
Model behaviour viewed as a computation tree

◮ Atomic properties are true or false of individual states

◮ General properties are true or false of whole behaviour

◮ Behaviour of (S,R) starting from s ∈ S as a tree:

s

initial state states after
one step

states after
two steps

◮ A path is shown in red

◮ Properties may look at all paths, or just a single path

◮ CTL: Computation Tree Logic (all paths from a state)
◮ LTL: Linear Temporal Logic (a single path)

Mike Gordon 11 / 128

Paths

◮ A path of (S,R) is represented by a function π : N → S

◮ π(i) is the i th element of π (first element is π(0))
◮ might sometimes write π i instead of π(i)
◮ π↓i is the i-th tail of π so π↓i(n) = π(i + n)
◮ successive states in a path must be related by R

◮ Path R s π is true if and only if π is a path starting at s:

Path R s π = (π(0) = s) ∧ ∀i . R (π(i)) (π(i+1))

where:

Path : (S → S → B)
︸ ︷︷ ︸

transition
relation

→ S
︸︷︷︸

initial
state

→ (N → S)
︸ ︷︷ ︸

path

→ B

Mike Gordon 12 / 128

RCV: example hardware properties

◮ Consider this timing diagram:

dreq

dack

◮ Two handshake properties representing the diagram:

◮ following a rising edge on dreq, the value of dreq

remains 1 (i.e. true) until it is acknowledged by a rising

edge on dack

◮ following a falling edge on dreq, the value on dreq

remains 0 (i.e. false) until the value of dack is 0

◮ A property language is used to formalise such properties

Mike Gordon 13 / 128

DIV: example program properties

0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

AtStart (pc, x , y , r , q) = (pc = 0)
AtEnd (pc, x , y , r , q) = (pc = 5)
InLoop (pc, x , y , r , q) = (pc ∈ {3, 4})
YleqR (pc, x , y , r , q) = (y ≤ r)
Invariant (pc, x , y , r , q) = (x = r + (y × q))

◮ Example properties of the program DIV.

◮ on every execution if AtEnd is true then Invariant is true

and YleqR is not true

◮ on every execution there is a state where AtEnd is true

◮ on any execution if there exists a state where YleqR is true

then there is also a state where InLoop is true

◮ Compare these with what is expressible in Hoare logic

◮ execution: a path starting from a state satisfying AtStart

Mike Gordon 14 / 128

Recall JM1: a non-deterministic program example

Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;

1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;

3: 3:

SJM1 = [0..3]× [0..3]× Z× Z

∀pc1 pc2 lock x .RJM1 (0,pc2,0, x) (1,pc2,1, x) ∧
RJM1 (1,pc2, lock , x) (2,pc2, lock ,1) ∧
RJM1 (2,pc2,1, x) (3,pc2,0, x) ∧
RJM1 (pc1,0,0, x) (pc1,1,1, x) ∧
RJM1 (pc1,1, lock , x) (pc1,2, lock ,2) ∧
RJM1 (pc1,2,1, x) (pc1,3,0, x)

◮ An atomic property:
◮ NotAt11(pc1,pc2, lock , x) = ¬((pc1 = 1) ∧ (pc2 = 1))

◮ A non-atomic property:

◮ all states reachable from (0,0,0,0) satisfy NotAt11

◮ this is an example of a reachability property

Mike Gordon 15 / 128

State satisfying NotAt11 unreachable from (0,0,0,0)

Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;

1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;

3: 3:

RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (1, pc2, lock , x) (2, pc2, lock , 1)
RJM1 (2, pc2, 1, x) (3, pc2, 0, x)

RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)
RJM1 (pc1, 1, lock , x) (pc1, 2, lock , 2)
RJM1 (pc1, 2, 1, x) (pc1, 3, 0, x)

◮ NotAt11(pc1, pc2, lock , x) = ¬((pc1 = 1) ∧ (pc2 = 1))

◮ Can only reach pc1 = 1 ∧ pc2 = 1 via:
RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)

i.e. a step RJM1 (0, 1, 0, x) (1, 1, 1, x)
i.e. a step RJM1 (1, 0, 0, x) (1, 1, 1, x)

◮ But:
RJM1 (pc1, pc2, lock , x) (pc′

1
, pc′

2
, lock ′, x ′) ∧ pc′

1
=0 ∧ pc′

2
=1 ⇒ lock ′=1

∧
RJM1 (pc1, pc2, lock , x) (pc′

1
, pc′

2
, lock ′, x ′) ∧ pc′

1
=1 ∧ pc′

2
=0 ⇒ lock ′=1

◮ So can never reach (0, 1, 0, x) or (1, 0, 0, x)

◮ So can’t reach (1, 1, 1, x), hence never (pc1 = 1) ∧ (pc2 = 1)

◮ Hence all states reachable from (0, 0, 0, 0) satisfy NotAt11

Mike Gordon 16 / 128

Reachability

◮ R s s′ means s′ reachable from s in one step

◮ Rn s s′ means s′ reachable from s in n steps

R0 s s′ = (s = s′)

Rn+1 s s′ = ∃s′′. R s s′′ ∧ Rn s′′ s′

◮ R∗ s s′ means s′ reachable from s in finite steps

R∗ s s′ = ∃n. Rn s s′

◮ Note: R∗ s s′ ⇔ ∃π n. Path R s π ∧ (s′ = π(n))

◮ The set of states reachable from s is {s′ | R∗ s s′}

◮ Verification problem: all states reachable from s satisfy p

◮ verify truth of ∀s′. R∗ s s′ ⇒ p(s′)

◮ e.g. all states reachable from (0,0,0,0) satisfy NotAt11

◮ i.e. ∀s′. R∗

JM1 (0,0,0,0) s′ ⇒ NotAt11(s′)

Mike Gordon 17 / 128

Models and model checking
◮ Assume a model (S,R)

◮ Assume also a set S0 ⊆ S of initial states

◮ Assume also a set AP of atomic properties
◮ allows different models to have same atomic properties

◮ Assume a labelling function L : S → P(AP)
◮ p ∈ L(s) means “s labelled with p” or “p true of s”

◮ previously properties were functions p : S → B

◮ now p ∈ AP is distinguished from λs. p ∈ L(s)

◮ assume T,F ∈ AP with forall s: T ∈ L(s) and F /∈ L(s)

◮ A Kripke structure is a tuple (S,S0,R, L)
◮ often the term “model” is used for a Kripke structure

◮ i.e. a model is (S,S0,R,L) rather than just (S,R)

◮ Model checking computes whether (S,S0,R, L) |= φ

◮ φ is a property expressed in a property language

◮ informally M |= φ means “wff φ is true in model M”
Mike Gordon 18 / 128

Minimal property language: φ is AGp where p ∈ AP

◮ Consider properties φ of form AGp where p ∈ AP

◮ “AG ” stands for “Always Globally”
◮ from CTL (same meaning, more elaborately expressed)

◮ Assume M = (S,S0,R, L)

◮ Reachable states of M are {s′ | ∃s ∈ S0. R∗ s s′}

◮ i.e. the set of states reachable from an initial state

◮ Define Reachable M = {s′ | ∃s ∈ S0. R∗ s s′}

◮ M |= AGp means p true of all reachable states of M

◮ If M = (S,S0,R, L) then M |= φ formally defined by:

M |= AGp ⇔ ∀s′. s′ ∈ Reachable M ⇒ p ∈ L(s′)

Mike Gordon 19 / 128

Model checking M |= AGp
◮ M |= AGp ⇔ ∀s′. s′ ∈ Reachable M ⇒ p ∈ L(s′)

⇔ Reachable M ⊆ {s′ | p ∈ L(s′)}
checked by:

◮ first computing Reachable M

◮ then checking p true of all its members

◮ Let S abbreviate {s′ | ∃s ∈ S0. R∗ s s′} (i.e. Reachable M)

◮ Compute S iteratively: S = S0 ∪ S1 ∪ · · · ∪ Sn ∪ · · ·
◮ i.e. S =

⋃
∞

n=0 Sn

◮ where: S0 = S0 (set of initial states)

◮ and inductively: Sn+1 = Sn ∪ {s′ | ∃s ∈ Sn ∧ R s s′}

◮ Clearly S0 ⊆ S1 ⊆ · · · ⊆ Sn ⊆ · · ·

◮ Hence if Sm = Sm+1 then S = Sm

◮ Algorithm: compute S0, S1, . . . , until no change;

check all members of computed set labelled with p

Mike Gordon 20 / 128

compute S0, S1, . . . , until no change;
check p holds of all members of computed set

◮ Does the algorithm terminate?

◮ yes, if set of states is finite, because then no infinite chains:

S0 ⊂ S1 ⊂ · · · ⊂ Sn ⊂ · · ·

◮ How to represent S0, S1, . . . ?

◮ explicitly (e.g. lists or something more clever)

◮ symbolic expression

◮ Huge literature on calculating set of reachable states

Mike Gordon 21 / 128

Example: RCV

◮ Recall the handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

◮ State represented by a triple of Booleans (dreq,q0,dack)

◮ A model of RCV is MRCV where:

M = (SRCV, {(1,1,1)},RRCV,LRCV)

and
RRCV (dreq,q0,dack) (dreq′,q0′,dack ′) =

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))

◮ AP and labelling function LRCV discussed later

Mike Gordon 22 / 128

RCV state transition diagram

◮ Possible states for RCV:

{000, 001, 010, 011, 100, 101, 110, 111}

where b2b1b0 denotes state

dreq = b2 ∧ q0 = b1 ∧ dack = b0

◮ Graph of the transition relation:

000 100 110 111

101

011

001

010

Mike Gordon 23 / 128

Computing Reachable MRCV

000 100 110 111

101

011

001

010

◮ Define:

S0 = {b2b1b0 | b2b1b0 ∈ {111}}

= {111}

Si+1 = Si ∪ {s′ | ∃s ∈ Si . RRCV s s′ }

= Si ∪ {b′

2b′

1b′

0 |
∃b2b1b0 ∈ Si . (b

′

1 = b2) ∧ (b′

0 = b2 ∧ (b1 ∨ b0))}

Mike Gordon 24 / 128

Computing Reachable MRCV (continued)

000 100 110 111

101

011

001

010

0322

3

1

◮ Compute:

S0 = {111}

S1 = {111} ∪ {011}
= {111,011}

S2 = {111,011} ∪ {000,100}
= {111,011,000,100}

S3 = {111,011,000,100} ∪ {010,110}
= {111,011,000,100,010,110}

Si = S3 (i > 3)

◮ Hence Reachable MRCV = {111,011,000,100,010,110}
Mike Gordon 25 / 128

Model checking MRCV |= AGp
◮ M = (SRCV, {111},RRCV,LRCV)

◮ To check MRCV |= AG p

◮ compute Reachable MRCV = {111,011,000,100,010,110}

◮ check Reachable MRCV ⊆ {s | p ∈ LRCV(s)}

◮ i.e. check if s ∈ Reachable MRCV then p ∈ LRCV(s), i.e.:

p ∈ LRCV(111) ∧
p ∈ LRCV(011) ∧
p ∈ LRCV(000) ∧
p ∈ LRCV(100) ∧
p ∈ LRCV(010) ∧
p ∈ LRCV(110)

◮ Example

◮ if AP = {A,B}

◮ and LRCV(s) = if s ∈ {001,101} then {A} else {B}

◮ then MRCV |= AGA is not true, but MRCV |= AGB is true

Mike Gordon 26 / 128

Symbolic Boolean model checking of reachability

◮ Assume states are n-tuples of Booleans (b1, . . . , bn)
◮ bi ∈ B = {true, false} (= {1,0})

◮ S = B
n, so S is finite: 2n states

◮ Assume n distinct Boolean variables: v1,. . .,vn

◮ e.g. if n = 3 then could have v1 = x, v2 = y, v3 = z

◮ Boolean formula f (v1, . . . , vn) represents a subset of S
◮ f (v1, . . . , vn) only contains variables v1,. . .,vn

◮ f (b1, . . . ,bn) denotes result of substituting bi for vi

◮ f (v1, . . . , vn)determines{(b1, . . . ,bn) | f (b1, . . . ,bn) ⇔ true}

◮ Example ¬(x = y) represents {(true, false), (false, true)}

◮ Transition relations also represented by Boolean formulae

◮ e.g. RRCV represented by:

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ (¬q0 ∧ dack))))

Mike Gordon 27 / 128

Symbolically represent Boolean formulae as BDDs

◮ Key features of Binary Decision Diagrams (BDDs):

◮ canonical (given a variable ordering)

◮ efficient to manipulate

◮ Variables:
v = if v then 1 else 0

¬v = if v then 0 else 1

◮ Example: BDDs of variable v and ¬v

0 1

v

0 1

v

◮ Example: BDDs of v1 ∧ v2 and v1 ∨ v2

0 1

v1

v2

01

v1

v2

Mike Gordon 28 / 128

More BDD examples

◮ BDD of v1 = v2

0 1

v1

v2 v2

◮ BDD of v1 6= v2

0 1

v1

v2 v2

Mike Gordon 29 / 128

BDD of a transition relation

◮ BDDs of

(v1′ = (v1 = v2)) ∧ (v2′ = (v1 6= v2))

with two different variable orderings

0 1

v1

v2 v2

v1’ v1’

v2’ v2’

01

v1’

v1 v1

v2v2 v2 v2

v2’ v2’

◮ Exercise: draw BDD of RRCV

Mike Gordon 30 / 128

Standard BDD operations

◮ If formulae f1, f2 represents sets S1, S2, respectively

then f1 ∧ f2, f1 ∨ f2 represent S1 ∩ S2, S1 ∪ S2 respectively

◮ Standard algorithms compute Boolean operation on BDDs

◮ Abbreviate (v1, . . . , vn) to ~v

◮ If f (~v) represents S

and g(~v , ~v ′) represents {(~v , ~v ′) | R ~v ~v ′)}
then ∃~u. f (~u) ∧ g(~u, ~v) represents {~v | ∃~u. ~u ∈ S ∧ R ~u ~v}

◮ Can compute BDD of ∃~u. h(~u, ~v) from BDD of h(~u, ~v)
◮ e.g. BDD of ∃v1. h(v1, v2) is BDD of h(T, v2) ∨ h(F, v2)

◮ From BDD of formula f (v1, . . . , vn) can compute b1, . . ., bn

such that if v1 = b1, . . ., vn = bn then f (b1, . . . , bn) ⇔ true
◮ b1, . . ., bn is a satisfying assignment (SAT problem)
◮ used for counterexample generation (see later)

Mike Gordon 31 / 128

