

◮ has CTL constructs: “Optional Branching Extension” (OBE)
◮ has clocking constructs for temporal abstraction

◮ Accellera purged “Sugar” from it property language

◮ the word “Sugar” was too associated with IBM
◮ language renamed to PSL
◮ SEREs now Sequential Extended Regular Expressions

◮ Lobbying to make PSL more like ForSpec (align with SVA)

Mike Gordon 97 / 127

PSL Foundation Language (FL is LTL + SEREs)
◮ Syntax:

f ::= p (Atomic formula - p ∈ AP)
| !f (Negation)
| f1 or f2 (Disjunction)
| next f (Successor)
| {r}(f) (Suffix implication: r a SERE)
| {r1} |-> {r2} (Suffix next implication: r1, r2 SEREs)
| [f1 until f2] (Until)

◮ Semantics (omits clocking, weak/strong distinction)
[[p]]M(π) = p ∈ L(π(0))
[[!f]]M(π) = ¬([[f]]M(π))
[[f1 or f2]]M(π) = [[f1]]M(π) ∨ [[f2]]M(π)
[[next f]]M(π) = [[f]]M(π↓1)
[[{r}(f)]]M(π) = ∀π′ w . (π = w .π′ ∧ [[r]]M(w)) ⇒ [[f]]M(π′)
[[{r1}|->{r2}]]M(π) = ∀π′ w1 s. (π = w1.s.π

′ ∧ [[r1]]M(w1.s))
⇒ ∃π′′ w2. π

′ = w2.π
′′ ∧ [[r2]]M(s.w2)

[[[f1 until f2]]]M(π)= ∃i . [[f2]]M(π↓i) ∧ ∀j . j<i ⇒ [[f1]]M(π↓j)

◮ There is also an Optional Branching Extension (OBE)
◮ completely standard CTL: EX, E[−− U −−], EG etc.

Mike Gordon 98 / 127

Combining SEREs with LTL formulae
◮ Formula {r}f means LTL formula f true after SERE r

◮ Example

After a sequence in which req is asserted,

followed four cycles later by an assertion of

grant, followed by a cycle in which abortin is

not asserted, we expect to see an assertion of

ack some time in the future.

◮ Can represent by

always {req;[*3];grant;!abortin}(eventually ack)

◮ where eventually and always are defined by:

eventually f = [true until f]

always f = !(eventually !f)

◮ N.B. Ignoring strong/weak distinction
◮ strong/weak distinction important for dynamic checking
◮ semantics when simulator halts before expected event
◮ strictly should write until!, eventually!

Mike Gordon 99 / 127

SERE examples

◮ How can we modify

always reqin;ackout;!abortin |-> ackin;ackin

so that the two cycles of ackin start the cycle after

!abortin

◮ Two ways of doing this

always{reqin;ackout;!abortin}|->{true;ackin;ackin}

always{reqin;ackout;!abortin}|=>{ackin;ackin}

◮ |=> is a defined operator

{r1}|=>{r2} = {r1}|->{true;r2}

◮ Note: true and T are synonyms

Mike Gordon 100 / 127

Examples of defined notations: consecutive repetition
◮ Define

r[+] = r;r[*]__
| false[*] if i=0

r[*i] = |

| r;...;r otherwise (i repetitions)
__

r[*i..j] = r[*i] | r[*(i+1)] | ... | r[*j]

[+] = true[+]

[*] = true[*]

◮ Example

Whenever we have a sequence of req followed by

ack, we should see a full transaction starting the

following cycle. A full transaction starts with an

assertion of the signal start_trans, followed by one

to eight consecutive data transfers, followed by the

assertion of signal end_trans. A data transfer is

indicated by the assertion of signal data

always{req;ack}|=>{start_trans;data[*1..8];end_trans}

Mike Gordon 101 / 127

Fixed number of non-consecutive repetitions
◮ Example

Whenever we have a sequence of req followed by

ack, we should see a full transaction starting the

following cycle. A full transaction starts with an

assertion of the signal start_trans, followed by

eight not necessarily consecutive data transfers,

followed by the assertion of signal end_trans. A data

transfer is indicated by the assertion of signal data

◮ Can represent by

always

{req;ack} |=>

{start_trans;

{{!data[*];data}[*8];!data[*]};

end_trans}

◮ Define: b[= i] = {!b[*];b}[*i];!b[*]

◮ Then have a nicer representation

always{req;ack}|=>{start_trans;data[= 8];end_trans}

Mike Gordon 102 / 127

Variable number of non-consecutive repetitions
◮ Example

Whenever we have a sequence ofreq followed by

ack, we should see a full transaction starting the

following cycle. A full transaction starts with an

assertion of the signal start_trans, followed by

one to eight not necessarily consecutive data

transfers, followed by the assertion of signal

end_trans. A data transfer is indicated by the

assertion of signal data

◮ Define

b[= i..j] = {b[= i]} | {b[= (i+1)]} | ... | {b[= j]}

◮ Then

always {req;ack} |=>

{start_trans;data[= 1..8];end_trans}

◮ These examples are meant to illustrate how PSL/Sugar is

much more readable than raw CTL or LTL

Mike Gordon 103 / 127

Clocking

◮ Basic idea: b@clk samples b on rising edges of clk

◮ Can clock SEREs (r@clk) and formulae (f@clk)

◮ Can have several clocks

◮ Official semantics messy due to clocking

◮ Can ‘translate away’ clocks by pushing @clk inwards

◮ rules given in PSL manual

◮ roughly: b@clk {!clk[*];clk & b}

Mike Gordon 104 / 127

Model checking PSL (outline)

◮ SEREs checked by generating a finite automaton

◮ recognise regular expressions
◮ these automata are called “satellites”

◮ FL checked using standard LTL methods

◮ OBE checked by standard CTL methods

◮ Can also check formula for runs of a simulator

◮ this is dynamic verification
◮ semantics handles possibility of finite paths – messy!

◮ Commercial checkers only handle a subset of PSL

Mike Gordon 105 / 127

PSL layer structure

◮ Boolean layer has atomic predicates

◮ Temporal layer has LTL (FL) and CTL (OBE) properties

◮ Verification layer has commands for how to use properties

◮ e.g. assert, assume

assert always (!en1 & en2))
| | |

| | |--- Boolean layer

| |

| |-------------- temporal layer

|

|-------------------- verification layer

◮ Modelling layer: HDL specification of e.g. inputs, checkers

◮ e.g. augment always(Req -> eventually! Ack)
◮ add counter to keep track of numbers of Req and Ack

Mike Gordon 106 / 127

PSL/Sugar summary

◮ Combines together LTL and CTL

◮ Regular expressions – SEREs

◮ LTL – Foundation Language formulae

◮ CTL – Optional Branching Extension

◮ Relatively simple set of primitives + definitional extension

◮ Boolean, temporal, verification, modelling layers

◮ Semantics for static and dynamic verification

(needs strong/weak distinction)

Mike Gordon 107 / 127

Simulation semantics (a.k.a. event semantics)

◮ HDLs use discrete event simulation

◮ changes to variables ⇒ threads enabled
◮ enabled threads executed non-deterministically
◮ execution of threads ⇒ more events

◮ Combinational thread:

always @(v1 or · · · or vn) v:=E

◮ enabled by any change to v1, . . ., vn

◮ Positive edge triggered sequential threads:

always @(posedge clk) v:=E

◮ enabled by clk changing to T

◮ Negative edge triggered sequential threads:

always @(negedge clk) v:=E

◮ enabled by clk changing to F

Mike Gordon 108 / 127

Simulation

◮ Given

◮ a set of threads

◮ initial values for variables read or written by threads

◮ a sequence of input values

(inputs are variables not in LHS of assignments)

◮ simulation algorithm ⇒ a sequence of states

Choose an enabled thread

Execute the chosen thread

 Fire event controls to enable new threads

 Execute
 until
 quiescent
 then
 advance
simulation
 time

◮ Simulation is non-deterministic

Mike Gordon 109 / 127

Combinational threads in series

f g hin out
l l1 2

◮ HDL-like specification:

always @(in) l1 := f(in) thread T1

always @(l1) l2 := g(l1) thread T2

always @(l2) out := h(l2) thread T3

◮ Suppose in changes to x at simulation time t

◮ T1 will become enabled and assign f(x) to l1
◮ if l1’s value changes then T2 will become enabled

(still simulation time t)
◮ T2 will assign g(f(x)) to l2
◮ if l2’s value changes then T will become enabled

(still simulation time t)
◮ T3 will assign h(g(f(x))) to out
◮ simulation quiesces

(still simulation time t)

◮ Steps at same simulation time happen in “δ-time”
(VHDL jargon)

Mike Gordon 110 / 127

Semantic gap

◮ Designers use HDLs and verify via simulation

◮ event semantics

◮ Formal verifiers use logic and verify via proof

◮ path semantics

◮ Problem: do path and simulation semantics agree?

◮ Would like:

paths = sequences of quiescent simulation states

initial state states after
one step

states after
two steps

Mike Gordon 111 / 127

Sequential threads – event semantics
in

clk

l
out

◮ Consider two Dtypes in series:
always @(posedge clk) l := in
always @(posedge clk) out := l

◮ If posedge clk:
◮ both threads become enabled
◮ race condition

◮ Right thread executed first:
◮ out gets previous value of l
◮ then left thread executed
◮ so l gets value input at in

◮ Left thread executed first:
◮ l gets input value at in
◮ then right thread executed
◮ so out gets input value at in

Mike Gordon 112 / 127

Sequential threads – path semantics
in

clk

l
out

◮ Trace semantics:
in aaaaaaaaaaabbbbbbccccccddddddddd......

clk 00000111110000011111000001111100......

l eeeeeaaaaaaaaaabbbbbbbbbbddddddd......

out fffffeeeeeeeeeeaaaaaaaaaabbbbbbb......

◮ Corresponds to right thread executed first

◮ How to ensure event and path semantics agree?

◮ Method 1: use non-blocking assignments:

always @(posedge clk) l <= in;

always @(posedge clk) out <= l;

◮ non-blocking assignments (<=) in Verilog
◮ RHS of all non-blocking assignments first computed
◮ assignments done at end of simulation cycle

◮ Method 2: make simulation cycle VHDL-like

Mike Gordon 113 / 127

Verilog versus VHDL simulation cycles

◮ Verilog-like simulation cycle:

Choose an enabled thread

Execute the chosen thread

 Fire event controls to enable new threads

 Execute
 until
 quiescent
 then
 advance
simulation
 time

◮ VHDL-like simulation cycle:

Execute all enabled threads in parallel

 Fire event controls to enable new threads

 Execute
 until
 quiescent
 then
 advance
simulation
 time

Mike Gordon 114 / 127

VHDL event semantics

in

clk

l
out

◮ Recall HDL:
always @(posedge clk) l := in
always @(posedge clk) out := l

◮ If posedge clk :

◮ both threads become enabled

◮ VHDL semantics:

◮ both threads executed in parallel
◮ out gets previous value of l
◮ in parallel l gets value input at in

◮ Now no race

◮ Event semantics matches path semantics

Mike Gordon 115 / 127

Summary of dynamic versus static semantics

◮ Simulation (event) semantics different from path semantics

◮ No standard event semantics (Verilog versus VHDL)

◮ Verilog: need non-blocking assignments

◮ VHDL semantics closer path semantics

◮ Simulations are finite traces: better fit with LTL than CTL

Mike Gordon 116 / 127

Bisimulation equivalence: general idea

◮ M, M ′ bisimilar if they have ‘corresponding executions’

◮ to each step of M there is a corresponding step of M ′

◮ to each step of M ′ there is a corresponding step of M

◮ Bisimilar models satisfy same CTL* properties

◮ Bisimilar: same truth/falsity of model properties

◮ Simulation gives property-truth preserving abstraction

(see later)

Mike Gordon 117 / 127

Bisimulation relations

◮ Let R : S→S→B and R′ : S′→S′→B be transition relations

◮ B is a bisimulation relation between R and R′ if:

◮ B : S→S′→B

◮ ∀s s′. B s s′ ⇒ ∀s1 ∈ S. R s s1 ⇒ ∃s′

1. R′ s′ s′

1 ∧ B s1 s′

1

(to each step of R there is a corresponding step of R′)

◮ ∀s s′. B s s′ ⇒ ∀s′

1 ∈ S. R′ s′ s′

1 ⇒ ∃s1. R′ s s1 ∧ B s1 s′

1

(to each step of R′ there is a corresponding step of R)

Mike Gordon 118 / 127

Bisimulation equivalence: definition and theorem

◮ Let M = (S,S0,R, L) and M ′ = (S′,S′
0,R

′, L′)

◮ M ≡ M ′ if:

◮ there is a bisimulation B between R and R′

◮ ∀s0 ∈ S0. ∃s′

0 ∈ S′

0. B s0 s′

0

◮ ∀s′

0 ∈ S′

0. ∃s0 ∈ S0. B s0 s′

0

◮ there is a bijection θ : AP→AP ′

◮ ∀s s′. B s s′ ⇒ L(s) = L′(s′)

◮ Theorem: if M ≡ M ′ then for any CTL* state formula ψ:

M |= ψ ⇔ M ′ |= ψ

◮ See Q14 in the Exercises

Mike Gordon 119 / 127

Abstraction

◮ Abstraction creates a simplification of a model

◮ separate states may get merged
◮ an abstract path can represent several concrete paths

◮ M � M means M is an abstraction of M

◮ to each step of M there is a corresponding step of M
◮ atomic properties of M correspond to atomic properties of M

◮ Special case is when M is a subset of M such that:
◮ M = (S0,S,R,L) and M = (S0,S,R,L)

S ⊆ S

S0 = S0

∀s s′ ∈ S. R s s′ ⇔ R s s′

∀s ∈ S. L s = L s

◮ S contain all reachable states of M

∀s ∈ S. ∀s′ ∈ S. R s s′ ⇒ s′ ∈ S

◮ All paths of M from initial states are M-paths
◮ hence for all CTL formulas ψ: M |= ψ ⇒ M |= ψ

Mike Gordon 120 / 127

Recall JM1
Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;

1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;

3: 3:

◮ Two program counters, state: (pc1, pc2, lock , x)

SJM1 = [0..3]× [0..3]× Z× Z

RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (1, pc2, lock , x) (2, pc2, lock , 1)
RJM1 (2, pc2, 1, x) (3, pc2, 0, x)

RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)
RJM1 (pc1, 1, lock , x) (pc1, 2, lock , 2)
RJM1 (pc1, 2, 1, x) (pc1, 3, 0, x)

◮ Assume NotAt11 ∈ LJM1(pc1, pc2, lock , x) ⇔ ¬((pc1 = 1) ∧ (pc2 = 1))

◮ Model MJM1 = (SJM1, {(0, 0, 0, 0)},RJM1, LJM1)

◮ SJM1 not finite, but actually lock ∈ {0, 1}, x ∈ {0, 1, 2}

◮ Clear by inspection that MJM1 � MJM1 where:

MJM1 = (SJM1, {(0, 0, 0, 0)},RJM1, LJM1)

◮ SJM1 = [0..3]× [0..3]× [0..1]× [0..3]

◮ RJM1 is RJM1 restricted to arguments from SJM1

◮ NotAt11 ∈ LJM1(pc1, pc2, lock , x) ⇔ ¬((pc1 = 1) ∧ (pc2 = 1))

◮ LJM1 is LJM1 restricted to arguments from SJM1

Mike Gordon 121 / 127

Simulation relations

◮ Let R : S→S→B and R : S→S→B be transition relations

◮ H is a simulation relation between R and R if:

◮ H is a relation between S and S – i.e. H : S→S→B

◮ to each step of R there is a corresponding step of R – i.e.:

∀s s. H s s ⇒ ∀s′ ∈ S. R s s′ ⇒ ∃s′ ∈ S. R s s′ ∧ H s′ s′

◮ Also need to consider abstraction of atomic properties

◮ HAP : AP→AP→B

◮ details glossed over here

Mike Gordon 122 / 127

Simulation preorder: definition and theorem

◮ Let M = (S,S0,R, L) and M = (S,S0,R, L)

◮ M � M if:

◮ there is a simulation H between R and R

◮ ∀s0 ∈ S0. ∃s0 ∈ S0. H s0 s0

◮ ∀s s. H s s ⇒ L(s) = L(s)

◮ ACTL is the subset of CTL without E-properties

◮ e.g. AG AFp – from anywhere can always reach a p-state

◮ Theorem: if M � M then for any ACTL state formula ψ:

M |= ψ ⇒ M |= ψ

◮ If M |= ψ fails then cannot conclude M |= ψ false

Mike Gordon 123 / 127

Example (Grumberg)

M M

r

y

g

 yg

r

RED

YELLOW

GREEN

STOP

GO

H

H

H

H a simulation

H RED STOP ∧
H YELLOW GO ∧
H GREEN GO

HAP : {r , y , g}→{r , yg}→B

HAP r r ∧
HAP y yg ∧
HAP g yg

◮ M |= AG AF ¬r hence M |= AG AF ¬r

◮ but ¬(M |= AG AF r) doesn’t entail ¬(M |= AG AF r)

◮ [[AG AF r]]M(STOP) is false

(consider M-path π′ where π′ = STOP.GO.GO.GO. · · ·)

◮ [[AG AF r]]M(RED) is true

(abstract path π′ doesn’t correspond to a real path in M)

Mike Gordon 124 / 127

CEGAR

◮ Counter Example Guided Abstraction Refinement

◮ Lots of details to fill out (several different solutions)

◮ how to generate abstraction
◮ how to check counterexamples
◮ how to refine abstractions

◮ Microsoft SLAM driver verifier is a CEGAR system

Mike Gordon 125 / 127

Temporal Logic and Model Checking – Summary

◮ Various property languages: LTL, CTL, PSL (Prior, Pnueli)

◮ Models abstracted from hardware or software designs

◮ Model checking checks M |= ψ (Clarke et al.)

◮ Symbolic model checking uses BDDs (McMillan)

◮ Avoid state explosion via simulation and abstraction

◮ CEGAR refines abstractions by analysing counterexamples

◮ Triumph of application of computer science theory

◮ two Turing awards, McMillan gets 2010 CAV award
◮ widespread applications in industry

Mike Gordon 126 / 127

THE END

Mike Gordon 127 / 127

