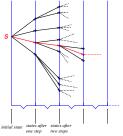
Model behaviour viewed as a computation tree

- Atomic properties are true or false of individual states
- General properties are true or false of whole behaviour
- Behaviour of (S, R) starting from $s \in S$ as a tree:

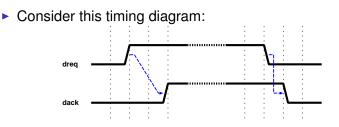


- A path is shown in red
- Properties may look at all paths, or just a single path
 - CTL: Computation Tree Logic (all paths from a state)
 - LTL: Linear Temporal Logic (a single path)

Paths

- A path of (S, R) is represented by a function $\pi : \mathbb{N} \to S$
 - $\pi(i)$ is the *i* th element of π (first element is $\pi(0)$)
 - might sometimes write π *i* instead of $\pi(i)$
 - $\pi \downarrow i$ is the *i*-th tail of π so $\pi \downarrow i(n) = \pi(i+n)$
 - successive states in a path must be related by R
- ▶ Path *R s* π is true if and only if π is a path starting at *s*: Path *R s* π = (π (0) = *s*) $\land \forall i$. *R* (π (*i*)) (π (*i*+1)) where:

RCV: example hardware properties



Two handshake properties representing the diagram:

- following a rising edge on dreq, the value of dreq remains 1 (i.e. *true*) until it is acknowledged by a rising edge on dack
- following a falling edge on dreq, the value on dreq remains 0 (i.e. *false*) until the value of dack is 0

A property language is used to formalise such properties

DIV: example program properties

0: R:=X; 1: Q:=0; 2: WHILE Y≤R DO 3: (R:=R-Y; 4: Q:=Q+1) 5:	AtStart (<i>pc</i> , <i>x</i> , <i>y</i> , <i>r</i> , <i>q</i>) AtEnd (<i>pc</i> , <i>x</i> , <i>y</i> , <i>r</i> , <i>q</i>) InLoop (<i>pc</i> , <i>x</i> , <i>y</i> , <i>r</i> , <i>q</i>) YleqR (<i>pc</i> , <i>x</i> , <i>y</i> , <i>r</i> , <i>q</i>) Invariant (<i>pc</i> , <i>x</i> , <i>y</i> , <i>r</i> , <i>q</i>)	$= (pc = 0) = (pc = 5) = (pc \in \{3, 4\}) = (y \le r) = (x = r + (y \times q))$
--	--	--

- Example properties of the program DIV.
 - on every execution if AtEnd is true then Invariant is true and YleqR is not true
 - on every execution there is a state where AtEnd is true
 - on any execution if there exists a state where YleqR is true then there is also a state where InLoop is true
- Compare these with what is expressible in Hoare logic
 - execution: a path starting from a state satisfying AtStart

Recall JM1: a non-deterministic program example

Thread 1				Thread 2			
0:	IF LOCK=0	THEN	LOCK:=1;	0:	IF LOCK=0 THEN LOCK:=1;		
1:	X:=1;			1:	X:=2;		
2:	IF LOCK=1	THEN	LOCK:=0;	2:	IF LOCK=1 THEN LOCK:=0;		
3:				3:			

An atomic property:

• NotAt11($pc_1, pc_2, lock, x$) = $\neg((pc_1 = 1) \land (pc_2 = 1))$

- A non-atomic property:
 - ► all states reachable from (0,0,0,0) satisfy NotAt11
 - this is an example of a reachability property

State satisfying NotAt11 unreachable from (0,0,0,0)

Thread 1				Thread 2		
0:	IF LOCK=0	THEN	LOCK:=1;	0:	IF LOCK=0 THEN LOCK:=1;	
1:	X:=1;			1:	X:=2;	
2:	IF LOCK=1	THEN	LOCK:=0;	2:	IF LOCK=1 THEN LOCK:=0;	
3:				3:		

 $\begin{array}{c} R_{\rm JM1} \left(0, p c_2, 0, x\right) \\ R_{\rm JM1} \left(1, p c_2, loc k, x\right) \\ R_{\rm JM1} \left(2, p c_2, 1, x\right) \end{array} \left(\begin{array}{c} (1, p c_2, 1, x) \\ (2, p c_2, loc k, 1) \\ (3, p c_2, 0, x) \end{array} \right) \\ \end{array} \left(\begin{array}{c} R_{\rm JM1} \left(p c_1, 0, 0, x\right) \\ R_{\rm JM1} \left(p c_1, 1, loc k, x\right) \\ R_{\rm JM1} \left(p c_1, 2, 1, x\right) \end{array} \right) \\ \left(\begin{array}{c} (p c_1, 1, 1, x) \\ (p c_1, 2, loc k, 2) \\ (p c_1, 3, 0, x) \end{array} \right) \\ \end{array} \right) \\ \end{array} \right)$

• NotAt11($pc_1, pc_2, lock, x$) = $\neg((pc_1 = 1) \land (pc_2 = 1))$

- ► Can only reach $pc_1 = 1 \land pc_2 = 1$ via: $R_{\text{JM1}} (0, pc_2, 0, x) (1, pc_2, 1, x)$ i.e. a step $R_{\text{JM1}} (0, 1, 0, x) (1, 1, 1, x)$ $R_{\text{JM1}} (pc_1, 0, 0, x) (pc_1, 1, 1, x)$ i.e. a step $R_{\text{JM1}} (1, 0, 0, x) (1, 1, 1, x)$
- But:

 $\begin{array}{l} R_{\text{JM1}} \ (pc_1, pc_2, lock, x) \ (pc_1', pc_2', lock', x') \ \land \ pc_1'=0 \ \land \ pc_2'=1 \ \Rightarrow \ lock'=1 \\ \land \\ R_{\text{JM1}} \ (pc_1, pc_2, lock, x) \ (pc_1', pc_2', lock', x') \ \land \ pc_1'=1 \ \land \ pc_2'=0 \ \Rightarrow \ lock'=1 \end{array}$

- So can never reach (0, 1, 0, x) or (1, 0, 0, x)
- So can't reach (1,1,1,x), hence never $(pc_1 = 1) \land (pc_2 = 1)$
- Hence all states reachable from (0,0,0,0) satisfy NotAt11

Mike Gordon

Reachability

- R s s' means s' reachable from s in one step
- ► $R^n s s'$ means s' reachable from s in n steps $R^0 s s' = (s = s')$ $R^{n+1} s s' = \exists s''. R s s'' \land R^n s'' s'$
- *R*^{*} *s s'* means *s'* reachable from *s* in finite steps *R*^{*} *s s'* = ∃*n*. *Rⁿ s s'*
- ▶ Note: $R^* s s' \Leftrightarrow \exists \pi n$. Path $R s \pi \land (s' = \pi(n))$
- The set of states reachable from s is {s' | R* s s'}
- Verification problem: all states reachable from s satisfy p
 - verify truth of $\forall s'$. $R^* s s' \Rightarrow p(s')$
 - ▶ e.g. all states reachable from (0,0,0,0) satisfy NotAt11
 - ▶ i.e. $\forall s'$. R^*_{JM1} (0,0,0,0) $s' \Rightarrow \text{NotAtll}(s')$

Models and model checking

- Assume a model (S, R)
- Assume also a set $S_0 \subseteq S$ of initial states
- Assume also a set AP of atomic properties
 - allows different models to have same atomic properties
- ► Assume a labelling function $L: S \rightarrow \mathcal{P}(AP)$
 - ▶ $p \in L(s)$ means "s labelled with p" or "p true of s"
 - previously properties were functions $p: S \rightarrow \mathbb{B}$
 - now $p \in AP$ is distinguished from $\lambda s. p \in L(s)$
 - ▶ assume $T, F \in AP$ with forall *s*: $T \in L(s)$ and $F \notin L(s)$
- A Kripke structure is a tuple (S, S_0, R, L)
 - often the term "model" is used for a Kripke structure
 - i.e. a model is (S, S_0, R, L) rather than just (S, R)
- Model checking computes whether $(S, S_0, R, L) \models \phi$
 - ϕ is a property expressed in a property language
 - informally $M \models \phi$ means "wff ϕ is true in model M"

Minimal property language: ϕ is **AG***p* where $p \in AP$

- Consider properties ϕ of form **AG** *p* where $p \in AP$
 - "AG" stands for "Always Globally"
 - from CTL (same meaning, more elaborately expressed)
- Assume $M = (S, S_0, R, L)$
- ▶ Reachable states of *M* are $\{s' \mid \exists s \in S_0. R^* \ s \ s'\}$
 - i.e. the set of states reachable from an initial state
- Define Reachable $M = \{s' \mid \exists s \in S_0. R^* \ s \ s'\}$
- $M \models AG p$ means p true of all reachable states of M
- ▶ If $M = (S, S_0, R, L)$ then $M \models \phi$ formally defined by:

 $M \models \mathsf{AG} p \Leftrightarrow \forall s'. \ s' \in \mathsf{Reachable} \ M \Rightarrow p \in L(s')$

Model checking $M \models AGp$

► $M \models \operatorname{AG} p \Leftrightarrow \forall s'. s' \in \operatorname{Reachable} M \Rightarrow p \in L(s')$ $\Leftrightarrow \operatorname{Reachable} M \subseteq \{s' \mid p \in L(s')\}$

checked by:

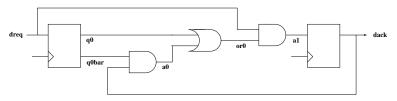
- first computing Reachable M
- then checking p true of all its members
- ► Let *S* abbreviate $\{s' \mid \exists s \in S_0. R^* s s'\}$ (i.e. Reachable *M*)
- Compute *S* iteratively: $S = S_0 \cup S_1 \cup \cdots \cup S_n \cup \cdots$
 - i.e. $S = \bigcup_{n=0}^{\infty} S_n$
 - where: $S_0 = S_0$ (set of initial states)
 - and inductively: $S_{n+1} = S_n \cup \{s' \mid \exists s \in S_n \land R \ s \ s'\}$
- Clearly $S_0 \subseteq S_1 \subseteq \cdots \subseteq S_n \subseteq \cdots$
- Hence if $S_m = S_{m+1}$ then $S = S_m$
- ► Algorithm: compute S₀, S₁, ..., until no change; check all members of computed set labelled with p

compute S_0, S_1, \ldots , until no change; check *p* holds of all members of computed set

- Does the algorithm terminate?
 - yes, if set of states is finite, because then no infinite chains:
 S₀ ⊂ S₁ ⊂ ··· ⊂ S_n ⊂ ···
- How to represent S_0, S_1, \ldots ?
 - explicitly (e.g. lists or something more clever)
 - symbolic expression
- Huge literature on calculating set of reachable states

Example: RCV

Recall the handshake circuit:



- State represented by a triple of Booleans (dreq, q0, dack)
- ► A model of RCV is *M*_{RCV} where:

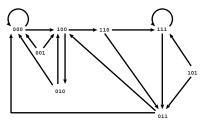
```
 \begin{aligned} & M = (S_{\text{RCV}}, \{(1, 1, 1)\}, R_{\text{RCV}}, L_{\text{RCV}}) \\ & \text{and} \\ & R_{\text{RCV}} \left( \textit{dreq}, \textit{q0}, \textit{dack} \right) \left( \textit{dreq}', \textit{q0}', \textit{dack}' \right) = \\ & (\textit{q0}' = \textit{dreq}) \land \left( \textit{dack}' = \left( \textit{dreq} \land \left( \textit{q0} \lor \textit{dack} \right) \right) \right) \end{aligned}
```

AP and labelling function L_{RCV} discussed later

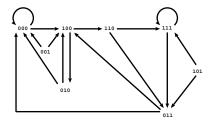
RCV state transition diagram

Possible states for RCV: {000,001,010,011,100,101,110,111} where b₂b₁b₀ denotes state dreq = b₂ ∧ q0 = b₁ ∧ dack = b₀

Graph of the transition relation:



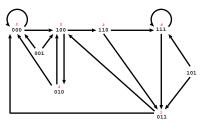
Computing Reachable M_{RCV}



Define:

 $\begin{aligned} \mathcal{S}_0 &= \{ b_2 b_1 b_0 \mid b_2 b_1 b_0 \in \{111\} \} \\ &= \{111\} \\ \mathcal{S}_{i+1} &= \mathcal{S}_i \ \cup \ \{ s' \mid \exists s \in \mathcal{S}_i. \ R_{\text{RCV}} \ s \ s' \ \} \\ &= \mathcal{S}_i \ \cup \ \{ b'_2 b'_1 b'_0 \mid \\ &= \exists b_2 b_1 b_0 \in \mathcal{S}_i. \ (b'_1 = b_2) \ \land \ (b'_0 = b_2 \land (b_1 \lor b_0)) \} \end{aligned}$

Computing Reachable *M*_{RCV} (continued)



Compute:

$$S_{0} = \{111\}$$

$$S_{1} = \{111\} \cup \{011\}$$

$$= \{111, 011\}$$

$$S_{2} = \{111, 011\} \cup \{000, 100\}$$

$$= \{111, 011, 000, 100\} \cup \{010, 110\}$$

$$= \{111, 011, 000, 100\} \cup \{010, 110\}$$

$$S_{i} = S_{3} \quad (i > 3)$$

• Hence Reachable $M_{\text{RCV}} = \{111, 011, 000, 100, 010, 110\}$

Mike Gordon

Model checking $M_{\text{RCV}} \models \text{AG}p$

 $\blacktriangleright M = (S_{\text{RCV}}, \{111\}, R_{\text{RCV}}, L_{\text{RCV}})$

- To check $M_{\text{RCV}} \models \textbf{AG} p$
 - compute Reachable $M_{\text{RCV}} = \{111, 011, 000, 100, 010, 110\}$
 - check Reachable $M_{\text{RCV}} \subseteq \{s \mid p \in L_{\text{RCV}}(s)\}$
 - ▶ i.e. check if $s \in \text{Reachable } M_{\text{RCV}}$ then $p \in L_{\text{RCV}}(s)$, i.e.:

 $\begin{array}{l} p \in L_{\rm RCV}(111) \land \\ p \in L_{\rm RCV}(011) \land \\ p \in L_{\rm RCV}(000) \land \\ p \in L_{\rm RCV}(100) \land \\ p \in L_{\rm RCV}(010) \land \\ p \in L_{\rm RCV}(110) \end{array}$

- Example
 - if $AP = \{A, B\}$
 - and $L_{\text{RCV}}(s) = \text{if } s \in \{001, 101\} \text{ then } \{\text{A}\} \text{ else } \{\text{B}\}$
 - then $M_{\text{RCV}} \models \text{AG} \land \text{is not true, but } M_{\text{RCV}} \models \text{AG} \land \text{is true}$

Symbolic Boolean model checking of reachability

- Assume states are *n*-tuples of Booleans (*b*₁,..., *b_n*)
 - $b_i \in \mathbb{B} = \{true, false\} (= \{1, 0\})$
 - $S = \mathbb{B}^n$, so S is finite: 2^n states
- Assume n distinct Boolean variables: v₁,...,v_n
 - e.g. if n = 3 then could have $v_1 = x$, $v_2 = y$, $v_3 = z$
- ► Boolean formula $f(v_1, ..., v_n)$ represents a subset of S
 - $f(v_1, \ldots, v_n)$ only contains variables v_1, \ldots, v_n
 - $f(b_1, \ldots, b_n)$ denotes result of substituting b_i for v_i
 - ► $f(v_1,...,v_n)$ determines $\{(b_1,...,b_n) | f(b_1,...,b_n) \Leftrightarrow true\}$
- ► Example ¬(x = y) represents {(*true*, *false*), (*false*, *true*)}
- Transition relations also represented by Boolean formulae
 - e.g. R_{RCV} represented by:

 $(q0' = dreq) \land (dack' = (dreq \land (q0 \lor (\neg q0 \land dack))))$

Symbolically represent Boolean formulae as BDDs

- Key features of Binary Decision Diagrams (BDDs):
 - canonical (given a variable ordering)
 - efficient to manipulate

v1

v2

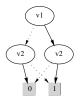
Variables:

v = if v then 1 else 0 ¬v = if v then 0 else 1 > Example: BDDs of variable v and ¬v v

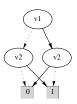
• Example: BDDs of $v1 \land v2$ and $v1 \lor v2$

More BDD examples

• BDD of v1 = v2



▶ BDD of
$$v1 \neq v2$$

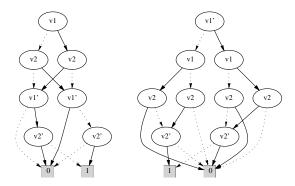


BDD of a transition relation

BDDs of

 $(v1' = (v1 = v2)) \land (v2' = (v1 \neq v2))$

with two different variable orderings



Exercise: draw BDD of R_{RCV}

Mike Gordon

Standard BDD operations

- If formulae f₁, f₂ represents sets S₁, S₂, respectively then f₁ ∧ f₂, f₁ ∨ f₂ represent S₁ ∩ S₂, S₁ ∪ S₂ respectively
- Standard algorithms compute Boolean operation on BDDs
- Abbreviate (v_1, \ldots, v_n) to \vec{v}
- ▶ If $f(\vec{v})$ represents Sand $g(\vec{v}, \vec{v}')$ represents $\{(\vec{v}, \vec{v}') \mid R \ \vec{v} \ \vec{v}')\}$ then $\exists \vec{u}. \ f(\vec{u}) \land g(\vec{u}, \vec{v})$ represents $\{\vec{v} \mid \exists \vec{u}. \ \vec{u} \in S \land R \ \vec{u} \ \vec{v}\}$
- ► Can compute BDD of $\exists \vec{u}$. $h(\vec{u}, \vec{v})$ from BDD of $h(\vec{u}, \vec{v})$
 - e.g. BDD of $\exists v_1$. $h(v_1, v_2)$ is BDD of $h(T, v_2) \vee h(F, v_2)$
- From BDD of formula $f(v_1, ..., v_n)$ can compute $b_1, ..., b_n$ such that if $v_1 = b_1, ..., v_n = b_n$ then $f(b_1, ..., b_n) \Leftrightarrow true$
 - b₁, ..., b_n is a satisfying assignment (SAT problem)
 - used for counterexample generation (see later)