Model behaviour viewed as a computation tree

» Atomic properties are true or false of individual states
» General properties are true or false of whole behaviour
» Behaviour of (S, R) starting from s € S as a tree:

initial state States after states after
onesiep twosteps

» A path is shownin red
» Properties may look at all paths, or just a single path

» CTL: Computation Tree Logic (all paths from a state)
» LTL: Linear Temporal Logic (a single path)

Mike Gordon 11/128

Paths

» A path of (S, R) is represented by a function 7 : N — S

7(i) is the ith element of = (first element is 7(0))
might sometimes write 7 / instead of 7 (/)

nli is the i-th tail of = so ni(n) = =(i + n)
successive states in a path must be related by R

vV vy vy

» Path R s 7 is true if and only if 7 is a path starting at s:
Path Rsm = (n(0)=58) A Vi. R(xn(i)) (w(i+1))
where:

Path: (S—-S—-B)—» S —-(N—=S5) —B
—_——— ~~~ ——

initial
state

transition
relation

path

Mike Gordon 12/128

RCV: example hardware properties

» Consider this timing diagram:

dack

-

» Two handshake properties representing the diagram:

» following a rising edge on dregq, the value of dreqg
remains 1 (i.e. true) until it is acknowledged by a rising
edge on dack

» following a falling edge on dregq, the value on dreqg
remains O (i.e. false) until the value of dack is 0

» A property language is used to formalise such properties

Mike Gordon 13/128

DIV:example program properties

8 : gffég AtStar(t (pc, x,y,r,q) = (pc=0)
. il AtEnd pC7X7yfr*, q) = (pc:s)
: <
20 WHILE USR DO tncop(poxyir) = (poe{3,4))
4 Qi=0+1) YleqR (PC, X, ¥,r,q) =<0
5: Invariant (pe,x,y,r.q) = (X=r+(y xq))

» Example properties of the program DIV.

» on every execution if AtEnd is true then Tnvariant is true
and YlegR is not true

» on every execution there is a state where AtEnd is true

» on any execution if there exists a state where YlegRr is true
then there is also a state where InLoop is true

» Compare these with what is expressible in Hoare logic
» execution: a path starting from a state satisfying AtStart

Mike Gordon 14/128

Recall JM1: a non-deterministic program example

Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; O: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;

2 IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

SJMl - [03] X [03] X Z X Z

Vpcy pco lock x. Ra (0, pcs,0,x) (1,pc2,1, %) A
R (1,pco, lock, x) (2, pco, lock, 1) A
Ran (2,pc0,1,x) (8,pc2,0, x) A
Ran (pct,0,0,x) (pci,1,1,x) A
Ran (pcy, 1, lock, x) (pet, 2, lock,2) A
Ran (pc1,2,1,x) (

» An atomic property:

» NotAtll(pcy,pcs,lock,x) = —((pci =1) A (pce = 1))
» A non-atomic property:

» all states reachable from (0,0, 0, 0) satisfy NotAt11

pC173701X)

» this is an example of a reachability property

Mike Gordon 15/128

State satisfying NotAt 11 unreachable from (0,0,0,0)

Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; O0: IF LOCK=0 THEN LOCK:=1;

1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;

3: 3:

Rxa (0, pc2, 0, x) 1,pC,1, X) | R (pcy, 0,0, x) %po1,1,1,x)
Ran (1, pco, lock, x) (2, pco, lock,1) | Ran (pct,1,lock, x) (pcy, 2, lock, 2)
Ry 21p6271vx) 37P02~,07X) R pC1,2,1,X) pC1137O=X)

> Notatll(pcy,pey,lock,x) =—((pci =1) A (pc2 = 1))

v

Can only reach pc; =1 A pc, =1 via:

Ry (0, pco, 0, x 1,pco,1,x) e astep Aun 50,1,0 X; g1,1,1,x;
R (pcy, 0,0, x pci,1,1,x) e astep Rui (1,0,0,x 1,1,1

But:

Rana1 (pcy, pez, lock, x) (pcy, pch, lock’, x’) A pci=0 A pchb=1 = lock’=1
A

y Iy ly

v

Rau (pcy, pee, lock, x) (pc;, pch, lock’, x") A pci=1 A pcy=0 = lock’=1

» So can never reach (0,1,0,x) OF (1,0,0,)

v

So can’'t reach (1,1,1,x), hence never (pc; = 1) A (pco = 1)
» Hence all states reachable from (0,0,0,0) satisfy notat11

Mike Gordon 16/128

Reachability
» R s s’ means s’ reachable from s in one step
» R" s s’ means s’ reachable from s in n steps

R0ss = (s=¢9)
R"l'ss = 3s".Rss'"AR"s"s

v

R* s s’ means s’ reachable from s in finite steps
R*ss' =3dn.R"s ¢

v

Note: R* s s’ & 3w n. Path R s w A (8 = w(n))

v

The set of states reachable from sis {s' | R* s s’}

v

Verification problem: all states reachable from s satisfy p
» verify truth of Vs'. R* s s’ = p(s’)
» e.g. all states reachable from (0,0, 0, 0) satisfy NotAat11

» i.e.Vs'. R%,; (0,0,0,0) 8’ = NotAat11(s')

Mike Gordon 17/128

Models and model checking
» Assume a model (S, R)

» Assume also a set Sy C S of initial states

Assume also a set AP of atomic properties
» allows different models to have same atomic properties

v

» Assume a labelling function L: S — P(AP)
» p € L(s) means “s labelled with p” or “p true of s”

previously properties were functions p: S — B
now p € AP is distinguished from \s. p € L(s)

» assume T,F € AP with forall s: T € L(s) and F ¢ L(s)
A Kripke structure is a tuple (S, Sp, R, L)

» often the term “model” is used for a Kripke structure

» i.e. amodelis (S, Sy, R, L) rather than just (S, R)

v

v

v

v

Model checking computes whether (S, Sp, R, L) = ¢
» ¢ is a property expressed in a property language

» informally M |= ¢ means “wff ¢ is true in model M”
Mike Gordon 18/128

Minimal property language: ¢ is AGp where p € AP

» Consider properties ¢ of form AG p where p € AP

» “AG” stands for “Always Globally”
» from CTL (same meaning, more elaborately expressed)

v

Assume M = (S, Sy, R, L)

v

Reachable states of M are {s' | 9s € Sy. R* s §'}
» i.e. the set of states reachable from an initial state

v

Define Reachable M = {s' | s € Sy. R* s §'}

v

M = AG p means p true of all reachable states of M

v

If M= (S, Sy, R,L)then M = ¢ formally defined by:
’ ME= AGp < Vs'. s € Reachable M = p € L(¢')

Mike Gordon 19/128

Model checking M = AGp

» M= AGp < Vs'. s’ € Reachable M = p € L(9)
< Reachable M C {s' | p € L(§')}
checked by:
» first computing Reachable M
» then checking p true of all its members

v

Let S abbreviate {s' | 3s € Sy. R* s s’} (i.e. Reachable M)
Compute S iteratively: S =S US U---US U -+

> ie. S =12 Sn

» where: Sop = Sy (set of initial states)

» and inductively: Sy, =S, U{s' |Ise S, AR s s’}
Clearly S € S C---C S, C---
Henceif S, = S,..1 then § = &,

Algorithm: compute Sy, Sy, ..., until no change;
check all members of computed set labelled with p

v

v

v

v

Mike Gordon 20/128

compute Sy, S, ..., until no change;
check p holds of all members of computed set

» Does the algorithm terminate?

» yes, if set of states is finite, because then no infinite chains:
SHCSC---CSp -

» How to represent Sy, Sq, ... ?

» explicitly (e.g. lists or something more clever)
» symbolic expression

» Huge literature on calculating set of reachable states

Mike Gordon 21/128

Example: RCV

» Recall the handshake circuit:

dreg L

dack

» State represented by a triple of Booleans (dreq, q0, dack)

» A model of RCV is M:-, where:
M = (SRC\la {(1 1, 1)}: Rrev, LRCV)

and
Rxcv (dreq, qO0, dack) (dreq’, q0’, dack’) =
(g0’ = dreq) A (dack’ = (dreq A (g0 V dack)))

» AP and labelling function Lx. discussed later

Mike Gordon 22/128

RCV state transition diagram

» Possible states for RCV:
{000,001,010,011,100,101,110,111}
where bobiby denotes state
dreg=bo A g0 = by A dack = by

» Graph of the transition relation:

()

100 110 111

N

011

Mike Gordon 23/128

Computing Reachable Mz,

Q\ S Q\
NN

011

» Define:
So = {b2b1b0 ‘ b2b1 bo S {111}}
= {111}
S,’+1 - Sj U {S/ ‘ HS S S/‘. RRCV S S/ }
=S U {bybby |
dbobibg € Si. (b = b)) A (b6 =bo A (b1 V b))}

Mike Gordon 24/128

Computing Reachable M. (continued)

e

11

NN

011

» Compute:
So = {111}
S ={111} U {011}
= {111,011}

S, ={111,011} U {000,100}
= {111,011,000, 100}

Sy ={111,011,000,100} U {010,110}
= {111,011,000, 100,010,110}

S =8 (i>3)
» Hence Reachable Mz, = {111,011,000, 100,010,110}

Mike Gordon 25/128

Model checking M. = AGp
> M= (SRCV7 {1 11}, Rrev, LRCV)

» To check M., = AGp
» compute Reachable M., = {111,011,000,100,010,110}

» check Reachable Micy C {s| p € Lacv(8)}

» i.e. check if s € Reachable Mz, then p € Liy(S), i.e.:
p € Leey(111) A
p € Lrey(011) A
p € Lxev(000) A
p € Lrev(100) A
p € Lrey(010) A
p € Liey(110)
» Example
» if AP ={a,B}
» and Lxcy(Ss) = if s € {001,101} then {7} else {B}
» then My = AGA is not true, but My = AGB is true

Mike Gordon 26/128

Symbolic Boolean model checking of reachability

» Assume states are n-tuples of Booleans (by, ..., bp)
» b € B = {true, false} (= {1,0})
» S=DB" so Sis finite: 2" states

v

Assume n distinct Boolean variables: vy,...,v;
» e.g.if n=3thencouldhave vi = x, vo =y, 3 = z

» Boolean formula f(v4, ..., v,) represents a subset of S
» f(v1,...,Vv,) only contains variables vi,...,v,
» f(by,...,bp) denotes result of substituting b; for v;

» f(wy,...,v,)determines{(b,..., bn) | f(b1, ..., bn) < true}

Example —(x = v) represents {(true, false), (false, true)}

v

v

Transition relations also represented by Boolean formulae

» e.g. Rxcy represented by:
(g0’ = dreq) A (dack” = (dreg A (g0 Vv (—q0 A dack))))

Mike Gordon 27 /128

Symbolically represent Boolean formulae as BDDs
» Key features of Binary Decision Diagrams (BDDs):

» canonical (given a variable ordering)
» efficient to manipulate

» Variables:
v = 1f v then 1 else 0
v = 1f v then 0 else 1

» Example: BDDs of variable v and —v

A i

[o] [[o] [2]
» Example: BDDs of v1 A v2 and v1 V v2

Mike Gordon 28/128

More BDD examples

» BDD of vl = v2

)

» BDD of vl # v2

Mike Gordon

29/128

BDD of a transition relation
» BDDs of
(vl = (v1=v2)) A (v2! = (v1 £ v2))
with two different variable orderings

» Exercise: draw BDD of Rgcy

Mike Gordon 30/128

Standard BDD operations

>

Mike Gordon

If formulae f;, f> represents sets Sy, S», respectively
then f; A fo, f; V > represent S; N So, Sy U So respectively

Standard algorithms compute Boolean operation on BDDs
Abbreviate (vq,...,v,)to V

If f(V) represents S
and g(v, V') represents {(v,V') | RV V')}
then Ju. f(uU) A g(u, V) represents {V |Ju. i€ SAR UV}

Can compute BDD of Ju. h(u, v) from BDD of h(u, v)
» e.g. BDD of 3vy. h(vq, v2) is BDD of h(T, v2) V h(F, v2)

From BDD of formula f(vq, ..., v,) can compute by, ..., b,
such thatif vi = by, ..., vy = by then f(by, ..., by) < true
» by, ..., by is a satisfying assignment (SAT problem)
» used for counterexample generation (see later)

31/128

