A property not expressible in LTL

Let $AP = \{P\}$ and consider models M and M' below

- $M = (\{s_0, s_1\}, \{s_0\}, \{(s_0, s_0), (s_0, s_1), (s_1, s_1)\}, L)$
- $M' = (\{s_0\}, \{s_0\}, \{(s_0, s_0)\}, L)$

where: $L = \lambda s. \text{if } s = s_0 \text{ then } \{\} \text{ else } \{P\}$

- Every M'-path is also an M-path
- So if ϕ true on every M-path then ϕ true on every M'-path
- Hence in LTL for any ϕ if $M \models \phi$ then $M' \models \phi$
- Consider $\phi_P \iff \text{“can always reach a state satisfying } P\text{”}$
 - ϕ_P holds in M but not in M'
 - but in LTL can't have $M \models \phi_P$ and not $M' \models \phi_P$
- hence ϕ_P not expressible in LTL

(acknowledgement: Logic in Computer Science, Huth & Ryan (2nd Ed.) page 219, ISBN 0 521 54310 X)
CTL model checking

- For LTL path formulae ϕ recall that $M \models \phi$ is defined by:
 \[
 M \models \phi \iff \forall \pi \text{ s. } s \in S_0 \land \text{Path } R s \pi \Rightarrow \llbracket \phi \rrbracket_M(\pi)
 \]

- For CTL state formulae ψ the definition of $M \models \psi$ is:
 \[
 M \models \psi \iff \forall s. \text{ s } S_0 \Rightarrow \llbracket \psi \rrbracket_M(s)
 \]

- M common; LTL, CTL formulae and semantics $\llbracket \cdot \rrbracket_M$ differ

- CTL model checking algorithm:
 - compute $\{ s \mid \llbracket \psi \rrbracket_M(s) = true \}$ bottom up
 - check $S_0 \subseteq \{ s \mid \llbracket \psi \rrbracket_M(s) = true \}$
 - symbolic model checking represents these sets as BDDs
CTL model checking: p, $\text{AX} \psi$, $\text{EX} \psi$

- For CTL formula ψ let $\{\psi\}_M = \{s \mid [\psi]_M(s) = \text{true}\}$
- When unambiguous will write $\{\psi\}$ instead of $\{\psi\}_M$
- $\{p\} = \{s \mid p \in L(s)\}$
 - scan through set of states S marking states labelled with p
 - $\{p\}$ is set of marked states

- To compute $\{\text{AX} \psi\}$
 - recursively compute $\{\psi\}$
 - marks those states all of whose successors are in $\{\psi\}$
 - $\{\text{AX} \psi\}$ is the set of marked states

- To compute $\{\text{EX} \psi\}$
 - recursively compute $\{\psi\}$
 - marks those states with at least one successor in $\{\psi\}$
 - $\{\text{EX} \psi\}$ is the set of marked states
CTL model checking: \(\{E[\psi_1 U \psi_2]\}, \{A[\psi_1 U \psi_2]\}\)

- To compute \(\{E[\psi_1 U \psi_2]\}\)
 - recursively compute \(\{\psi_1\} \) and \(\{\psi_2\} \)
 - mark all states in \(\{\psi_2\} \)
 - mark all states in \(\{\psi_1\} \) with a successor state that is marked
 - repeat previous line until no change
 - \(\{E[\psi_1 U \psi_2]\}\) is set of marked states

- More formally: \(\{E[\psi_1 U \psi_2]\}\) = \(\bigcup_{n=0}^{\infty} \{E[\psi_1 U \psi_2]\}_n \) where:
 - \(\{E[\psi_1 U \psi_2]\}_0 = \{\psi_2\} \)
 - \(\{E[\psi_1 U \psi_2]\}_{n+1} = \{E[\psi_1 U \psi_2]\}_n \cup \{s \in \{\psi_1\} | \exists s' \in \{E[\psi_1 U \psi_2]\}_n. R s s'\} \)

- \(\{A[\psi_1 U \psi_2]\}\) similar, but with a more complicated iteration
 - details omitted (see Huth and Ryan)
Example: checking $\textbf{EF} \, p$

- $\textbf{EF} \, p = \textbf{E}[\textbf{T} \, \textbf{U} \, p]$
 - holds if ψ holds along some path

- Note $\{\textbf{T}\} = S$

- Let $S_n = \{\textbf{E}[\textbf{T} \, \textbf{U} \, p]\}_n$ then:

 $S_0 = \{\textbf{E}[\textbf{T} \, \textbf{U} \, p]\}_0$
 $= \{p\}$
 $= \{s \mid p \in L(s)\}$

 $S_{n+1} = S_n \cup \{s \in \{\textbf{T}\} \mid \exists s' \in \{\textbf{E}[\textbf{T} \, \textbf{U} \, p]\}_n. \, R \, s \, s'\}$
 $= S_n \cup \{s \mid \exists s' \in S_n. \, R \, s \, s'\}$

- mark all the states labelled with p
- mark all with at least one marked successor
- repeat until no change
- $\{\textbf{EF} \, p\}$ is set of marked states
Example: RCV

- Recall the handshake circuit:

- State represented by a triple of Booleans \((dreq, q0, dack)\)

- A model of \(RCV\) is \(M_{RCV}\) where:

\[
M = (S_{RCV}, S_{0_{RCV}}, R_{RCV}, L_{RCV})
\]

and

\[
R_{RCV} (dreq, q0, dack) (dreq', q0', dack') = (q0' = dreq) \land (dack' = (dreq \land (q0 \lor dack)))
\]
Possible states for RCV:
\{000, 001, 010, 011, 100, 101, 110, 111\}
where \(b_2 b_1 b_0\) denotes state
\[
dreq = b_2 \land q0 = b_1 \land dack = b_0
\]
Graph of the transition relation:
Computing \textbf{Reachable} M_{RCV}

Define:

\[
S_0 \quad = \quad \{ b_2 b_1 b_0 \mid b_2 b_1 b_0 \in \{111\}\}
= \{111\}
\]

\[
S_{i+1} \quad = \quad S_i \cup \{ s' \mid \exists s \in S_i. \ R_{RCV} \ s \ s' \}
= \quad S_i \cup \{ b'_2 b'_1 b'_0 \mid \\
\exists b_2 b_1 b_0 \in S_i. (b'_1 = b_2) \land (b'_0 = b_2 \land (b_1 \lor b_0))\}
\]
Computing $\{\text{EF } \text{At111}\}$ where $\text{At111} \in L_{\text{RCV}}(s) \iff s = 111$

Define:

$S_0 = \{s \mid \text{At111} \in L_{\text{RCV}}(s)\}$

$= \{s \mid s = 111\}$

$= \{111\}$

$S_{n+1} = S_n \cup \{s \mid \exists s' \in S_n. \ R(s, s')\}$

$= S_n \cup \{b_2b_1b_0 \mid \exists b'_2b'_1b'_0 \in S_n. (b'_1 = b_2) \land (b'_0 = b_2 \land (b_1 \lor b_0))\}$
Computing \(\{\text{EF At111}\} \) (continued)

Compute:

\[
\begin{align*}
S_0 &= \{111\} \\
S_1 &= \{111\} \cup \{101, 110\} \\
&= \{111, 101, 110\} \\
S_2 &= \{111, 101, 110\} \cup \{100\} \\
&= \{111, 101, 110, 100\} \\
S_3 &= \{111, 101, 110, 100\} \cup \{000, 001, 010, 011\} \\
&= \{111, 101, 110, 100, 000, 001, 010, 011\} \\
S_n &= S_3 \quad (n > 3) \\
\end{align*}
\]

\(\{\text{EF At111}\} = \mathbb{B}^3 = S_{\text{RCV}}\)

\(M_{\text{RCV}} \models \text{EF At111} \iff S_{0_{\text{RCV}}} \subseteq S\)
Symbolic model checking

- Represent sets of states with BDDs
- Represent Transition relation with a BDD
- If BDDs of \(\{\psi\} \), \(\{\psi_1\} \), \(\{\psi_2\} \) are known, then:
 - BDDs of \(\{\neg\psi\} \), \(\{\psi_1 \land \psi_2\} \), \(\{\psi_1 \lor \psi_2\} \), \(\{\psi_1 \Rightarrow \psi_2\} \) computed using standard BDD algorithms
 - BDDs of \(\{AX\psi\} \), \(\{EX\psi\} \), \(\{A[\psi_1 U \psi_2]\} \), \(\{E[\psi_1 U \psi_2]\} \) computed using straightforward algorithms (see textbooks)
- Model checking CTL generalises reachable states iteration
History of Model checking

- CTL model checking due to Emerson, Clarke & Sifakis
- Symbolic model checking due to several people:
 - Clarke & McMillan (idea usually credited to McMillan’s PhD)
 - Coudert, Berthet & Madre
 - Pixley
- SMV (McMillan) is a popular symbolic model checker:
 - http://www.cs.cmu.edu/~modelcheck/smv.html (original)
 - http://nusmv.irst.itc.it/ (new implementation)
- Other temporal logics
 - CTL*: combines CTL and LTL
 - Engineer friendly industrial languages: PSL, SVA
Expressibility of CTL

- Consider the property
 "on every path there is a point after which \(p \) is always true on that path"

- Consider

 \[
 \begin{array}{c}
 0: & P := 1; \\
 s0 & 1: \text{WHILE } (\star) \text{ DO SKIP;} \\
 s1 & 2: P := 0; \\
 s2 & 3: P := 1; \\
 4: & \text{WHILE } T \text{ DO SKIP;} \\
 5: &
 \end{array}
 \]

- Property true, but cannot be expressed in CTL
 - would need something like \(\text{AF} \psi \)
 - where \(\psi \) is something like "property \(p \) true from now on"
 - but in CTL \(\psi \) must start with a path quantifier \(A \) or \(E \)
 - cannot talk about current path, only about all or some paths
 - \(\text{AF} (\text{AG} \ p) \) is false (consider path \(s0 s0 s0 \cdots \))
LTL can express things CTL can’t

- Recall:
 \[
 \begin{align*}
 \llbracket F \phi \rrbracket_M(\pi) &= \exists i. \llbracket \phi \rrbracket_M(\pi \downarrow i) \\
 \llbracket G \phi \rrbracket_M(\pi) &= \forall i. \llbracket \phi \rrbracket_M(\pi \downarrow i)
 \end{align*}
 \]

- \(FG\phi\) is true if there is a point after which \(\phi\) is always true
 \[
 \begin{align*}
 \llbracket FG\phi \rrbracket_M(\pi) &= \llbracket F(G(\phi)) \rrbracket_M(\pi) \\
 &= \exists m_1. \llbracket G(\phi) \rrbracket_M(\pi \downarrow m_1) \\
 &= \exists m_1. \forall m_2. \llbracket \phi \rrbracket_M((\pi \downarrow m_1) \downarrow m_2) \\
 &= \exists m_1. \forall m_2. \llbracket \phi \rrbracket_M(\pi \downarrow (m_1 + m_2))
 \end{align*}
 \]

- LTL can express things that CTL can’t express

- Note: it’s tricky to prove CTL can’t express \(FG\phi\)
CTL can express things that LTL can’t express

- **AG(EF \(p \))** says:

 “from every state it is possible to get to a state for which \(p \) holds”

- Can’t say this in LTL (easy proof given earlier - slide 57)

- Consider disjunction:

 “on every path there is a point after which \(p \) is always true on that path or
 from every state it is possible to get to a state for which \(p \) holds”

- Can’t say this in either CTL or LTL!

- CTL* combines CTL and LTL and can express this property
Both state formulae (ψ) and path formulae (ϕ)

- state formulae ψ are true of a state s like CTL
- path formulae ϕ are true of a path π like LTL

Defined mutually recursively

\[
\psi ::= \begin{aligned}
\ p & \quad \text{(Atomic formula)} \\
\ \neg \psi & \quad \text{(Negation)} \\
\ \psi_1 \lor \psi_2 & \quad \text{(Disjunction)} \\
\ A\phi & \quad \text{(All paths)} \\
\ E\phi & \quad \text{(Some paths)}
\end{aligned}
\]

\[
\phi ::= \begin{aligned}
\ \psi & \quad \text{(Every state formula is a path formula)} \\
\ \neg \phi & \quad \text{(Negation)} \\
\ \phi_1 \lor \phi_2 & \quad \text{(Disjunction)} \\
\ X\phi & \quad \text{(Successor)} \\
\ F\phi & \quad \text{(Sometimes)} \\
\ G\phi & \quad \text{(Always)} \\
\ [\phi_1 \ U \phi_2] & \quad \text{(Until)}
\end{aligned}
\]

- CTL is CTL* with X, F, G, $[\neg U \neg]$ preceded by A or E
- LTL consists of CTL* formulae of form $A\phi$, where the only state formulae in ϕ are atomic
CTL* semantics

- Combines CTL state semantics with LTL path semantics:

\[
\begin{align*}
[p]_M(s) &= p \in L(s) \\
[\neg \psi]_M(s) &= \neg([\psi]_M(s)) \\
[\psi_1 \lor \psi_2]_M(s) &= [\psi_1]_M(s) \lor [\psi_2]_M(s) \\
[A\phi]_M(s) &= \forall \pi. \text{Path } R \ s \ \pi \Rightarrow \phi(\pi) \\
[E\phi]_M(s) &= \exists \pi. \text{Path } R \ s \ \pi \land [\phi]_M(\pi) \\
[\psi]_M(\pi) &= [\psi]_M(\pi(0)) \\
[\neg \phi]_M(\pi) &= \neg([\phi]_M(\pi)) \\
[\phi_1 \lor \phi_2]_M(\pi) &= [\phi_1]_M(\pi) \lor [\phi_2]_M(\pi) \\
[X\phi]_M(\pi) &= [\phi]_M(\pi\downarrow 1) \\
[F\phi]_M(\pi) &= \exists m. [\phi]_M(\pi\downarrow m) \\
[G\phi]_M(\pi) &= \forall m. [\phi]_M(\pi\downarrow m) \\
[[\phi_1 U \phi_2]]_M(\pi) &= \exists i. [\phi_2]_M(\pi\downarrow i) \land \forall j. j<i \Rightarrow [\phi_1]_M(\pi\downarrow j)
\end{align*}
\]

- Note \([\psi]_M : S \rightarrow B\) and \([\phi]_M : (N \rightarrow S) \rightarrow B\)
LTL and CTL as CTL*

- As usual: \(M = (S, S_0, R, L) \)
- If \(\psi \) is a CTL* state formula: \(M \models \psi \iff \forall s \in S_0. \llbracket \psi \rrbracket_M(s) \)
- If \(\phi \) is an LTL path formula then: \(M \models_{\text{LTL}} \phi \iff M \models_{\text{CTL}^*} A\phi \)
- If \(R \) is total (\(\forall s. \exists s'. R s s' \)) then (exercise):
 \(\forall s s'. R s s' \iff \exists \pi. \text{Path } R \ s \ \pi \land (\pi(1) = s') \)
- The meanings of CTL formulae are the same in CTL*:

\[
\llbracket A(X \psi) \rrbracket_M(s) = \forall \pi. \ \text{Path } R \ s \ \pi \Rightarrow \llbracket X \psi \rrbracket_M(\pi) = \forall \pi. \ \text{Path } R \ s \ \pi \Rightarrow \llbracket \psi \rrbracket_M(\pi)(1)
\]

\[
\llbracket AX \psi \rrbracket_M(s) = \forall s'. R s s' \Rightarrow \llbracket \psi \rrbracket_M(s') = \forall s'. (\exists \pi. \ \text{Path } R \ s \ \pi \land (\pi(1) = s')) \Rightarrow \llbracket \psi \rrbracket_M(s')
\]

Exercise: do similar proofs for other CTL formulae
Fairness

- May want to assume system or environment is ‘fair’

- Example 1: fair arbiter
 - the arbiter doesn’t ignore one of its requests forever
 - not every request need be granted
 - want to exclude infinite number of requests and no grant

- Example 2: reliable channel
 - no message continuously transmitted but never received
 - not every message need be received
 - want to exclude an infinite number of sends and no receive
Handling fairness in CTL and LTL

- Consider:
 p holds infinitely often along a path then so does q

- In LTL is expressible as $G(Fp) \Rightarrow G(Fq)$

- Can’t say this in CTL
 - why not – what’s wrong with $AG(AFp) \Rightarrow AG(AFq)$?
 - in CTL* expressible as $A(G(Fp) \Rightarrow G(Fq))$
 - fair CTL model checking implemented in checking algorithm
 - fair LTL just a fairness assumption like $G(Fp) \Rightarrow \cdots$

- Fairness is a tricky and subtle subject
 - many kinds of fairness:
 ‘weak fairness’, ‘strong fairness’ etc
 - exist whole books on fairness
Propositional modal μ-calculus

- You may learn this in *Topics in Concurrency*

- μ-calculus is an even more powerful property language
 - has fixed-point operators
 - both maximal and minimal fixed points
 - model checking consists of calculating fixed points
 - many logics (e.g. CTL*) can be translated into μ-calculus

- Strictly stronger than CTL*
 - expressibility strictly increases as allowed nesting increases
 - need fixed point operators nested 2 deep for CTL*

- The μ-calculus is very non-intuitive to use!
 - intermediate code rather than a practical property language
 - nice meta-theory and algorithms, but terrible usability!