
Background reading on Hoare Logic
Mike Gordon

Learning Guide for the CST Part II course. This document aims to

provide background reading to support the lectures – think of it as a free

downloadable textbook. Chapters 1–5 introduce classical ideas of specifica-

tion and proof of programs due to Floyd and Hoare.1 Although much of

the material is old – see the dates on some of the cited references – it is

still a foundation for current research. Chapter 6 is a very brief introduction

to program refinement; this provides rules to ‘calculate’ an implementation

from a Hoare-style specification. Chapter 7 is an introduction to the ideas

of separation logic, an extension of Hoare logic for specifying and verifying

programs that manipulate pointers. Separation logic builds on early ideas of

Burstall, but its modern form is due to O’Hearn and Reynolds.

Note that there may be topics presented in the lectures that are not cov-

ered in this document and there may be material in this document that is

not related to the topics covered in the lectures. For example, the topics

of program refinement and separation logic may only be described very su-

perficially, if at all. The examination questions will be based on the

material presented in the lectures.

The Part II course Hoare Logic has evolved from an earlier Part II course,

whose web page can be found on my home page (www.cl.cam.ac.uk/~mjcg).

Some exam questions from that course might be good exercises (but note that

some are based on material not covered in this course). A separate document

containing exercises for the current course is available from the web page.

Warning. The material here consists of reorganized extracts from lecture

notes for past courses, together with new material. There is a fair chance that

notational inconsistencies, omissions and errors are present. If you discover

such defects please send details to Mike.Gordon@cl.cam.ac.uk.

Acknowledgements. Thanks to Martin Vechev and John Wickerson for

finding many errors (some serious) in a previous draft of these notes and also

for suggestions for improving the text.

MJCG March 2, 2015

1Hoare Logic is sometimes called Floyd-Hoare Logic, due to the important contributions
of Floyd to the underlying ideas.
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Chapter 1

Program Specification

A simple programming language containing assignments, condi-

tionals, blocks and WHILE-loops is introduced. This is then used to

illustrate Hoare’s notation for specifying the partial correctness of

programs. Hoare’s notation uses formal logic notation to express

conditions on the values of program variables. This notation is

described informally and illustrated with examples.

1.1 Introduction

In order to prove the correctness of a program mathematically one must first

specify what it means for it to be correct. In this chapter a notation for

specifying the desired behaviour of imperative programs is described. This

notation is due to C.A.R. Hoare.

Executing an imperative program has the effect of changing the state,

which, until Chapter 7, we take to be the values of program variables. To

use such a program, one first establishes an initial state by setting the values

of some variables to values of interest. One then executes the program. This

transforms the initial state into a final one. One then inspects the values

of variables in the final state to get the desired results. For example, to

compute the result of dividing y into x one might load x and y into program

variables X and Y, respectively. One might then execute a suitable program

(see Example 7 in Section 1.4) to transform the initial state into a final state

in which the variables Q and R hold the quotient and remainder, respectively.

The programming language used in these notes is described in the next

section.

7
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1.2 A little programming language

Programs are built out of commands like assignments, conditionals etc. The

terms ‘program’ and ‘command’ are really synonymous; the former will only

be used for commands representing complete algorithms. Here the term

‘statement’ is used for conditions on program variables that occur in correct-

ness specifications (see Section 1.3). There is a potential for confusion here

because some writers use this word for commands (as in ‘for-statement’ [14]).

We now describe the syntax (i.e. form) and semantics (i.e. meaning) of

the various commands in our little programming language. The following

conventions are used:

1. The symbols V , V1, . . . , Vn stand for arbitrary variables. Examples of

particular variables are X, R, Q etc.

2. The symbols E, E1, . . . , En stand for arbitrary expressions (or terms).

These are things like X + 1,
√
2 etc. which denote values (usually

numbers).

3. The symbols S, S1, . . . , Sn stand for arbitrary statements. These are

conditions like X < Y, X2 = 1 etc. which are either true or false.

4. The symbols C, C1, . . . , Cn stand for arbitrary commands of our

programming language; these are described in the rest of this section.

Terms and statements are described in more detail in Section 1.5.

1.2.1 Assignments

Syntax: V := E

Semantics: The state is changed by assigning the value of the term E to

the variable V . All variables are assumed to have global scope.

Example: X:=X+1

This adds one to the value of the variable X.
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1.2.2 Sequences

Syntax: C1; · · · ;Cn

Semantics: The commands C1, · · · , Cn are executed in that order.

Example: R:=X; X:=Y; Y:=R

The values of X and Y are swapped using R as a temporary vari-

able. This command has the side effect of changing the value of

the variable R to the old value of the variable X.

1.2.3 Conditionals

Syntax: IF S THEN C1 ELSE C2

Semantics: If the statement S is true in the current state, then C1 is exe-

cuted. If S is false, then C2 is executed.

Example: IF X<Y THEN MAX:=Y ELSE MAX:=X

The value of the variable MAX it set to the maximum of the values

of X and Y.

1.2.4 WHILE-commands

Syntax: WHILE S DO C

Semantics: If the statement S is true in the current state, then C is executed

and the WHILE-command is then repeated. If S is false, then nothing is done.

Thus C is repeatedly executed until the value of S becomes false. If S never

becomes false, then the execution of the command never terminates.

Example: WHILE ¬(X=0) DO X:= X-2

If the value of X is non-zero, then its value is decreased by 2 and

then the process is repeated. This WHILE-command will terminate

(with X having value 0) if the value of X is an even non-negative

number. In all other states it will not terminate.
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1.2.5 Summary of syntax

The syntax of our little language can be summarised with the following spec-

ification in BNF notation1

<command>
::= <variable>:=<term>
| <command>; . . . ;<command>
| IF <statement> THEN <command> ELSE <command>
| WHILE <statement> DO <command>

Note that:

• Variables, terms and statements are as described in Section 1.5.

• The BNF syntax is ambiguous: for example, it does not specify whether

IF S1 THEN C1 ELSE C2; C3 means (IF S1 THEN C1 ELSE C2); C3

or means IF S1 THEN C1 ELSE (C2; C3). We will clarify, whenever

necessary, using brackets.

1.2.6 Historical note

The old Part II course Specification and Verification I was based on a lan-

guage similar to the one described above, but with additional features: blocks

(with local variables), FOR-commands and arrays. Blocks and FOR-commands

don’t add fundamentally new ideas so they will not be covered; arrays are

better handled using separation logic (see Section 7). In the old course I

used BEGIN and END to group commands, whereas here I just use paren-

theses. Thus previously I would have written BEGIN C1;C2 END instead of

(C1;C2). I mention this as it is may help in reusing old examination ques-

tions as exercises for this course.

1.3 Hoare’s notation

In a seminal paper [13] C.A.R. Hoare introduced the notation2 {P} C {Q},
which is sometimes called a Hoare triple, for specifying what a program does.

In such a Hoare triple:

1BNF stands for Backus-Naur form; it is a well-known notation for specifying syntax.
2Actually, Hoare’s original notation was P {C} Q not {P} C {Q}, but the latter form

is now more widely used.
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• C is a program from the programming language whose programs are

being specified (the language in Section 1.2 in our case).

• P and Q are conditions on the program variables used in C. Conditions

on program variables will be written using standard mathematical no-

tations together with logical operators like ∧ (‘and’), ∨ (‘or’), ¬ (‘not’)

and ⇒ (‘implies’). These are described further in Section 1.5.

We say {P} C {Q} is true, if whenever C is executed in a state satisfying

P and if the execution of C terminates, then the state in which C’s execution

terminates satisfies Q.

Example: {X = 1} X:=X+1 {X = 2}. Here P is the condition that the value

of X is 1, Q is the condition that the value of X is 2 and C is the assignment

command X:=X+1 (i.e. ‘X becomes X+1’). {X = 1} X:=X+1 {X = 2} is true.

An expression {P} C {Q} is called a partial correctness specification; P

is called its precondition and Q its postcondition.

These specifications are ‘partial’ because for {P} C {Q} to be true it is

not necessary for the execution of C to terminate when started in a state

satisfying P . It is only required that if C terminates, then Q holds.

A stronger kind of specification is a total correctness specification. There

is no standard notation for such specifications. We shall use [P ] C [Q].

A total correctness specification [P ] C [Q] is true if and only if the fol-

lowing two conditions apply:

(i) If C is executed in a state satisfying P , then C terminates.

(ii) After termination Q holds.

The relationship between partial and total correctness can be informally ex-

pressed by the equation:

Total correctness = Termination + Partial correctness.

Total correctness is what we are ultimately interested in, but it is usu-

ally easier to prove it by establishing partial correctness and termination

separately.

Termination is often straightforward to establish, but there are some well-

known examples where it is not. For example, the unsolved Collatz conjecture

is related to whether the program below terminates for all values of X (see

the exercise below):
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WHILE X>1 DO

IF ODD(X) THEN X := (3×X)+1 ELSE X := X DIV 2

(The expression X DIV 2 evaluates to the result of rounding down X/2 to

a whole number, though since the ELSE-arm of the conditional here is only

taken if X is even, no rounding is actually needed.)

The famous mathematician Paul Erdös said about the Collatz conjecture:

“Mathematics is not yet ready for such problems.” He offered $500 for its

solution.3

1.4 Some examples

The examples below illustrate various aspects of partial correctness specifi-

cation.

In Examples 5, 6 and 7 below, T (for ‘true’) is the condition that is always

true. In Examples 3, 4 and 7, ∧ is the logical operator ‘and’, i.e. if P 1 and

P 2 are conditions, then P 1 ∧ P 2 is the condition that is true whenever both

P 1 and P 2 hold.

1. {X = 1} Y:=X {Y = 1}
This says that if the command Y:=X is executed in a state satisfying the

condition X = 1 (i.e. a state in which the value of X is 1), then, if the

execution terminates (which it does), then the condition Y = 1 will hold.

Clearly this specification is true.

2. {X = 1} Y:=X {Y = 2}
This says that if the execution of Y:=X terminates when started in a state

satisfying X = 1, then Y = 2 will hold. This is clearly false.

3. {X=x ∧ Y=y} R:=X; X:=Y; Y:=R {X=y ∧ Y=x}
This says that if the execution of R:=X; X:=Y; Y:=R terminates (which it

does), then the values of X and Y are exchanged. The variables x and y,

which don’t occur in the command and are used to name the initial values

of program variables X and Y, are called logical , auxiliary or ghost variables.

4. {X=x ∧ Y=y} X:=Y; Y:=X {X=y ∧ Y=x}
This says that X:=Y; Y:=X exchanges the values of X and Y. This is not true.

3http://en.wikipedia.org/wiki/Collatz_conjecture
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5. {T} C {Q}
This says that whenever C halts, Q holds.

6. {P} C {T}
This specification is true for every condition P and every command C (be-

cause T is always true).

7. {T}
R:=X;

Q:=0;

WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)







C

{R < Y ∧ X = R+ (Y× Q)}
This is {T} C {R < Y ∧ X = R+ (Y× Q)} where C is the command indicated

by the braces above. The specification is true if whenever the execution of

C halts, then Q is quotient and R is the remainder resulting from dividing Y

into X. It is true (even if X is initially negative!).

In this example a program variable Q is used. This should not be confused

with the Q used in 5 above. The program variable Q (notice the font) ranges

over numbers, whereas the postcondition Q (notice the font) ranges over

statements. In general, we use typewriter font for particular program

variables and italic font for variables ranging over statements. Although this

subtle use of fonts might appear confusing at first, once you get the hang of

things the difference between the two kinds of ‘Q’ will be clear (indeed you

should be able to disambiguate things from context without even having to

look at the font).

1.5 Terms and statements

The notation used here for expressing pre- and postconditions is based on

first-order logic. This will only be briefly reviewed here as readers are as-

sumed to be familiar with it.

The following are examples of atomic statements.

T, F, X = 1, R < Y, X = R+(Y×Q)

Statements are either true or false. The statement T is always true and the

statement F is always false. The statement X = 1 is true if the value of X
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is equal to 1. The statement R < Y is true if the value of R is less than the

value of Y. The statement X = R+(Y×Q) is true if the value of X is equal to

the sum of the value of R with the product of Y and Q.

Statements are built out of terms like:

X, 1, R, Y, R+(Y×Q), Y×Q

Terms denote values such as numbers and strings, unlike statements which

are either true or false. Some terms, like 1 and 4 + 5, denote a fixed value,

whilst other terms contain variables like X, Y, Z etc. whose value can vary.

We will use conventional mathematical notation for terms, as illustrated by

the examples below:

X, Y, Z,

1, 2, 325,

-X, -(X+1), (X×Y)+Z,
√
(1+X2), X!, sin(X), rem(X,Y)

T and F are atomic statements that are always true and false respectively.

Other atomic statements are built from terms using predicates . Here are

some more examples:

ODD(X), PRIME(3), X = 1, (X+1)2 ≥ X2

ODD and PRIME are examples of predicates and = and ≥ are examples of

infixed predicates. The expressions X, 1, 3, X+1, (X+1)2, X2 are examples of

terms.

Compound statements are built up from atomic statements using the

following logical operators:

¬ (not)
∧ (and)
∨ (or)
⇒ (implies)
⇔ (if and only if)

Suppose P and Q are statements, then:



1.5. Terms and statements 15

• ¬P is true if P is false, and false if P is true.

• P ∧Q is true whenever both P and Q are true.

• P ∨Q is true if either P or Q (or both) are true.

• P ⇒ Q is true if whenever P is true, then Q is true also. By con-

vention we regard P ⇒ Q as being true if P is false. In fact,

it is common to regard P ⇒ Q as equivalent to ¬P ∨ Q;

however, some philosophers called intuitionists disagree with

this treatment of implication.

• P ⇔ Q is true if P and Q are either both true or both false. In fact

P ⇔ Q is equivalent to (P ⇒ Q) ∧ (Q⇒ P ).

Examples of statements built using the connectives are:

ODD(X) ∨ EVEN(X) X is odd or even.

¬(PRIME(X)⇒ ODD(X)) It is not the case that if X is
prime, then X is odd.

X ≤ Y⇒ X ≤ Y2 If X is less than or equal to Y,
then X is less than or equal to
Y2.

To reduce the need for brackets it is assumed that ¬ is more binding than ∧
and ∨, which in turn are more binding than ⇒ and ⇔. For example:

¬P ∧Q is equivalent to (¬P ) ∧Q
P ∧Q⇒ R is equivalent to (P ∧Q)⇒ R
P ∧Q⇔ ¬R ∨ S is equivalent to (P ∧Q)⇔ ((¬R) ∨ S)
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Chapter 2

Hoare logic

The idea of formal proof is discussed. Hoare logic (also called

Floyd-Hoare logic) is then introduced as a method for reasoning

formally about programs.

In the last chapter three kinds of expressions that could be true or false were

introduced:

(i) Partial correctness specifications {P} C {Q}.

(ii) Total correctness specifications [P ] C [Q].

(iii) Statements of mathematics (e.g. (X+ 1)2 = X2 + 2× X+ 1).

It is assumed that the reader knows how to prove simple mathematical state-

ments like the one in (iii) above. Here, for example, is a proof of this fact.

1. (X+ 1)2 = (X+ 1)× (X+ 1) Definition of ()2.
2. (X+ 1)× (X+ 1) = (X+ 1)× X+ (X+ 1)× 1 Left distributive law

of × over +.
3. (X+ 1)2 = (X+ 1)× X+ (X+ 1)× 1 Substituting line 2

into line 1.
4. (X+ 1)× 1 = X+ 1 Identity law for 1.
5. (X+ 1)× X = X× X+ 1× X Right distributive law

of × over +.
6. (X+ 1)2 = X× X+ 1× X+ X+ 1 Substituting lines 4

and 5 into line 3.
7. 1× X = X Identity law for 1.
8. (X+ 1)2 = X× X+ X+ X+ 1 Substituting line 7

into line 6.
9. X× X = X2 Definition of ()2.
10. X+ X = 2× X 2=1+1, distributive law.
11. (X+ 1)2 = X2 + 2× X+ 1 Substituting lines 9

and 10 into line 8.

17
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This proof consists of a sequence of lines, each of which is an instance

of an axiom (like the definition of ()2) or follows from previous lines by a

rule of inference (like the substitution of equals for equals). The statement

occurring on the last line of a proof is the statement proved by it (thus

(X+ 1)2 = X2 + 2× X+ 1 is proved by the proof above).

To construct formal proofs of partial correctness specifications axioms

and rules of inference are needed. This is what Hoare logic provides. The

formulation of the deductive system is due to Hoare [13], but some of the

underlying ideas originated with Floyd [9].

A proof in Hoare logic is a sequence of lines, each of which is either an

axiom of the logic or follows from earlier lines by a rule of inference of the

logic.

The reason for constructing formal proofs is to try to ensure that only

sound methods of deduction are used. With sound axioms and rules of infer-

ence, one can be confident that the conclusions are true. On the other hand,

if any axioms or rules of inference are unsound then it may be possible to

deduce false conclusions; for example:

1.
√
−1×−1 =

√
−1×−1 Reflexivity of =.

2.
√
−1×−1 = (

√
−1)× (

√
−1) Distributive law of

√
over ×.

3.
√
−1×−1 = (

√
−1)2 Definition of ()2.

4.
√
−1×−1 = −1 definition of

√
.

5.
√
1 = −1 As −1×−1 = 1.

6. 1 = −1 As
√
1 = 1.

A formal proof makes explicit what axioms and rules of inference are used

to arrive at a conclusion. It is quite easy to come up with plausible rules for

reasoning about programs that are actually unsound. Proofs of correctness of

computer programs are often very intricate and formal methods are needed

to ensure that they are valid. It is thus important to make fully explicit the

reasoning principles being used, so that their soundness can be analysed.

For some applications, correctness is especially important. Examples in-

clude life-critical systems such as nuclear reactor controllers, car braking sys-

tems, fly-by-wire aircraft and software controlled medical equipment. There

was a legal action resulting from the death of several people due to radiation

overdoses by a cancer treatment machine that had a software bug [15]. For-

mal proof of correctness provides a way of establishing the absence of bugs

when exhaustive testing is impossible (as it almost always is).

The Hoare deductive system for reasoning about programs will be ex-
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plained and illustrated. The mathematical analysis of the soundness and

completeness of the system is discussed in Section 4.

2.1 Axioms and rules of Hoare logic

As discussed at the beginning of this chapter, a formal proof of a statement is

a sequence of lines ending with the statement and such that each line is either

an instance of an axiom or follows from previous lines by a rule of inference.

If S is a statement (of either ordinary mathematics or Hoare logic) then we

write ⊢ S to mean that S has a proof. The statements that have proofs are

called theorems. As discussed earlier, in these notes only the axioms and

rules of inference for Hoare logic are described; we will thus simply assert

⊢ S if S is a theorem of mathematics without giving any formal justification.

Of course, to achieve complete rigour such assertions must be proved, but for

details of how to do this are assumed known (e.g. from the Logic and Proof

course).

The axioms of Hoare logic are specified below by schemas which can be

instantiated to get particular partial correctness specifications. The inference

rules of Hoare logic will be specified with a notation of the form:

⊢ S1, . . . , ⊢ Sn

⊢ S

This says the conclusion ⊢ S may be deduced from the ⊢ S1, . . . , ⊢ Sn, which

are the hypotheses of the rule. The hypotheses can either all be theorems of

Hoare logic (as in the sequencing rule below), or a mixture of theorems of

Hoare logic and theorems of mathematics (as in the rule of preconditioning

strengthening described in Section 2.1.2).

2.1.1 The assignment axiom

The assignment axiom represents the fact that the value of a variable V after

executing an assignment command V :=E equals the value of the expression

E in the state before executing it. To formalise this, observe that if a state-

ment P is to be true after the assignment, then the statement obtained by

substituting E for V in P must be true before executing it.

In order to say this formally, define P[E/V ] to mean the result of re-

placing all occurrences of V in P by E. Read P[E/V ] as ‘P with E for V ’.
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For example,

(X+1 > X)[Y+Z/X] = ((Y+Z)+1 > Y+Z)

The way to remember this notation is to remember the ‘cancellation law’

V [E/V ] = E

which is analogous to the cancellation property of fractions

v × (e/v) = e

The Hoare assignment axiom

⊢ {P[E/V ]} V :=E {P}

Where V is any variable, E is any expression, P is any statement and
the notation P[E/V ] denotes the result of substituting the term E for
all occurrences of the variable V in the statement P .

Instances of the assignment axiom are:

1. ⊢ {Y = 2} X := 2 {Y = X}

2. ⊢ {X+ 1 = n+ 1} X := X+ 1 {X = n+ 1}

3. ⊢ {E = E} X := E {X = E} (if X does not occur in E).

Many people feel the assignment axiom is ‘backwards’ from what they

would expect. Two common erroneous intuitions are that it should be as

follows:

(i) ⊢ {P} V :=E {P[V/E]}.
Where the notation P[V/E] denotes the result of substituting V for

E in P .

This has the clearly false consequence that ⊢ {X=0} X:=1 {X=0}, since
the (X=0)[X/1] is equal to (X=0) as 1 doesn’t occur in (X=0).

(ii) ⊢ {P} V :=E {P[E/V ]}.
This has the clearly false consequence ⊢ {X=0} X:=1 {1=0} which

follows by taking P to be X=0, V to be X and E to be 1.



2.1. Axioms and rules of Hoare logic 21

The fact that it is easy to have wrong intuitions about the assignment

axiom shows that it is important to have rigorous means of establishing the

validity of axioms and rules. We will go into this topic later in Chapter 4

where we give a formal semantics of our little programming language and

then to prove that the axioms and rules of inference of Hoare logic are sound.

Of course, this process will only increase our confidence in the axioms and

rules to the extent that we believe the correctness of the formal semantics.

The simple assignment axiom above is not valid for ‘real’ programming lan-

guages. For example, work by G. Ligler [17] showed that it failed to hold in

six different ways for the (now obsolete) language Algol 60.

There is a ‘forwards’ version of the assignment axioms which is some-

times called Floyd’s assignment axiom because it corresponds to the original

semantics of assignment due to Floyd [9]. In this rule below, the existen-

tially quantified variable v is the value of V in the state before executing

the assignment (the initial state). The postcondition asserts that after the

assignment, the value of V is the value of E evaluated in the initial state

(hence E[v/V ]) and the precondition evaluated in the initial state (hence

P[v/V ]) continues to hold.

The Floyd assignment axiom

⊢ {P} V :=E {∃v. (V = E[v/V ]) ∧ P[v/V ]}
Where v is a new variable (i.e. doesn’t equal V or occur in P or E)

An example instance is:

⊢ {X=1} X:=X+1 {∃v. X = X+1[v/X] ∧ X=1[v/X]}
Simplifying the postcondition of this:

⊢ {X=1} X:=X+1 {∃v. X = X+1[v/X] ∧ X=1[v/X]}
⊢ {X=1} X:=X+1 {∃v. X = v + 1 ∧ v = 1}
⊢ {X=1} X:=X+1 {∃v. X = 1+ 1 ∧ v = 1}
⊢ {X=1} X:=X+1 {X = 1 + 1 ∧ ∃v. v = 1}
⊢ {X=1} X:=X+1 {X = 2 ∧ T}
⊢ {X=1} X:=X+1 {X = 2}

The Floyd assignment axiom is equivalent to standard one but harder to

use because of the existential quantifier that it introduces. However, it is an

important part of separation logic.
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The Hoare assignment axiom is related to weakest preconditions (see

Section 4.3.3) and the Floyd assignment axiom to strongest postconditions

(see Section 4.4.1). As will be explained in the sections mentioned in the

previous sentence:

Hoare assignment axiom: {wlp(V :=E,Q)} V :=E {Q}

Floyd assignment axiom: {P} V :=E {sp(V :=E,P)}

where wlp(C,Q) and sp(C,P) denote the weakest liberal precondition and

strongest postcondition, respectively (see sections 4.3.3 and 4.4.1).

One way that our little programming language differs from real languages

is that the evaluation of expressions on the right of assignment commands

cannot ‘side effect’ the state. The validity of the assignment axiom depends

on this property. To see this, suppose that our language were extended so

that it contained expressions of the form (C;E), where C is a command and

E an expression. Such an expression is evaluated by first executing C and

then evaluating E and returning the resulting value as the value of (C;E).

Thus the evaluation of the expression may cause a ‘side effect’ resulting from

the execution of C. For example (Y:=1; 2) has value 2, but its evaluation

also ‘side effects’ the variable Y by storing 1 in it. If the assignment axiom

applied to expressions like (C;E), then it could be used to deduce:

⊢ {Y=0} X:=(Y:=1; 2) {Y=0}

(since (Y=0)[E/X] = (Y=0) as X does not occur in (Y=0)). This is clearly

false, as after the assignment Y will have the value 1.

2.1.2 Precondition strengthening

The next rule of Hoare logic enables the preconditions of (i) and (ii) on page

20 to be simplified. Recall that

⊢ S1, . . . , ⊢ Sn

⊢ S

means that ⊢ S can be deduced from ⊢ S1, . . . , ⊢ Sn.

Using this notation, the rule of precondition strengthening is
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Precondition strengthening

⊢ P ⇒ P ′, ⊢ {P ′} C {Q}
⊢ {P} C {Q}

Examples

1. From the arithmetic fact ⊢ X=n ⇒ X+1=n+1, and 2 on page 20 it follows

by precondition strengthening that

⊢ {X = n} X := X+ 1 {X = n + 1}.

The variable n is an example of an auxiliary (or ghost) variable. As described

earlier (see page 12), auxiliary variables are variables occurring in a partial

correctness specification {P} C {Q} which do not occur in the command C.

Such variables are used to relate values in the state before and after C is

executed. For example, the specification above says that if the value of X is

n, then after executing the assignment X:=X+1 its value will be n+1.

2. From the logical truth ⊢ T ⇒ (E=E), and 3 on page 20 one can deduce

that if X is not in E then:

⊢ {T} X :=E {X =E}

2.1.3 Postcondition weakening

Just as the previous rule allows the precondition of a partial correctness

specification to be strengthened, the following one allows us to weaken the

postcondition.

Postcondition weakening

⊢ {P} C {Q′}, ⊢ Q′ ⇒ Q

⊢ {P} C {Q}
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Example: Here is a little formal proof.

1. ⊢ {R=X ∧ 0=0} Q:=0 {R=X ∧ Q=0} By the assignment axiom.
2. ⊢ R=X ⇒ R=X ∧ 0=0 By pure logic.
3. ⊢ {R=X} Q=0 {R=X ∧ Q=0} By precondition strengthening.
4. ⊢ R=X ∧ Q=0 ⇒ R=X+(Y × Q) By laws of arithmetic.
5. ⊢ {R=X} Q:=0 {R=X+(Y × Q)} By postcondition weakening.

The rules precondition strengthening and postcondition weakening are

sometimes called the rules of consequence.

2.1.4 Specification conjunction and disjunction

The following two rules provide a method of combining different specifications

about the same command.

Specification conjunction

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∧ P2} C {Q1 ∧Q2}

Specification disjunction

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∨ P2} C {Q1 ∨Q2}

These rules are useful for splitting a proof into independent bits. For ex-

ample, they enable ⊢ {P} C {Q1∧Q2} to be proved by proving separately

that both ⊢ {P} C {Q1} and ⊢ {P} C {Q2}.
The rest of the rules allow the deduction of properties of compound com-

mands from properties of their components.

2.1.5 The sequencing rule

The next rule enables a partial correctness specification for a sequence C1;C2

to be derived from specifications for C1 and C2.
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The sequencing rule

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

Example: By the assignment axiom:

(i) ⊢ {X=x∧Y=y} R:=X {R=x∧Y=y}

(ii) ⊢ {R=x∧Y=y} X:=Y {R=x∧X=y}

(iii) ⊢ {R=x∧X=y} Y:=R {Y=x∧X=y}
Hence by (i), (ii) and the sequencing rule

(iv) ⊢ {X=x∧Y=y} R:=X; X:=Y {R=x∧X=y}
Hence by (iv) and (iii) and the sequencing rule

(v) ⊢ {X=x∧Y=y} R:=X; X:=Y; Y:=R {Y=x∧X=y}

2.1.6 The derived sequencing rule

The following rule is derivable from the sequencing and consequence rules.

The derived sequencing rule

⊢ P ⇒ P1

⊢ {P1} C1 {Q1} ⊢ Q1 ⇒ P2

⊢ {P2} C2 {Q2} ⊢ Q2 ⇒ P3

. .

. .

. .
⊢ {Pn} Cn {Qn} ⊢ Qn ⇒ Q

⊢ {P} C1; . . . ; Cn {Q}

The derived sequencing rule enables (v) in the previous example to be

deduced directly from (i), (ii) and (iii) in one step.
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2.1.7 The conditional rule

The conditional rule

⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧ ¬S} C2 {Q}
⊢ {P} IF S THEN C1 ELSE C2 {Q}

Example: Suppose we are given that

(i) ⊢ X≥Y ⇒ max(X,Y)=X

(ii) ⊢ Y≥X ⇒ max(X,Y)=Y

Then by the conditional rule (and others) it follows that

⊢ {T} IF X≥Y THEN MAX:=X ELSE MAX:=Y {MAX=max(X,Y)}

2.1.8 The WHILE-rule

If ⊢ {P ∧S} C {P}, we say: P is an invariant of C whenever S holds. The

WHILE-rule says that if P is an invariant of the body of a WHILE-command

whenever the test condition holds, then P is an invariant of the whole WHILE-

command. In other words, if executing C once preserves the truth of P , then

executing C any number of times also preserves the truth of P .

The WHILE-rule also expresses the fact that after a WHILE-command has

terminated, the test must be false (otherwise, it wouldn’t have terminated).

The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

Example: By earlier rules:



2.1. Axioms and rules of Hoare logic 27

⊢ {X=R+(Y×Q)} R:=R-Y; Q:=Q+1 {X=R+(Y×Q)}

Hence by precondition strengthening

⊢ {X=R+(Y×Q)∧Y≤R} R:=R-Y; Q:=Q+1 {X=R+(Y×Q)}

Hence by the WHILE-rule (with P = ‘X=R+(Y×Q)’)

(i) ⊢ {X=R+(Y×Q)}
WHILE Y≤R DO (R:=R-Y; Q:=Q+1)

{X=R+(Y×Q)∧¬(Y≤R)}

By applying the assignment axiom twice, it is easy to deduce that

(ii) ⊢ {T} R:=X; Q:=0 {X=R+(Y×Q)}

Hence by (i) and (ii), the sequencing rule and postcondition weakening

⊢ {T}
R:=X;

Q:=0;

WHILE Y≤R DO (R:=R-Y; Q:=Q+1)

{R<Y∧X=R+(Y×Q)}

With the exception of the WHILE-rule, all the axioms and rules described

so far are sound for total correctness as well as partial correctness. This is

because the only commands in our little language that might not terminate

are WHILE-commands. Consider now the following proof:

1. ⊢ {T} X:=0 {T} (assignment axiom)
2. ⊢ {T ∧ T} X:=0 {T} (precondition strengthening)
3. ⊢ {T} WHILE T DO X:=0 {T ∧ ¬T} (2 and the WHILE-rule)

If the WHILE-rule were true for total correctness, then the proof above

would show that:

⊢ [T] WHILE T DO X:=0 [T ∧ ¬T]

but this is clearly false since WHILE T DO X:=0 does not terminate, and even

if it did then T ∧ ¬T could not hold in the resulting state.
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2.1.9 The FOR-rule

It is quite hard to capture accurately the intended semantics of FOR-

commands in Floyd-Hoare logic. Axioms and rules are given here that appear

to be sound, but they are not necessarily complete (see Section ??). An early

reference on the logic of FOR-commands is Hoare’s 1972 paper [14]; a com-

prehensive treatment can be found in Reynolds [?].

The intention here in presenting the FOR-rule is to show that Floyd-Hoare

logic can get very tricky. All the other axioms and rules were quite straight-

forward and may have given a false sense of simplicity: it is very difficult

to give adequate rules for anything other than very simple programming

constructs. This is an important incentive for using simple languages.

One problem with FOR-commands is that there are many subtly different

versions of them. Thus before describing the FOR-rule, the intended semantics

of FOR-commands must be described carefully. In these notes, the semantics

of

FOR V :=E1 UNTIL E2 DO C

is as follows:

(i) The expressions E1 and E2 are evaluated once to get values e1 and e2,

respectively.

(ii) If either e1 or e2 is not a number, or if e1 > e2, then nothing is done.

(iii) If e1 ≤ e2 the FOR-command is equivalent to:

BEGIN VAR V ;

V :=e1; C; V :=e1+1; C ; . . . ; V :=e2; C
END

i.e. C is executed (e2−e1)+1 times with V taking on the sequence

of values e1, e1+1, . . . , e2 in succession. Note that this description

is not rigorous: ‘e1’ and ‘e2’ have been used both as numbers and

as expressions of our little language; the semantics of FOR-commands

should be clear despite this.

FOR-rules in different languages can differ in subtle ways from the one

here. For example, the expressions E1 and E2 could be evaluated at each

iteration and the controlled variable V could be treated as global rather than

local. Note that with the semantics presented here, FOR-commands cannot
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go into infinite loops (unless, of course, they contain non-terminating WHILE-

commands).

To see how the FOR-rule works, suppose that

⊢ {P} C {P[V+1/V ]}
Suppose also that C does not contain any assignments to the variable V . If

this is the case, then it is intuitively clear (and can be rigorously proved)

that

⊢ {(V = v)} C {(V = v)}
hence by specification conjunction

⊢ {P ∧ (V = v)} C {P[V+1/V ] ∧ (V = v)}
Now consider a sequence

V :=v; C.

By Example 2 on page 23,

⊢ {P[v/V ]} V :=v {P ∧ (V = v)}
Hence by the sequencing rule

⊢ {P[v/V ]} V :=v; C {P[V+1/V ] ∧ (V = v)}
Now it is a truth of logic alone that

⊢ P[V+1/V ] ∧ (V = v) ⇒ P[v+1/V ]

hence by postcondition weakening

⊢ {P[v/V ]} V :=v; C {P[v+1/V ]}
Taking v to be e1, e1+1, . . . , e2

⊢ {P[e1/V ]} V :=e1; C {P[e1+1/V ]}
⊢ {P[e1+1/V ]} V :=e1+1; C {P[e1+2/V ]}
...
⊢ {P[e2/V ]} V :=e2; C {P[e2+1/V ]}

Hence by the derived sequencing rule:

{P[e1/V ]} V :=e1; C; V :=e1+1; . . . ; V :=e2; C {P[e2+1/V ]}
This suggests that a FOR-rule could be:

⊢ {P} C {P[V +1/V ]}
⊢ {P[E1/V ]} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V ]}

Unfortunately, this rule is unsound. To see this, first note that:
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1. ⊢ {Y+1=Y+1} X:=Y+1 {X=Y+1} (assignment axiom)
2. ⊢ {T} X:=Y+1 {X= Y+1} (1 and precondition strengthening)
3. ⊢ X=Y ⇒ T (logic: ‘anything implies true’)
4. ⊢ {X=Y} X:=Y+1 {X=Y+1} (2 and precondition strengthening)

Thus if P is ‘X=Y’ then:

⊢ {P} X:=Y+1 {P[Y+1/Y]}

and so by the FOR-rule above, if we take V to be Y, E1 to be 3 and E2 to be

1, then

⊢ { X=3
︸︷︷︸

P[3/Y]

} FOR Y:=3 UNTIL 1 DO X:=Y+1 { X=2
︸︷︷︸

P[1+1/Y]

}

This is clearly false: it was specified that if the value of E1 were greater than

the value of E2 then the FOR-command should have no effect, but in this

example it changes the value of X from 3 to 2.

To solve this problem, the FOR-rule can be modified to

⊢ {P} C {P[V +1/V ]}
⊢ {P[E1/V ] ∧ E1 ≤ E2} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V ]}

If this rule is used on the example above all that can be deduced is

⊢ {X=3 ∧ 3 ≤ 1
︸ ︷︷ ︸

never true!

} FOR Y:=3 UNTIL 1 DO X:=Y+1 {X=2}

This conclusion is harmless since it only asserts that X will be changed if the

FOR-command is executed in an impossible starting state.

Unfortunately, there is still a bug in our FOR-rule. Suppose we take P to

be ‘Y=1’, then it is straightforward to show that:

⊢ {Y=1
︸︷︷︸

P

} Y:=Y-1 { Y+1=1
︸ ︷︷ ︸

P[Y+1/Y]

}

so by our latest FOR-rule

⊢ { 1=1
︸︷︷︸

P[1/Y]

∧ 1 ≤ 1} FOR Y:=1 UNTIL 1 DO Y:=Y-1 { 2=1
︸︷︷︸

P[1+1/Y]

}
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Whatever the command does, it doesn’t lead to a state in which 2=1. The

problem is that the body of the FOR-command modifies the controlled vari-

able. It is not surprising that this causes problems, since it was explicitly

assumed that the body didn’t modify the controlled variable when we mo-

tivated the FOR-rule. It turns out that problems also arise if any variables

in the expressions E1 and E2 (which specify the upper and lower bounds)

are modified. For example, taking P to be Z=Y, then it is straightforward to

show

⊢ {Z=Y
︸︷︷︸

P

} Z:=Z+1 { Z=Y+1
︸ ︷︷ ︸

P[Y+1/Y]

}

hence the rule allows us the following to be derived:

⊢ { Z=1
︸︷︷︸

P[1/Y]

∧ 1 ≤ Z} FOR Y:=1 UNTIL Z DO Z:=Z+1 { Z=Z+1
︸ ︷︷ ︸

P[Z+1/Y]

}

This is clearly wrong as one can never have Z=Z+1 (subtracting Z from both

sides would give 0=1). One might think that this is not a problem because

the FOR-command would never terminate. In some languages this might be

the case, but the semantics of our language were carefully defined in such a

way that FOR-commands always terminate (see the beginning of this section).

To rule out the problems that arise when the controlled variable or vari-

ables in the bounds expressions, are changed by the body, we simply impose

a side condition on the rule that stipulates that the rule cannot be used in

these situations. A debugged rule is thus:

The FOR-rule

⊢ {P ∧ (E1 ≤ V ) ∧ (V ≤ E2)} C {P[V +1/V ]}
⊢ {P[E1/V ]∧(E1≤E2)} FOR V := E1 UNTIL E2 DO C {P[E2+1/V ]}

where neither V , nor any variable occurring in E1 or E2, is assigned to in
the command C.

This rule does not enable anything to be deduced about FOR-commands

whose body assigns to variables in the bounds expressions. This precludes

such assignments being used if commands are to be reasoned about. The

strategy of only defining rules of inference for non-tricky uses of constructs
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helps ensure that programs are written in a perspicuous manner. It is possible

to devise a rule that does cope with assignments to variables in bounds

expressions, but it is not clear whether it is a good idea to have such a rule.

The FOR-axiom

To cover the case when E2 < E1, we need the FOR-axiom below.

The FOR-axiom

⊢ {P ∧ (E2 < E1)} FOR V := E1 UNTIL E2 DO C {P}

This says that when E2 is less than E1 the FOR-command has no effect.

Example: By the assignment axiom and precondition strengthening

⊢ {X = ((N-1)×N) DIV 2} X:=X+N {X=(N×(N+1)) DIV 2}

Strengthening the precondition of this again yields

⊢ {(X=((N-1×N) DIV 2)∧(1≤N)∧(N≤M)} X:=X+N {X=(N×(N+1)) DIV 2}

Hence by the FOR-rule

⊢ {(X=((1-1)×1) DIV 2)∧(1≤M)}
FOR N:=1 UNTIL M DO X:=X+N

{X=(M×(M+1)) DIV 2}
Hence

⊢ {(X=0)∧(1≤M)} FOR N:=1 UNTIL M DO X:=X+N {X=(M×(M+1)) DIV 2}

Note that if

(i) ⊢ {P} C {P[V +1/V ]}, or

(ii) ⊢ {P ∧ (E1 ≤ V )} C {P[V +1/V ]}, or

(iii) ⊢ {P ∧ (V ≤ E2)} C {P[V +1/V ]}

then by precondition strengthening one can infer
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⊢ {P ∧ (E1 ≤ V ) ∧ (V ≤ E2)} C {P[V +1/V ]}

The separate FOR-rule and FOR-axiom are a bit clunky. A nice treatment

suggested by John Wickerson is the following:

Wickerson’s FOR-rule

⊢ P ⇒ R[E1/V ], ⊢ R ∧ V >E2 ⇒ Q, ⊢ {R ∧ V≤E2} C {R[V+1/V ]}
⊢ {P} FOR V := E1 UNTIL E2 DO C {Q}

where neither V , nor any variable occurring in E1 or E2, is assigned to in
the command C.

Yet another alternative FOR-rule has been suggested by Bob Tennent:

Tennent’s FOR-rule

⊢ {P[V−1/V ] ∧ (E1 ≤ V ) ∧ (V ≤ E2)} C {P}
⊢ {P[E1−1/V ]∧(E1−1≤E2)} FOR V := E1 UNTIL E2 DO C {P[E2/V ]}

where neither V , nor any variable occurring in E1 or E2, is assigned to in
the command C.

This rule also has the property that the “special case” of executing the

loop body 0 times can normally be handled without use of the FOR-axiom.

Justify this claim.

It is clear from the discussion above that there are various options for

reasoning about FOR-commands in Floyd-Hoare logic. It may well be that

one could argue for a ‘best’ approach (though, as far as I know, there is

no consensus on this for our toy language, which is not surprising as FOR

loops in real languages are more complex). The point is that designing

rules for constructs that go beyond the simple core language of assignment,

sequencing, conditionals and WHILE-loops is tricky and may involve personal

preferences.
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2.1.10 Arrays

At the end of Section 2.1.1 it is shown that the naive array assignment axiom

⊢ {P[E2/A(E1)]} A(E1) := E2 {P}

does not work, because of the possibility that changes to A(X) may also

change A(Y ), A(Z), . . . (since X might equal Y , Z, . . .).

The solution, due to Hoare, is to treat an array assignment

A(E1):=E2

as an ordinary assignment

A := A{E1←E2}

where the term A{E1←E2} denotes an array identical to A, except that the

E1-th component is changed to have the value E2.

Thus an array assignment is just a special case of an ordinary variable

assignment.

The array assignment axiom

⊢ {P[A{E1←E2}/A]} A(E1):=E2 {P}

Where A is an array variable, E1 is an integer valued expression, P is any
statement and the notation A{E1←E2} denotes the array identical to A,
except that the value at E1 is E2.

In order to reason about arrays, the following axioms, which define the

meaning of the notation A{E1←E2}, are needed.

The array axioms

⊢ A{E1←E2}(E1) = E2

E1 6= E3 ⇒ ⊢ A{E1←E2}(E3) = A(E3)
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Example: We show

⊢ {A(X)=x ∧ A(Y)=y}
BEGIN

VAR R;

R := A(X);

A(X) := A(Y);

A(Y) := R

END

{A(X)=y ∧ A(Y)=x}

Working backwards using the array assignment axiom:

⊢ {A{Y←R}(X)=y ∧ A{Y←R}(Y)=x}
A(Y) := R

{A(X)=y ∧ A(Y)=x}

By precondition strengthening using ⊢ A{Y←R}(Y) = R

⊢ {A{Y←R}(X)=y ∧ R=x}
A(Y) := R

{A(X)=y ∧ A(Y)=x}

Continuing backwards

⊢ {A{X←A(Y)}{Y←R}(X)=y ∧ R=x}
A(X) := A(Y)

{A{Y←R}(X)=y ∧ R=x}

⊢ {A{X←A(Y)}{Y←A(X)}(X)=y ∧ A(X)=x}
R := A(X)

{A{X←A(Y)}{Y←R}(X)=y ∧ R=x}

Hence by the derived sequencing rule:

⊢ {A{X←A(Y)}{Y←A(X)}(X)=y ∧ A(X)=x}
R := A(X); A(X) := A(Y); A(Y) := R

{A(X)=y ∧ A(Y)=x}

By the array axioms (considering the cases X=Y and X6=Y separately), it

follows that:

⊢ A{X←A(Y)}{Y←A(X)}(X) = A(Y)



36 Chapter 2. Hoare logic

Hence:

⊢ {A(Y)=y ∧ A(X)=x}
R := A(X); A(X) := A(Y); A(Y) := R

{A(X)=y ∧ A(Y)=x}

The desired result follows from the block rule.

Example: Suppose Csort is a command that is intended to sort the first n

elements of an array. To specify this formally, let SORTED(A, n) mean that:

A(1) ≤ A(2) ≤ . . . ≤ A(n)

A first attempt to specify that Csort sorts is:

{1 ≤ N} Csort {SORTED(A,N)}

This is not enough, however, because SORTED(A,N) can be achieved by simply

zeroing the first N elements of A.

It is necessary to require that the sorted array is a rearrangement, or permu-

tation, of the original array.

To formalize this, let PERM(A,A′, N) mean that A(1), A(2), . . . , A(n) is a

rearrangement of A′(1), A′(2), . . . , A′(n).

An improved specification that Csort sorts is then

{1≤N ∧ A=a} Csort {SORTED(A,N) ∧ PERM(A,a,N)}

However, this still is not correct

⊢ {1≤N ∧ A=a}
N:=1

{SORTED(A,N) ∧ PERM(A,a,N)}

It is necessary to say explicitly that N is unchanged also. A correct specifi-

cation is thus:

{1≤N ∧ A=a ∧ N=n} Csort {SORTED(A,N) ∧ PERM(A,a,N) ∧ N=n}
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Mechanizing Program
Verification

The architecture of a simple program verifier is described. Its

operation is justified with respect to the rules of Hoare logic.

After doing only a few examples, the following two things will be painfully

clear:

(i) Proofs are typically long and boring (even if the program being verified

is quite simple).

(ii) There are lots of fiddly little details to get right, many of which are

trivial (e.g. proving ⊢ (R=X ∧ Q=0) ⇒ (X = R + Y×Q)).

Many attempts have been made (and are still being made) to automate

proof of correctness by designing systems to do the boring and tricky bits of

generating formal proofs in Hoare logic. Unfortunately logicians have shown

that it is impossible in principle to design a decision procedure to decide

automatically the truth or falsehood of an arbitrary mathematical statement

[10]. However, this does not mean that one cannot have procedures that will

prove many useful theorems. The non-existence of a general decision proce-

dure merely shows that one cannot hope to prove everything automatically.

In practice, it is quite possible to build a system that will mechanize many

of the boring and routine aspects of verification. This chapter describes one

commonly taken approach to doing this.

Although it is impossible to decide automatically the truth or falsity of

arbitrary statements, it is possible to check whether an arbitrary formal

proof is valid. This consists in checking that the results occurring on each

line of the proof are indeed either axioms or consequences of previous lines.

37
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Since proofs of correctness of programs are typically very long and boring,

they often contain mistakes when generated manually. It is thus useful to

check proofs mechanically, even if they can only be generated with human

assistance.

3.1 Overview

In the previous chapter it was shown how to prove {P}C{Q} by proving

properties of the components of C and then putting these together (with the

appropriate proof rule) to get the desired property of C itself. For example,

to prove ⊢ {P}C1;C2{Q} first prove ⊢ {P}C1{R} and ⊢ {R}C2{Q} (for

suitable R), and then deduce ⊢ {P}C1;C2{Q} by the sequencing rule.

This process is called forward proof because one moves forward from

axioms via rules to conclusions. In practice, it is more natural to work back-

wards: starting from the goal of showing {P}C{Q} one generates subgoals,

subsubgoals etc. until the problem is solved. For example, suppose one wants

to show:

⊢ {X=x ∧ Y=y} R:=X; X:=Y; Y:=R {Y=x ∧ X=y}

then by the assignment axiom and sequencing rule it is sufficient to show the

subgoal

⊢ {X=x ∧ Y=y} R:=X; X:=Y {R=x ∧ X=y}

(because ⊢ {R=x ∧ X=y} Y:=R {Y=x ∧ X=y}). By a similar argument this

subgoal can be reduced to

⊢ {X=x ∧ Y=y} R:=X {R=x ∧ Y=y}

which clearly follows from the assignment axiom.

This chapter describes how such a goal oriented method of proof can be

formalised.

The verification system described here can be viewed as a proof checker

that also provides some help with generating proofs. The following diagram

gives an overview of the system.
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Specification to be proved

❄

• human expert

Annotated specification

❄

• vc generator

Set of logic statements (VCs)

❄

• theorem prover

Simplified set of
verification conditions

❄

• human expert

End of proof

The system takes as input a partial correctness specification annotated

with mathematical statements describing relationships between variables.

From the annotated specification the system generates a set of purely math-

ematical statements, called verification conditions (or VCs). In Section 3.5

it is shown that if these verification conditions are provable, then the original

specification can be deduced from the axioms and rules of Hoare logic.

The verification conditions are passed to a theorem prover program which

attempts to prove them automatically; if it fails, advice is sought from the

user. We will concentrate on those aspects pertaining to Hoare logic and say

very little about theorem proving here.

The aim of much current research is to build systems which reduce the

role of the slow and expensive human expert to a minimum. This can be

achieved by:

• reducing the number and complexity of the annotations required, and

• increasing the power of the theorem prover.
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The next section explains how verification conditions work. In Section 3.5

their use is justified in terms of the axioms and rules of Hoare logic. Besides

being the basis for mechanical verification systems, verification conditions

are a useful way of doing proofs by hand.

3.2 Verification conditions

The following sections describe how a goal oriented proof style can be for-

malised. To prove a goal {P}C{Q}, three things must be done. These will

be explained in detail later, but here is a quick overview:

(i) The program C is annotated by inserting into it statements (often called

assertions) expressing conditions that are meant to hold at various

intermediate points. This step is tricky and needs intelligence and a

good understanding of how the program works. Automating it is a

problem of artificial intelligence.

(ii) A set of logic statements called verification conditions (VCs for short)

is then generated from the annotated specification. This process is

purely mechanical and easily done by a program.

(iii) The verification conditions are proved. Automating this is also a prob-

lem of artificial intelligence.

It will be shown that if one can prove all the verification conditions gen-

erated from {P}C{Q} (where C is suitably annotated), then ⊢ {P}C{Q}.
Since verification conditions are just mathematical statements, one can

think of step 2 above as the ‘compilation’, or translation, of a verification

problem into a conventional mathematical problem.

The following example will give a preliminary feel for the use of verifica-

tion conditions.

Suppose the goal is to prove (see the example on page 26)

{T}
R:=X;

Q:=0;

WHILE Y≤R DO (R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}
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This first step ((i) above) is to insert annotations. A suitable annotated

specification is:

{T}
R:=X;

Q:=0; {R=X ∧ Q=0} ←−P1
WHILE Y≤R DO {X = R+Y×Q} ←−P2
(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

The annotations P1 and P2 state conditions which are intended to hold when-

ever control reaches them. Control only reaches the point at which P1 is

placed once, but it reaches P2 each time the WHILE body is executed and

whenever this happens P2 (i.e. X=R+Y×Q) holds, even though the values of R

and Q vary. P2 is an invariant of the WHILE-command.

The second step ((ii) above), which has yet to be explained, will generate

the following four verification conditions:

(i) T ⇒ (X=X ∧ 0=0)

(ii) (R=X ∧ Q=0) ⇒ (X = R+(Y×Q))

(iii) (X = R+(Y×Q)) ∧ Y≤R) ⇒ (X = (R-Y)+(Y×(Q+1)))

(iv) (X = R+(Y×Q)) ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

Notice that these are statements of arithmetic; the constructs of our pro-

gramming language have been ‘compiled away’.

The third step ((iii) above) consists in proving these four verification

conditions. These are all well within the capabilities of modern automatic

theorem provers.

3.3 Annotation

An annotated command is a command with statements (called assertions)

embedded within it. A command is said to be properly annotated if state-

ments have been inserted at the following places:

(i) Before each command Ci (where i > 1) in a sequence C1;C2; . . . ;Cn

which is not an assignment command,
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(ii) After the word DO in WHILE commands.

Intuitively, the inserted assertions should express the conditions one expects

to hold whenever control reaches the point at which the assertion occurs.

A properly annotated specification is a specification {P}C{Q} where C

is a properly annotated command.

Example: To be properly annotated, assertions should be at points 1© and

2© of the specification below:

{X=n}
Y:=1; ←− 1©
WHILE X6=0 DO ←− 2©
(Y:=Y×X; X:=X-1)

{X=0 ∧ Y=n!}
Suitable statements would be:

at 1©: {Y = 1 ∧ X = n}
at 2©: {Y×X! = n!}

The verification conditions generated from an annotated specification

{P}C{Q} are described by considering the various possibilities for C in turn.

This process is justified in Section 3.5 by showing that ⊢ {P}C{Q} if all the
verification conditions can be proved.

3.4 Verification condition generation

In this section a procedure is described for generating verification conditions

for an annotated partial correctness specification {P}C{Q}. This procedure
is recursive on C.

Assignment commands

The single verification condition generated by

{P} V :=E {Q}

is
P ⇒ Q[E/V ]



3.4. Verification condition generation 43

Example: The verification condition for

{X=0} X:=X+1 {X=1}

is

X=0 ⇒ (X+1)=1

(which is clearly true).

Conditionals

The verification conditions generated from

{P} IF S THEN C1 ELSE C2 {Q}

are

(i) the verification conditions generated by

{P ∧ S} C1 {Q}

(ii) the verification conditions generated by

{P ∧ ¬S} C2 {Q}

If C1; . . . ;Cn is properly annotated, then (see page 41) it must be of one

of the two forms:

1. C1; . . . ;Cn−1;{R}Cn, or

2. C1; . . . ;Cn−1;V := E.

where, in both cases, C1; . . . ;Cn−1 is a properly annotated command.
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Sequences

1. The verification conditions generated by

{P} C1; . . . ;Cn−1; {R} Cn {Q}

(where Cn is not an assignment) are:

(a) the verification conditions generated by

{P} C1; . . . ;Cn−1 {R}

(b) the verification conditions generated by

{R} Cn {Q}

2. The verification conditions generated by

{P} C1; . . . ;Cn−1;V :=E {Q}

are the verification conditions generated by

{P} C1; . . . ;Cn−1 {Q[E/V ]}

Example: The verification conditions generated from

{X=x ∧ Y=y} R:=X; X:=Y; Y:=R {X=y ∧ Y=x}

are those generated by

{X=x ∧ Y=y} R:=X; X:=Y {(X=y ∧ Y=x)[R/Y]}

which, after doing the substitution, simplifies to

{X=x ∧ Y=y} R:=X; X:=Y {X=y ∧ R=x}

The verification conditions generated by this are those generated by

{X=x ∧ Y=y} R:=X {(X=y ∧ R=x)[Y/X]}

which, after doing the substitution, simplifies to
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{X=x ∧ Y=y} R:=X {Y=y ∧ R=x}.

The only verification condition generated by this is

X=x ∧ Y=y ⇒ (Y=y ∧ R=x)[X/R]

which, after doing the substitution, simplifies to

X=x ∧ Y=y ⇒ Y=y ∧ X=x

which is obviously true.

A correctly annotated specification of a WHILE-command has the form

{P} WHILE S DO {R} C {Q}

Following the usage on page 26, the annotation R is called an invariant.

WHILE-commands

The verification conditions generated from

{P} WHILE S DO {R} C {Q}

are

(i) P ⇒ R

(ii) R ∧ ¬S ⇒ Q

(iii) the verification conditions generated by {R ∧ S} C{R}.

Example: The verification conditions for

{R=X ∧ Q=0}
WHILE Y≤R DO {X=R+Y×Q}
(R:=R-Y; Q=Q+1)

{X = R+(Y×Q) ∧ R<Y}
are:

(i) R=X ∧ Q=0 ⇒ (X = R+(Y×Q))
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(ii) X = R+Y×Q ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

together with the verification condition for

{X = R+(Y×Q) ∧ (Y≤R)}
(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q)}
which consists of the single condition

(iii) X = R+(Y×Q) ∧ (Y≤R) ⇒ X = (R-Y)+(Y×(Q+1))

The WHILE-command specification is thus true if (i), (ii) and (iii) hold, i.e.

⊢ {R=X ∧ Q=0}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X = R+(Y×Q) ∧ R<Y}
if

⊢ R=X ∧ Q=0 ⇒ (X = R+(Y×Q))

and

⊢ X = R+(Y×Q) ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

and

⊢ X = R+(Y×Q) ∧ (Y≤R) ⇒ X = (R-Y)+(Y×(Q+1))

3.5 Justification of verification conditions

It will be shown in this section that an annotated specification {P}C{Q}
is provable in Hoare logic (i.e. ⊢ {P}C{Q}) if the verification conditions

generated by it are provable. This shows that the verification conditions are

sufficient , but not that they are necessary. In fact, the verification conditions

are the weakest sufficient conditions, but we will neither make this more

precise nor go into details here. An in-depth study of preconditions can be

found in Dijkstra’s book [8].

It is easy to show that the verification conditions are not necessary, i.e.

that the verification conditions for {P}C{Q} not being provable doesn’t
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imply that ⊢ {P}C{Q} cannot be deduced. For example, the verification

conditions from the annotated specification {T} WHILE F DO {F} X:=0 {T}
are not provable, but this Hoare triple is provable in Hoare logic.

The argument that the verification conditions are sufficient will be by

induction on the structure of C. Such inductive arguments have two parts.

First, it is shown that the result holds for assignment commands. Second, it

is shown that when C is not an assignment command, then if the result holds

for the constituent commands of C (this is called the induction hypothesis),

then it holds also for C. The first of these parts is called the basis of the

induction and the second is called the step. From the basis and the step it

follows that the result holds for all commands.

Assignments

The only verification condition for {P}V :=E{Q} is P ⇒ Q[E/V ]. If this

is provable, then as ⊢ {Q[E/V ]}V :=E{Q} (by the assignment axiom on

page 20) it follows by precondition strengthening (page 22) that ⊢ {P}V :=

E{Q}.

Conditionals

If the verification conditions for {P} IF S THEN C1 ELSE C2 {Q} are prov-

able, then the verification conditions for both {P ∧ S} C1 {Q} and

{P ∧ ¬S} C2 {Q} are provable. By the induction hypothesis we can assume

that ⊢ {P ∧ S} C1 {Q} and ⊢ {P ∧ ¬S} C2 {Q}. Hence by the

conditional rule (page 26) ⊢ {P} IF S THEN C1 ELSE C2 {Q}.

Sequences

There are two cases to consider:

(i) If the verification conditions for {P} C1; . . . ;Cn−1;{R}Cn {Q} are

provable, then the verification conditions for {P} C1; . . . ;Cn−1 {R}
and {R} Cn {Q} must both be provable and hence by induction we

have ⊢ {P} C1; . . . ;Cn−1 {R} and ⊢ {R} Cn {Q}. Hence by the

sequencing rule (page 24) ⊢ {P} C1; . . . ; Cn−1;Cn {Q}.

(ii) If the verification conditions for {P} C1; . . . ;Cn−1;V := E {Q} are

provable, then it must be the case that the verification conditions for
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{P} C1; . . . ;Cn−1 {Q[E/V ]} are also provable and hence by induction

we have ⊢ {P} C1; . . . ;Cn−1 {Q[E/V ]}. It then follows by the

assignment axiom that ⊢ {Q[E/V ]} V := E {Q}, hence by the

sequencing rule ⊢ {P} C1; . . . ;Cn−1;V := E{Q}.

WHILE-commands

If the verification conditions for {P} WHILE S DO {R} C {Q} are provable,

then ⊢ P ⇒ R, ⊢ (R ∧ ¬S) ⇒ Q and the verification conditions for

{R ∧ S} C {R} are provable. By induction ⊢ {R ∧ S} C {R}, hence by

the WHILE-rule (page 26) ⊢ {R} WHILE S DO C {R ∧ ¬S}, hence by the

consequence rules (see page 24) ⊢ {P} WHILE S DO C {Q}.
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Soundness and Completeness

The question of whether the axioms and rules of Hoare logic are

correct (soundness) and sufficient (completeness) is investigated.

This requires the meaning (semantics) of the programming lan-

guage to be formulated explicitly so that the semantics of Hoare

triples can be rigorously defined.

4.1 Semantics

A command C transforms an initial state into a final state (or fails to ter-

minate). For the language described so far there is at most one final state

reachable from a given initial state – i.e. commands are deterministic – but

this will not be the case later, when we add storage allocation to our lan-

guage. There are several essentially equivalent ways to represent the meaning

of commands mathematically. We will use relations, but partial functions are

often used. Use of relations is associated with operational semantics and par-

tial functions with denotational semantics, however this is not rigid: denota-

tional semantics can use relations as denotations and operational semantics

can inductively define functions. In fact, in Section 4.1.2 below, we give a

denotational semantics of commands in which the denotations are relations.

The various styles of semantics are largely just different ways of repre-

senting the same mathematical ideas. Some mathematical representations

are better suited for some purposes and other representations for others.

The semantics I give below may or may not correspond to semantics you

have seen before in earlier courses. If it seems different, then a good exercise

is to think about how it is related.

We are going to represent the meaning of a command C by a binary

relation on the set of states: s1 is related to s2 in this relation iff when C is

executed in state s1 it terminates in state s2.

49
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There are several ways of representing relations mathematically and al-

though it doesn’t really matter which one is chosen, it may help avoid confu-

sion in what follows if we say a little about these alternative representations

here, before diving into specific details.

Introductory books on set theory usually represent relations as sets of

ordered pairs, so x is related to y by relation R iff (x, y) ∈ R. Thus a binary

relation R between sets X and Y is a subset of X × Y , i.e. R ⊆ (X × Y ) or,

equivalently, R ∈ P(X×Y ), where P is the powerset operator. If S is any set

then any subset A ⊆ S can be characterised by a function fA : S → {T, F}
defined by:

∀s ∈ S. fA(s) = T ⇔ s ∈ A

fA is called the characteristic function of A. Thus a relation R ⊆ (X × Y )

can be characterised by its characteristic function fR defined by:

∀x ∈ X. ∀y ∈ Y. fR(x, y) = T ⇔ (x, y) ∈ R

where fR : (X × Y )→ {T, F}. If the set of functions from set S to set T is

denoted by (S → T ) and Bool is the set {T, F}, then fR ∈ ((X×Y )→ Bool).

You may recall from earlier courses (e.g. on ML) that functions that take two

or more arguments can be ‘curried’ so that they take the arguments one at

a time. If we curry fR we get a function f curried
R defined by:

f curried
R x y = fR(x, y)

and then f curried
R : X → (Y → Bool) or f curried

R : X → Y → Bool if we

assume the standard convention that → associates to the right. Note that

we also have f curried
R ∈ P(X → Y → Bool).

To sum up, a relation R can be represented by a set of pairs, by a charac-

teristic function that maps pairs to Booleans, or by the curried characteristic

function. For a somewhat arbitrary mixture of historical and stylistic rea-

sons, we are going to use the curried characteristic function representation of

relations to represent the semantics of commands. Specifically, we are going

to define Csem C s1 s2 to mean that if command C is started in state s1
then it can terminate in state s2. Here Csem C is the relation that represents

the semantics of C, represented as a curried characteristic function. The

set of commands in our language will be denoted by Com and the set of

states will be denoted by State. Thus Csem C : State → State → Bool or

Csem : Com → State → State → Bool. As mentioned earlier, the choice of
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representing Csem C as a curried characteristic function, rather than as a set

of ordered pairs, is more a matter of style than substance.

Let Var be the set of variables that are allowed in statements, expressions

and commands and Val be the set of values that variables can take. It is not

necessary to be specific about what variables and values actually are: Var

could be, for example, the set of finite strings of ASCII characters and Val

could be the set of integers. A state determines the value of each variable

and, in addition, may contain other information. For our little programming

language it is sufficient to take the state to be a function from Var to Val.

Using the notation A→ B to denote the set of functions with domain A and

range (codomain) B we define the set State of states by:

State = V ar → Val

Note that the following are all equivalent s ∈ State, s ∈ (Var → Val) and

s : Var → Val. I will sometimes use s(v) and sometimes s v for the value

associated with variable v in state s (i.e. the application of the function

representing the state s to v). Although in this chapter it is sufficient to

represent states as functions from variables to values, in Chapter 7 we will

need to add another components to the state to represents the contents of

pointers. We will extend the definition of State in that chapter. Particular

states can be defined using λ-notation. For example, the state that maps X

to 1, Y to 2 and everything else to 0 is defined by:

λv. if v=X then 1 else (if v=Y then 2 else 0)

If s ∈ State, v ∈ Var and n ∈ Val then s[n/v] denotes that state that is

the same as s, except for the value of variable v is ‘updated’ to be n. Thus

s[n/v] is given by the equation:

s[n/v] = λv′. if v′ = v then n else s(v′) (where v′ is a new variable)

Example:

(λv. if v=X then 1 else (if v=Y then 2 else 0))[3/Z] =
λv. if v=X then 1 else (if v=Y then 2 else (if v=Z then 3 else 0))

4.1.1 Semantics of expressions and statements

Commands may contain expressions or statements: expressions occur on the

right hand side of assignments and statements occur in the tests of condi-

tionals and WHILE-commands. The precondition and postcondition of Hoare

triples are also statements. The classical treatment of Hoare logic was built
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upon first order logic, expressions were taken to be terms of logic and state-

ments to be formulae. You will be familiar with the semantics of first order

logic from earlier courses and I do not want to repeat that material here.

Furthermore, in modern applications, the language used for writing precon-

ditions and postconditions is now sometimes weaker or stronger than first

order logic, e.g. quantifier free logic (weaker) or higher order logic (stronger).

To avoid the details of particular logics and their semantics we will assume

that we are given sets Exp and Sta of expressions and statements, together

with semantic functions Esem and Ssem defining their semantics, where:

Esem : Exp→ State→ Val

Ssem : Sta→ State→ Bool

We now give some informal discussion and examples to illustrate how Esem

and Ssem might be defined for particular logics (i.e. for particular Exp and

Sta). We hope it will be clear from this how a more formal treatment would

go. In the usual logic terminology (e.g. as used in the IB Tripos course Logic

and Proof ) we are using states to represent interpretation functions and Val

as the domain or universe. Variables are interpreted by looking them up in

the state:

Esem X s = s(X)

Constants get their usual mathematical or logical meaning:

Esem 3 s = 3

Ssem T s = T

Compound expressions or statements are interpreted bottom up: the (re-

cursively computed) value of sub-expressions is combined using appropriate

mathematical or logical operators to get the interpretation of the whole ex-

pression. For example:

Esem (−E) s = −(Esem E s)

Esem (E1 + E2) s = (Esem E1 s) + (Esem E2 s)

Ssem (¬S) s = ¬(Ssem S s)

Ssem (S1 < S2) s = (Ssem S1 s) < (Ssem S2 s)

where the symbols “−”, “+”, “¬” and “<” on the left hand side of these

equations are part of the syntax of statements (i.e. part of the object lan-

guage) and those on the right hand side are informal mathematical notation
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(i.e. part of our metalanguage). This is a subtle point worth pondering!

Quantifiers (which may occur in preconditions and postconditions, but prob-

ably not in tests in commands) are interpreted in the standard way:

Ssem (∀v. S) s = ∀n Ssem S (s[n/v])

Ssem (∃v. S) s = ∃n. Ssem S (s[n/v])

Example:

Ssem (Y<Z+3) (λv. if v=X then 1 else (if v=Y then 2 else 0)) = (2<0+3)

I hope this is sufficient explanation of Esem and Ssem for what follows. Note

that for any E ∈ Exp and S ∈ Sta it is the case that:

Esem E : State→ Val

Ssem S : State→ Bool

4.1.2 Semantics of commands

Csem C s1 s2 will be defined recursively bottom up. The only commands

that don’t contain sub-commands are assignments. After an assignment the

final state s2 is equal to the initial state with the variable V on the left hand

side of the assignment updated to have the value of the expression E on the

right hand side of the assignment in the initial state.

Csem (V :=E) s1 s2 = (s2 = s1[(Esem E s1)/V ])

A final state s2 can be reached by executing a sequence C1;C2 starting in

an initial state s1 iff there is an intermediate state s reachable by executing

C1 in s1 and s2 is reachable from this intermediate state by executing C2.

Csem (C1;C2) s1 s2 = ∃s. Csem C1 s1 s ∧ Csem C2 s s2

If S is true in a state s1 then state s2 can be reached by executing the

conditional IF S THEN C1 ELSE C2 starting in s1 iff s2 can be reached by ex-

ecuting the THEN-branch C1 starting in s1. However, if S is false in a state

s1 then state s2 can be reached by executing conditional starting in s1 iff s2
can be reached by executing the ELSE-branch C2 starting in s1.

Csem (IF S THEN C1 ELSE C2) s1 s2 =
if Ssem S s1 then Csem C1 s1 s2 else Csem C2 s1 s2
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If final state s2 can be reached from initial state s1 by executing

WHILE S DO C, then there must be some finite number of iterations of C that

will reach s2, S must be true in all the intermediate states and false in s2.

This is formalised by defining a function Iter that iterates a finite number of

times and then defining:

Csem (WHILE S DO C) s1 s2 = ∃n. Iter n (Ssem S) (Csem C) s1 s2

The function Iter is defined by recursion on n as follows:

Iter 0 p c s1 s2 = ¬(p s1) ∧ (s1=s2)
Iter (n+1) p c s1 s2 = p s1 ∧ ∃s. c s1 s ∧ Iter n p c s s2

The first argument n of Iter is the number of iterations. The second argument

p is a predicate on states (e.g. Ssem S). The third argument c is a curried

characteristic function (e.g. Csem C). The fourth and fifth arguments are

the initial and final states, respectively. If Num is the set of natural numbers

{0, 1, 2, . . .}, then:
Iter : Num→(State→Bool)→(State→State→Bool)→State→State→Bool

4.2 Soundness of Hoare logic

The meaning of a Hoare triple {P} C {Q} is defined to be Hsem P C Q

where:

Hsem P C Q = ∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2

This definition can be used to formulate the soundness of Hoare logic. To do

this we must prove that all instances of the assignment axiom are true, and

that all conclusions deduced using inference rules are true if the hypotheses

are true. Recall the assignment axiom:

The assignment axiom

⊢ {P[E/V ]} V :=E {P}

Where V is any variable, E is any expression, P is any statement and
the notation P[E/V ] denotes the result of substituting the term E for
all occurrences of the variable V in the statement P .
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To prove this sound we must show that for every V , E and P :

Hsem (P[E/V ]) (V :=E) P

Unfolding the definition of Hsem converts this to:

∀s1 s2. Ssem (P[E/V ]) s1 ∧ Csem (V :=E) s1 s2 ⇒ Ssem P s2

Unfolding the definition of Csem converts this to:

∀s1 s2. Ssem (P[E/V ]) s1 ∧ (s2 = s1[(Esem E s1)/V ])⇒ Ssem P s2

which simplifies to:

∀s1. Ssem (P[E/V ]) s1 ⇒ Ssem P (s1[(Esem E s1)/V ])

This may appear confusing since it uses the notation [ · · · / · · · ] with dif-

ferent meanings in the antecedent (the left argument of ⇒) and consequent

(the right argument). In the antecedent, P[E/V ] denotes the result of sub-

stituting the expression E for the variable V in the statement P . In the

consequent s1[(Esem E s1)/V ] denotes the state obtained by updating s1
so that the value of V is the value of E in s1 (and the values of all other

variables are unchanged).

Diversion on substitution.

We have avoided specifying in detail exactly what the syntax of expressions

and statements is, so it is not possible to prove general properties about

them. However, for any reasonable definitions we would expect that:

Ssem (P[E/V ]) s = Ssem P (s[(Esem E s)/V ])

For example, take P to be X+Y>Z, E to be X+1 and V to be Y, then the

equation above becomes:

Ssem ((X+Y>Z)[(X+1)/Y]) s = Ssem (X+Y>Z) (s[(Esem (X+1) s)/Y])

Now Esem (X+1) s = s(X)+1 so the equation above becomes:

Ssem ((X+Y>Z)[(X+1)/Y]) s = Ssem (X+Y>Z) (s[(s(X)+1)/Y])

Evaluating the substitution on the left hand side reduces this to:

Ssem (X+(X+1)>Z) s = Ssem (X+Y>Z) (s[(s(X)+1)/Y])

Evaluating the Ssem gives:

(s(X)+(s(X)+1)>s(Z)) =
((s[(s(X)+1)/Y])(X)+(s[(s(X)+1)/Y])(Y)>(s[(s(X)+1)/Y])(Z))
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Using the definition of s[n/v], and assuming X, Y and Z are distinct, enables

the right hand side of this equation to be simplified, to give:

(s(X)+(s(X)+1)>s(Z)) = (s(X)+(s(X)+1)>s(Z))

This is clearly true as the left and right hand sides are identical.

Although this is just an example, it illustrates why for all S, E, V and s

it is the case that: Ssem (S[E/V ]) s = Ssem S (s[(Esem E s)/V ])

In fact, if this equation did not hold then one would have a bad defi-

nition of substitution – indeed this equation can be taken as the semantic

specification of substitution!

End of diversion on substitution.

Returning to the soundness of the assignment axiom, recall that it was

equivalent to the following holding for all P , E and V :

∀s1. Ssem (P[E/V ]) s1 ⇒ Ssem P (s1[(Esem E s1)/V ])

If the equation for substitution motivated in the diversion above holds, then

this implication holds too, since for any statements P and Q, if P = Q then

it follows that P ⇒ Q.

Thus, assuming the semantic substitution equation discussed above, we have

shown that the assignment axiom is sound.

The soundness of the Hoare logic rules of inference is almost trivial except

for the WHILE-rule, and even that is fairly straightforward. We will restate

the rules and then outline the proof of their soundness.

Precondition strengthening

⊢ P ⇒ P ′, ⊢ {P ′} C {Q}
⊢ {P} C {Q}

This rule is sound if the following is true for all P , P ′, C and Q:

(∀s. Ssem P s⇒ Ssem P ′ s) ∧ Hsem P ′ C Q⇒ Hsem P C Q

which, after expanding the definition of Hsem, becomes:

(∀s. Ssem P s⇒ Ssem P ′ s) ∧
(∀s1 s2. Ssem P ′ s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2)
⇒
∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2
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This is an instance of the statement below if we take p, p′, q, c to be Ssem P ,

Ssem P ′, Ssem Q, Csem C, respectively.

(∀s. p s⇒ p′ s) ∧ (∀s1 s2. p
′ s1 ∧ c s1 s2 ⇒ q s2)

⇒
∀s1 s2. p s1 ∧ c s1 s2 ⇒ q s2

This is clearly true.

Postcondition weakening

⊢ {P} C {Q′}, ⊢ Q′ ⇒ Q

⊢ {P} C {Q}

This is sound by a similar argument.

Specification conjunction

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∧ P2} C {Q1 ∧Q2}

Specification disjunction

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∨ P2} C {Q1 ∨Q2}

This is sound by a similar argument.

The sequencing rule

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

This rule is sound if the following is true for all P , Q, R, C1 and C2:

Hsem P C1 Q ∧ Hsem Q C2 R⇒ Hsem P (C1;C2) R
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which, after expanding the definition of Hsem, becomes:

(∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2) ∧
(∀s1 s2. Ssem Q s1 ∧ Csem C s1 s2 ⇒ Ssem R s2)
⇒
∀s1 s2. Ssem P s1 ∧ Csem (C1;C2) s1 s2 ⇒ Ssem R s2

This is an instance of the statement below if we unfold the definition of

Csem (C1;C2) and take p, q, r, c1, c2 to be Ssem P , Ssem Q, Ssem R,

Csem C1, Csem C2, respectively.

(∀s1 s2. p s1 ∧ c1 s1 s2 ⇒ q s2) ∧ (∀s1 s2. q s1 ∧ c2 s1 s2 ⇒ r s2)
⇒
∀s1 s2. p s1 ∧ (∃s. c1 s1 s ∧ c2 s s2)⇒ r s2

This is clearly true.

The conditional rule

⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧ ¬S} C2 {Q}
⊢ {P} IF S THEN C1 ELSE C2 {Q}

A similar argument to the one for the sequencing rule shows the conditional

rule to be sound.

The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

This rule is sound if the following is true for all P , S and C:

Hsem (P ∧ S) C P ⇒ Hsem P (WHILE S DO C) (P ∧ ¬S))
which, after expanding the definition of Hsem, becomes:

(∀s1 s2. Ssem (P ∧ S) s1 ∧ Csem C s1 s2 ⇒ Ssem P s2)
⇒
∀s1 s2. Ssem P s1 ∧ Csem (WHILE S DO C) s1 s2 ⇒ Ssem (P ∧ ¬S) s2

Using the equations Ssem (P ∧ Q) s1 = Ssem P s1 ∧ Ssem Q s1 and

Ssem (P ∧ ¬Q) s2 = Ssem P s2 ∧ ¬(Ssem Q s1) and expanding the defi-

nition of Hsem (WHILE S DO C) converts this to:
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(∀s1 s2. Ssem P s1 ∧ Ssem S s1 ∧ Csem C s1 s2 ⇒ Ssem P s1
⇒
∀s1 s2. Ssem P s1 ∧ (∃n. Iter n (Ssem S) (Csem C) s1 s2)

⇒
Ssem P s2 ∧ ¬(Ssem S s2)

This is an instance of the statement below if we take p, b, c to be Ssem P ,

Ssem S, Csem C, respectively.

(∀s1 s2. p s1 ∧ b s1 ∧ c s1 s2 ⇒ p s1)
⇒
∀s1 s2. p s1 ∧ (∃n. Iter n b c s1 s2)⇒ p s2 ∧ ¬(b s2)

which is equivalent to:

(∀s1 s2. p s1 ∧ b s1 ∧ c s1 s2 ⇒ p s1)
⇒
∀n s1 s2. p s1 ∧ Iter n b c s1 s2 ⇒ p s2 ∧ ¬(b s2)

To prove this, assume the antecedent and show the consequent by induction

of n. The basis (n = 0 case) is clearly true as ‘false implies everything’. For

the induction step assume:

1. ∀s1 s2. p s1 ∧ b s1 ∧ c s1 s2 ⇒ p s1 (Hoare rule hypothesis)

2. ∀s1 s2. p s1 ∧ Iter n b c s1 s2 ⇒ p s2 ∧ ¬(b s2) (induction hypothesis)

From these we must show the induction conclusion:

p s1 ∧ Iter (n+1) b c s1 s2 ⇒ p s2 ∧ ¬(b s2)

Using the recursive definition of Iter (n+1) converts this to:

p s1 ∧ (b s1 ∧ ∃s. c s1 s ∧ Iter n b c s s2)⇒ p s2 ∧ ¬(b s2)

which with a bit of quantifier fiddling is equivalent to:

p s1 ∧ b s1 ∧ c s1 s ∧ Iter n b c s s2 ⇒ p s2 ∧ ¬(b s2)

Which follows from the Hoare rule hypothesis and the induction hypothesis

(i.e. 1 and 2 above) by a bit of implication chaining.

4.3 Decidability and completeness

{T}C{F} is true if and only if C does not terminate, therefore, since the

halting problem is undecidable, so is Hoare logic.

Soundness is that any Hoare triple that can be deduced using the ax-

ioms and rules of inference of Hoare logic is true. The converse, complete-

ness, would be that any true Hoare triple could be deduced using the ax-

ioms and rules of Hoare logic. Unfortunately, this cannot hold in general.
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Consider {T} X:=X {P}. According to the semantics above, this is true iff

Hsem T (X:=X) P is true, i.e.:

∀s1 s2. Ssem T s1 ∧ Csem (X:=X) s1 s2 ⇒ Ssem P s2

Since Csem (X:=X) s1 s2 = (s2 = s1) and Ssem T s1 = T this reduces to:

∀s1 s2. T ∧ (s2 = s1)⇒ Ssem P s2

which, by specialising s1 and s2 to s, simplifies to ∀s. Ssem P s – i.e. P

is true. Thus if we could deduce any true Hoare triple using Hoare logic

then we would be able to deduce any true statement of the specification

language using Hoare logic! Most logics suitable for specifying programs are

incomplete (e.g. first order arithmetic), so Hoare logic cannot be complete.

However the kind of completeness just described above is only impossible

due to the incompleteness of the specification language used for precondi-

tions and postconditions. If we separate the ‘programming logic’ from the

‘specification logic’, then it is possible to formulate a sort of completeness,

called relative completeness [6], that provides some reassurance that Hoare

logic is adequate for reasoning about the small collection of simple commands

we have discussed – i.e. there are no ‘missing’ axioms or rules. It turns out,

however, that even this limited kind of completeness may be impossible for

constructs found in many real languages (but not in our ‘toy’ language) [5].

We will not attempt to explain the exact details of Cook’s and others’

work on relative completeness, as both the technical logical issues and also

their intuitive interpretation are quite subtle [1, 16]. Furthermore doing this

would require us to be more precise than we wish about the syntax, seman-

tics and proof theory of the specification language in which preconditions and

postconditions are expressed. We will, however, sketch the key ideas. A con-

cept that is used in proving relative completeness is the weakest precondition.

This concept is not only useful for its role in showing relative completeness,

it also has practical applications, including providing an improved approach

to verification conditions (which we discuss later) and as the foundation for

theories of program refinement .

4.3.1 Relative completeness

We are going to explain the idea of relative completeness and also show

that it holds for our little programming language by using weakest liberal

preconditions . However, we will put off the detailed definition and analysis
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of these until Section 4.3.2. In this section we say just enough about what

they are and what properties they have (P1, P2 and P3 below) so that we

can explain relative completeness.

For each command C and statement Q we assume there is a statement

wlp(C,Q) – intuitively the weakest precondition such that ensures Q holds

after executing C – with the property that:

⊢ {wlp(C,Q)} C {Q} (P1)

The existence of the statement wlp(C,Q) in the specification language de-

pends on the specification language being strong enough. A language strong

enough to enable wlp(C,Q) to be defined is called expressive.

The operator wlp constructs a statement, which is a sentence in a formal

language, from a command and another statement. Thus wlp constructs a

syntactic thing (a statement) from other syntactic things (a command and

a statement). We also assume a semantic counterpart to wlp called Wlp

which operates on the meanings of commands (functions representing binary

relations on states) and the meanings of statements (predicates on states).

Wlp is a curried function:

Wlp : (State→ State→ Bool)→ (State→ Bool)→ State→ Bool

we assume the following property connecting wlp and Wlp for all commands

C and statements Q:

Ssem (wlp(C,Q)) = Wlp (Csem C)(Ssem Q) (P2)

Notice that this is an equation between predicates. We also assume:

Hsem P C Q = ∀s. Ssem P s⇒Wlp (Csem C) (Ssem Q) s (P3)

The shape of the relative completeness proof can now be sketched. As-

sume {P} C {Q} is true, i.e. Hsem P C Q is true. We will show that the

statement P ⇒ wlp(C,Q) must also be true – assume this for now. If we

could prove this true statement, i.e. had ⊢ P ⇒ wlp(C,Q), then by precon-

dition strengthening and the property P1 it would follow that ⊢ {P} C {Q}
by Hoare logic. Thus Hoare logic is complete relative to the existence of an

oracle for proving any true statement of the form P ⇒ wlp(C,Q).

To summarise: relative completeness says that if wlp(C,Q) is expressible

in the specification language and if there is an oracle to prove true statements

of the form P ⇒ wlp(C,Q), then any true Hoare triple {P} C {Q} can be

proved using Hoare logic.
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We now run through the relative completeness argument again, but in a

bit more detail, showing how assumptions P2 and P3 are used. Recall:

Ssem (wlp(C,Q)) = Wlp (Csem C)(Ssem Q) (P2)

Hsem P C Q = ∀s. Ssem P s⇒Wlp (Csem C) (Ssem Q) s (P3)

Assume for any C and Q that wlp(C,Q) is expressible in the specification

language and also that for any P , C and Q there is an oracle to prove true

statements of the form P ⇒ wlp(C,Q) – i.e. if ∀s. Ssem (P ⇒ wlp(C,Q)) s

(statement true) then the oracle gives ⊢ P ⇒ wlp(C,Q) (statement proved).

The Hoare triple {P} C {Q} being true means, according to our seman-

tics, that Hsem P C Q is true. If this is true, then by P3 assumed above:

∀s. Ssem P s⇒Wlp (Csem C) (Ssem Q) s

and then by assumed property P2:

∀s. Ssem P s⇒ Ssem (wlp(C,Q)) s

Although we have not completely defined the specification language, we as-

sume at least that it contains an infix symbol ⇒ whose meaning is logical

implication, so that from the statement above we can deduce:

∀s. Ssem (P ⇒ wlp(C,Q)) s

i.e. the statement P ⇒ wlp(C,Q) is true. Now we use the assumed oracle

for formulae of this form to prove ⊢ P ⇒ wlp(C,Q) and hence by assumed

property P1 and precondition strengthening, we can prove ⊢ {P} C {Q}.
To complete the outline above we must define wlp and Wlp and prove

the properties P1, P2 and P3. The axioms and rules of Hoare logic will be

used to prove P1, and it is the fact that they can prove this that is really the

essence of their completeness.

4.3.2 Syntactic and semantic weakest preconditions

If P ⇒ Q we say that P is stronger than Q and, dually, that Q is weaker

than P . The weakest precondition of a command C with respect to a

postcondition Q is the weakest predicate, denoted by wp(C,Q), such that

[wp(C,Q)] C [Q]. Notice that this is related to total correctness. The

partial correctness concept is called the weakest liberal precondition and is

denoted by wlp(C,Q): the statement wlp(C,Q) is the weakest predicate

such that {wlp(C,Q)} C {Q}. In this chapter we only use weakest liberal

preconditions. Their key properties are P1, i.e. ⊢ {wlp(C,Q)} C {Q} and
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for all P that {P} C {Q} ⇒ (P ⇒ wlp(C,Q)). These properties can be

expressed more concisely as the single equation:

{P} C {Q} = (P ⇒ wlp(C,Q))

This equation is easily seen to be equivalent to the key properties just men-

tioned using the rule of precondition strengthening and the reflexivity of ⇒.

If the specification language – i.e. the language of preconditions and post-

conditions – is strong enough to express the weakest liberal precondition for

all commands C and postconditions Q then it is said to be expressive. Since

we haven’t said what the specification language is we cannot say much about

expressiveness.

We can define the semantic operator Wlp on predicates via our semantics;

this is an example of a predicate transformer [7].

Wlp c q = λs. ∀s′. c s s′ ⇒ q s′

Recall the definition of Hsem:

Hsem P C Q = ∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2

We can easily prove property P3, namely:

Hsem P C Q = ∀s. Ssem P s⇒Wlp (Csem P ) (Ssem Q) s

P3 follows from the definitions of Hsem and Wlp by taking p, c and q to be

Ssem P , Csem C and Ssem Q, respectively, in the logical truth below.

(∀s1 s2. p s1 ∧ c s1 s2 ⇒ q s2) = (∀s. p s⇒ (λs. ∀s′. c s s′ ⇒ q s′) s)

To prove P1 and P2 we need the following equations, which follow from the

definition of Wlp.

Wlp (Csem(V :=E)) q
= λs. q(s[(Esem E s)/V])

Wlp (Csem(C1;C2)) q
= λs. Wlp (Csem C1) (Wlp (Csem C2) q) s

Wlp (Csem(IF S THEN C1 ELSE C2)) q
= λs. if Ssem S s then Wlp (Csem C1) q s else Wlp (Csem C2) q s

Wlp (Csem(WHILE S DO C)) q
= λs. ∀n. IterWlp n (Ssem S) (Csem C) q s

where IterWlp 0 p c q s = ¬(p s)⇒ q s
IterWlp (n+1) p c q s = p s⇒Wlp c (IterWlp n p c q) s
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We prove the equation for WHILE-commands. Expanding the definitions of

Wlp and Csem yields:

(λs. ∀s′. (∃n. Iter n (Ssem S) (Csem C) s s′) s s′ ⇒ q s′)
= λs. ∀n. IterWlp n (Ssem S) (Csem C) q s

Thus it is sufficient to prove that:

∀s. (∀n s′. Iter n p c s s′ ⇒ q s′) = ∀n. IterWlp n p c q s

which follows from:

∀n s. (∀s′. Iter n p c s s′ ⇒ q s′) = IterWlp n p c q s

which is equivalent to:

∀n s. Wlp (Iter n p c) q s = IterWlp n p c q s

We prove this by induction on n. First recall the definitions:

Iter 0 p c s1 s2 = ¬(p s1) ∧ (s1=s2)
Iter (n+1) p c s1 s2 = p s1 ∧ ∃s. c s1 s ∧ Iter n p c s s2

IterWlp 0 p c q = λs. ¬(p s)⇒ q s
IterWlp (n+1) p c q = λs. p s⇒Wlp c (IterWlp n p c q) s

Basis.

The n = 0 case is Wlp (Iter 0 p c) q s = IterWlp 0 p c q s which unfolds to

(∀s′. ¬(p s) ∧ (s = s′)⇒ q s′) = ¬(p s)⇒ q s which is true.

Step.

The induction hypothesis is ∀s. Wlp (Iter n p c) q s = IterWlp n p c q s.

From this we must show Wlp (Iter (n+1) p c) q s = IterWlp (n+1) p c q s.

This unfolds to:

Wlp (λs1 s2. p s1 ∧ ∃s. c s1 s ∧ Iter n p c s s2) q s
= p s ⇒ Wlp c (IterWlp n p c q) s

Unfolding Wlp turns this into:

(λs. ∀s′. (λs1 s2. p s1 ∧ ∃s. c s1 s ∧ Iter n p c s s2) s s′ ⇒ q s′) s
= p s ⇒ (λs. ∀s′. c s s′ ⇒ (IterWlp n p c q) s′) s

which reduces to:

(∀s′. p s ∧ (∃s′′. c s s′′ ∧ Iter n p c s′′ s′)⇒ q s′)
= p s ⇒ ∀s′′. c s s′′ ⇒ IterWlp n p c q s′′

Using the induction hypothesis on the RHS converts this to:

(∀s′. p s ∧ (∃s′′. c s s′′ ∧ Iter n p c s′′ s′)⇒ q s′)
= p s ⇒ ∀s′′. c s s′′ ⇒Wlp (Iter n p c) q s′′
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Unfolding Wlp:

(∀s′. p s ∧ (∃s′′. c s s′′ ∧ Iter n p c s′′ s′)⇒ q s′)
= p s ⇒ ∀s′′. c s s′′ ⇒ (λs. ∀s′. (Iter n p c) s s′ ⇒ q s′) s′′

which reduces to:

(∀s′. p s ∧ (∃s′′. c s s′′ ∧ Iter n p c s′′ s′)⇒ q s′)
= p s ⇒ ∀s′′. c s s′′ ⇒ ∀s′. Iter n p c s′′ s′ ⇒ q s′

which is true via a bit of quantifier manipulation. Thus we have proved:

Wlp (Csem(WHILE S DO C)) q = λs. ∀n. IterWlp n (Ssem S) (Csem C) q s

4.3.3 Syntactic preconditions and expressibility

We now discuss how to define statements wlp(C,Q) with properties P1 and

P2, namely:

⊢ {wlp(C,Q)} C {Q} (P1)

Ssem (wlp(C,Q)) = Wlp (Csem C)(Ssem Q) (P2)

Note that wlp operates on syntactic things (commands and statements),

whereas Wlp operates on semantic things (mathematical functions on states

representing the meaning of commands and statements).

We will define wlp(C,Q) recursively on C and justify P1 and P2 by

structural induction on C. The cases when C is an assignment, sequence or

conditional are straightforward.

wlp((V :=E),Q) = Q[E/V ]

If C is V :=E then P1 is just the assignment axiom and by the equation for

Wlp (Csem (V :=E)) (Ssem Q) discussed on page 63, P2 is the equation:

Ssem (Q[E/V ]) s = Ssem Q (s[(Esem E s)/V ])

which was justified in the “Diversion on substitution” on page 55.

wlp((C1;C2),Q) = wlp(C1,wlp(C2,Q))

Assume P1 and P2 hold for C1 and C2 for arbitrary Q. Then:

⊢ {wlp(C2,Q)} C2 {Q}
⊢ {wlp(C1,(wlp(C2,Q)))} C1 {(wlp(C2,Q))}
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hence P1 by the sequencing rule. To show P2 when C is C1;C2 note that P2

in this case is:

Ssem (wlp(C1,wlp(C2,Q)))
= Wlp (λs1 s2. ∃s. Csem C1 s1 s ∧ Csem C2 s s2)(Ssem Q)
= λs1. ∀s2. (∃s. Csem C1 s1 s ∧ Csem C2 s s2)⇒ Ssem Q s2
= λs1. ∀s s2. (Csem C1 s1 s ∧ Csem C2 s s2)⇒ Ssem Q s2

Expanding the LHS using induction twice with P2 instantiated with C as C1

and Q as wlp(C2,Q) and also with C as C2 and Q just as Q gives:

Wlp (Csem C1) (Wlp (Csem C2) (Ssem Q))
= λs1. ∀s s2. (Csem C1 s1 s ∧ Csem C2 s s2)⇒ Ssem Q s2

Expanding the LHS using the definition of Wlp then gives:

λs1. ∀s. Csem C1 s1 s⇒ ∀s2. Csem C2 s s2 ⇒ Ssem Q s2
= λs1. ∀s s2. (Csem C1 s1 s ∧ Csem C2 s s2)⇒ Ssem Q s2

which is true.

wlp((IF S THEN C1 ELSE C2),Q) = (S∧wlp(C1,Q))∨(¬S∧(wlp(C2,Q))

Note that (S ∧ S1) ∨ (¬S ∧ S2) means if S then S1 else S2. The former is

used to emphasis that all we are assuming about the specification language

is the existence of Boolean operators ¬, ∧ and ∨. Note that by Boolean

algebra and the definition of wlp((IF S THEN C1 ELSE C2),Q):

S ∧ wlp((IF S THEN C1 ELSE C2),Q) = S ∧ wlp(C1,Q)

¬S ∧ wlp((IF S THEN C1 ELSE C2),Q) = ¬S ∧ wlp(C2,Q)

By induction, P1 for C1 and C2 and precondition strengthening:

{S ∧ wlp(C1,Q)} C1 {Q}
{¬S ∧ wlp(C2,Q)} C2 {Q}

Hence by the conditional rule, substituting with the equations above:

{wlp((IF S THEN C1 ELSE C2),Q)} IF S THEN C1 ELSE C2 {Q}

which is P1 for conditionals. Property P2 is:

Ssem ((S ∧ wlp(C1,Q)) ∨ (¬S ∧ (wlp(C2,Q)))
= Wlp (Csem (IF S THEN C1 ELSE C2))(Ssem Q)

Expanding the RHS of this equation:
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Ssem ((S ∧ wlp(C1,Q)) ∨ (¬S ∧ (wlp(C2,Q)))
= Wlp

(λs1 s2. if Ssem S s1 then Csem C1 s1 s2 else Csem C2 s1 s2 )
(Ssem Q)

= Wlp

(λs1 s2. (Ssem S s1 ∧ Csem C1 s1 s2) ∨ (¬Ssem S s1 ∧ Csem C2 s1 s2))
(Ssem Q)

= λs1.
∀s2. (Ssem S s1 ∧ Csem C1 s1 s2) ∨ (¬Ssem S s1 ∧ Csem C2 s1 s2)

⇒ Ssem Q s2

Now we expand the LHS:

Ssem ((S ∧ wlp(C1,Q)) ∨ (¬S ∧ (wlp(C2,Q)))
= λs1. (Ssem S s1 ∧ Ssem (wlp(C1,Q)) s1)

∨
(¬Ssem S s1 ∧ Ssem (wlp(C2,Q)) s1)

= λs1. (Ssem S s1 ∧Wlp (Csem C1) (Ssem Q) s1)
∨
(¬Ssem S s1 ∧Wlp (Csem C2) (Ssem Q) s1)

= λs1. (Ssem S s1 ∧ (λs. ∀s′. Csem C1 s s′ ⇒ Ssem Q s′) s1)
∨
(¬Ssem S s1 ∧ (λs. ∀s′. Csem C2 s s′ ⇒ Ssem Q s′) s1)

= λs1. (Ssem S s1 ∧ ∀s′. Csem C1 s1 s′ ⇒ Ssem Q s′)
∨
(¬Ssem S s1 ∧ ∀s′. Csem C2 s1 s′ ⇒ Ssem Q s′)

Combining simplified LHS and RHS equations:

λs1. (Ssem S s1 ∧ ∀s′. Csem C1 s1 s′ ⇒ Ssem Q s′)
∨
(¬Ssem S s1 ∧ ∀s′. Csem C2 s1 s′ ⇒ Ssem Q s′)

= λs1.
∀s2. (Ssem S s1 ∧ Csem C1 s1 s2) ∨ (¬Ssem S s1 ∧ Csem C2 s1 s2)

⇒ Ssem Q s2

which is true. Thus P2 holds for conditionals.

We are now left with defining wlp((WHILE S DO C),Q) so that P1 and

P2 hold. This is trickier than the previous cases. Notice that when defin-

ing wlp(C,Q) for assignments we just needed the specification language

to allow textual substitution of expressions for variables and for condi-

tionals we just needed the specification language to allow Boolean com-

binations of statements. The usual specification language when relative
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completeness is discussed is first order arithmetic. It is possible to define

wlp((WHILE S DO C),Q) for this language, but the details are fiddly. An ex-

cellent account can be found in Glynn Winskel’s textbook [24, Chapter 7].

We shall instead assume more powerful features than are necessary in order

to get a straightforward representation of WHILE-loop weakest preconditions.

Specifically, we assume infinite conjunctions are allowed. What this means

is that if we have an infinite family of statements, say Sn for each natural

number n, then we allow an ‘infinite’ formula
∧
n. Sn which means Sn is

true for every n ∈ Num, i.e. S0 ∧S1 ∧ S2 · · · ∧ Sn ∧ · · · . Infinite conjunctions
enable us to mimic the semantic definition in the specification language. The

semantics definition is:

Wlp (Csem(WHILE S DO C)) q
= λs. ∀n. IterWlp n (Ssem S) (Csem C) s

where IterWlp 0 p c q = λs. ¬(p s)⇒ q s
IterWlp (n+1) p c q = λs. p s⇒Wlp c (IterWlp n p c q) s

the definition below in the specification language mimics this:

wlp((WHILE S DO C),Q)

=
∧

n. iterwlp n S C Q

where iterwlp 0 S C Q = (¬S ⇒ Q)
iterwlp (n+1) S C Q = (S ⇒ wlp(C,(iterwlp n S C Q)))

Thus wlp((WHILE S DO C),Q) = iterwlp 0 S C Q ∧ iterwlp 1 S C Q · · ·
so in terms of the discussion of infinite conjunction above, we are taking

Sn to be iterwlp n S C Q. In Winskel’s book it is shown how Gödel’s

β-function1 can be used to build a finite first order formula expressing

wlp((WHILE S DO C),Q), so infinite conjunctions are not needed. However,

we use the infinite formula above since it makes verifying P1 and P2 straight-

forward.

To show P1, i.e. ⊢ {wlp((WHILE S DO C),Q)} WHILE S DO C {Q}, it is

sufficient to find an invariant R (perhaps provided by an annotation) such

that:

⊢ wlp(WHILE S DO C,Q)⇒ R

⊢ R ∧ ¬S ⇒ Q

⊢ {R ∧ S} C {R}
P1 will then follow by the WHILE-rule and consequence rules. In fact taking

R to be wlp(WHILE S DO C,Q) will work! The first of the three conditions

1http://planetmath.org/encyclopedia/GodelsBetaFunction.html
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above is trivial. The second is almost trivial: iterwlp 0 S C Q is ¬S ⇒ Q,

so ⊢ (
∧

n. iterwlp n S C Q)⇒ (¬S ⇒ Q), hence:

⊢ (
∧
n. iterwlp n S C Q) ∧ ¬S ⇒ Q

i.e.:

⊢ wlp(WHILE S DO C,Q) ∧ ¬S ⇒ Q

For the third property we have by induction, for arbitrary n:

⊢ {wlp(C,iterwlp n S C Q)} C {iterwlp n S C Q}
Hence by the definition of iterwlp and precondition strengthening:

⊢ {(iterwlp (n+1) S C Q) ∧ S} C {iterwlp n S C Q}
Applying the rule of specification conjunction infinitely many times :

⊢ {∧n. (iterwlp (n+1) S C Q) ∧ S} C {∧n. iterwlp n S C Q}
In general ⊢ (

∧
n. Sn) ⇒ (

∧
n. Sn+1) for any infinite set of statements

S0, S1, . . . since the set of statements being conjoined in the consequent of

the implication is a subset of the set being conjoined in the antecedent. Thus

by precondition strengthening applied to the Hoare triple above:

⊢ {
∧
n. (iterwlp n S C Q) ∧ S} C {

∧
n. iterwlp n S C Q}

In general ⊢ (
∧

n. (Sn∧S))⇔ ((
∧
n. Sn)∧S), so by precondition strength-

ening:

⊢ {(
∧
n. iterwlp n S C Q) ∧ S} C {

∧
n. iterwlp n S C Q}

which by the definition of wlp(WHILE S DO C,Q) is:

⊢ {wlp(WHILE S DO C,Q) ∧ S} C {wlp(WHILE S DO C,Q)}
This is the desired invariance property of R. We have thus proved P1 when

C is WHILE S DO C.

To show P2, we must show:

Ssem (wlp(WHILE S DO C,Q)) = Wlp (Csem (WHILE S DO C)) (Ssem Q)

i.e.:

Ssem (
∧

n. iterwlp n S C Q)
= Wlp (λs1 s2. ∃n. Iter n (Ssem S) (Csem C) s1 s2) (Ssem Q)
= λs. ∀s′. (λs1 s2. ∃n. Iter n (Ssem S) (Csem C) s1 s2) s s′ ⇒ (Ssem Q) s′

= λs. ∀s′. (∃n. Iter n (Ssem S) (Csem C) s s′)⇒ Ssem Q s′

= λs. ∀s′ n. Iter n (Ssem S) (Csem C) s s′ ⇒ Ssem Q s′
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Now Ssem (
∧

n. iterwlp n S C Q) s ⇔ ∀n. Ssem (iterwlp n S C Q) s so

we need to show for arbitrary s that:

∀n. Ssem (iterwlp n S C Q) s
= ∀s′ n. Iter n (Ssem S) (Csem C) s s′ ⇒ Ssem Q s′

We will show by induction of n that:

Ssem (iterwlp n S C Q) s
= ∀s′. Iter n (Ssem S) (Csem C) s s′ ⇒ Ssem Q s′

This is sufficient as ∀n. (P1 n = P2 n) implies (∀n. P1 n) = (∀n. P2 n). Recall

the definitions of Iter and iterwlp:

Iter 0 p c s1 s2 = ¬(p s1) ∧ (s1=s2)
Iter (n+1) p c s1 s2 = p s1 ∧ ∃s. c s1 s ∧ Iter n p c s s2

iterwlp 0 S C Q = (¬S ⇒ Q)
iterwlp (n+1) S C Q = (S ⇒ wlp(C,(iterwlp n S C Q)))

The basis case (n = 0) is:

Ssem (iterwlp 0 S C Q) s
= ∀s′. Iter 0 (Ssem S) (Csem C) s s′ ⇒ Ssem Q s′

i.e.:

(¬(Ssem S s′)⇒ Ssem Q s′)
= ∀s′. (¬(Ssem S s) ∧ (s = s′))⇒ Ssem Q s′

This is clearly true. The induction step case is

Ssem (iterwlp (n+1) S C Q) s
= ∀s′. Iter (n+1) (Ssem S) (Csem C) s s′ ⇒ Ssem Q s′

Unfolding Iter and iterwlp yields:

Ssem (S ⇒ wlp(C,(iterwlp n S C Q))) s
= ∀s′. (Ssem S s ∧ ∃s′′. Csem C s s′′ ∧ Iter n (Ssem S) (Csem C) s′′ s′)

⇒ Ssem Q s′

Evaluating the LHS:

(Ssem S s⇒ Ssem (wlp(C,(iterwlp n S C Q))) s)
= ∀s′. (Ssem S s ∧ ∃s′′. Csem C s s′′ ∧ Iter n (Ssem S) (Csem C) s′′ s′)

⇒ Ssem Q s′

Using P2 by the structural induction hypothesis (note we are doing a math-

ematical induction on n inside the structural induction on C to prove P2).

(Ssem S s⇒Wlp (Csem C) (Ssem (iterwlp n S C Q)) s)
= ∀s′. (Ssem S s ∧ ∃s′′. Csem C s s′′ ∧ Iter n (Ssem S) (Csem C) s′′ s′)

⇒ Ssem Q s′
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Expanding Wlp:

(Ssem S s⇒ (λs. ∀s′. (Csem C) s s′ ⇒ (Ssem (iterwlp n S C Q)) s′) s)
= ∀s′. (Ssem S s ∧ ∃s′′. Csem C s s′′ ∧ Iter n (Ssem S) (Csem C) s′′ s′)

⇒ Ssem Q s′

Reducing the LHS:

(Ssem S s⇒ ∀s′. Csem C s s′ ⇒ Ssem (iterwlp n S C Q) s′)
= ∀s′. (Ssem S s ∧ ∃s′′. Csem C s s′′ ∧ Iter n (Ssem S) (Csem C) s′′ s′)

⇒ Ssem Q s′

The induction hypothesis for the induction on n we are doing is:

Ssem (iterwlp n S C Q) s
= ∀s′. Iter n (Ssem S) (Csem C) s s′ ⇒ Ssem Q s′

From this and the preceding equation:

(Ssem S s
⇒ ∀s′. Csem C s s′ ⇒ (∀s′′. Iter n (Ssem S) (Csem C) s′ s′′ ⇒ Ssem Q s′′))

= ∀s′. (Ssem S s ∧ ∃s′′. Csem C s s′′ ∧ Iter n (Ssem S) (Csem C) s′′ s′)
⇒ Ssem Q s′

Which simplifies to:

(Ssem S s
⇒ ∀s′ s′′. Csem C s s′ ⇒ Iter n (Ssem S) (Csem C) s′ s′′ ⇒ Ssem Q s′′)

= ∀s′ s′′. (Ssem S s ∧ Csem C s s′′ ∧ Iter n (Ssem S) (Csem C) s′′ s′)
⇒ Ssem Q s′

Switching s′ and s′′ in the RHS and pulling quantifiers to the front:

(∀s′ s′′. Ssem S s
⇒ Csem C s s′ ⇒ Iter n (Ssem S) (Csem C) s′ s′′ ⇒ Ssem Q s′′)

= ∀s′ s′′. (Ssem S s ∧ Csem C s s′ ∧ Iter n (Ssem S) (Csem C) s′ s′′)
⇒ Ssem Q s′′

which is true. Thus we have proved P2 when C is WHILE S DO C. This was

the last case so we have now proved P1 and P2 for all commands C.

4.4 Verification conditions via wlp

Weakest preconditions provide a way to understand verification conditions

and to improve them. Recall property P1: ⊢ {wlp(C,Q)} C {Q}. To prove

{P} C {Q} it is thus sufficient (by precondition strengthening) to prove:

⊢ P ⇒ wlp(C,Q) and thus one can view P ⇒ wlp(C,Q) as a single ‘super

verification condition’ for the goal {P} C {Q} which is generated without

having to annotate C! This works fine if C is loop-free, i.e. contains no
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WHILE-commands. If C does contain WHILE-commands then wlp(C,Q) will

be an infinite statement.2 Proving such a statement will typically involve

proving by induction what is essentially the verification condition for an in-

variant. There is thus no getting away from finding invariants! However,

it is possible to use the idea of weakest preconditions to both explain and

improve the verification condition method. To see how it explains verifica-

tion conditions recall from page 43 that the verification condition generated

by: {P} C1; . . . ;Cn−1;V :=E {Q} is: {P} C1; . . . ;Cn−1 {Q[E/V ]} which
is {P} C1; . . . ;Cn−1 {wlp(V :=E,Q)}. We can generalise this observation

to reduce the number of annotations needed in sequences by only requir-

ing annotations before commands that are not loop-free (i.e. contain WHILE-

commands) and then to modify the verification conditions for sequences:

Sequences

1. The verification conditions generated by

{P} C1; . . . ;Cn−1; {R} Cn {Q}

(where Cn contains a WHILE-command) are:

(a) the verification conditions generated by

{P} C1; . . . ;Cn−1 {R}

(b) the verification conditions generated by

{R} Cn {Q}

2. The verification conditions generated by

{P} C1; . . . ;Cn−1;Cn {Q}

(where Cn is loop-free) are the verification conditions generated by

{P} C1; . . . ;Cn−1 {wlp(Cn,Q)}

The justification of these improved verification conditions is essentially the

same as that given for the original ones, but using P1 rather than the as-

2It is possible to represent wlp(WHILE S DO C,Q) by a finite statement in a first order
theory of arithmetic, but the statement is not suitable for use in actual verifications [24].
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signment axiom. However, using wlp ideas we can do even better and reduce

the requirement for annotations to just invariants of WHILE-commands. The

outline of the method is as follows:

• define awp(C,Q) which is similar to wlp(C,Q) except for WHILE-

commands, which must be annotated;

• define a set of statements wvc(C,Q) giving the conditions needed to

verify that user-annotated invariants of all WHILE-loops in C really are

invariants.

It will follow from the definitions of awp and wvc that the conjunction of the

statements in wvc(C,Q) entails {awp(C,Q)} C {Q}. If we define
∧
S to be

the conjunction of all the statements in S, then this can be written as:

⊢
∧
wvc(C,Q)⇒ {awp(C,Q)} C {Q}.

Hence by Modus Ponens and precondition strengthening, to prove

{P} C {Q} it is sufficient to prove ⊢
∧
wvc(C,Q) and ⊢ P ⇒ awp(C,Q).

If C is loop-free then it turns out that awp(C,Q) = wlp(C,Q) and

wvc(C,Q) = {}, so this method collapses to just proving ⊢ P ⇒
wlp(C,Q). The definitions of awp(C,Q) and wvc(C,Q) are recursive on C

and are given below. It is assumed that all WHILE-commands are annotated:

WHILE S DO {R} C.

awp(V := E,Q) = Q[E/V ]

awp(C1 ; C2, Q) = awp(C1, awp(C2, Q))

awp(IF S THEN C1 ELSE C2, Q) = (S ∧ awp(C1, Q)) ∨ (¬S ∧ awp(C2, Q))

awp(WHILE S DO {R} C,Q) = R

wvc(V := E,Q) = {}
wvc(C1 ; C2, Q) = wvc(C1, awp(C2, Q)) ∪ wvc(C2, Q)

wvc(IF S THEN C1 ELSE C2, Q) = wvc(C1, Q) ∪ wvc(C2, Q)

wvc(WHILE S DO {R} C,Q) = {R ∧ ¬S ⇒ Q, R ∧ S ⇒ awp(C,R)}
∪ wvc(C,R)
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Theorem
∧
wvc(C,Q)⇒ {awp(C,Q)} C {Q}.

Proof outline

Induction on C.

C = V :=E.
∧
wvc(V :=E,Q)⇒ {awp(C,Q)} C {Q} is T⇒ {Q[E/V ]} V := E {Q}

C = C1;C2.
∧
wvc(C1;C2, Q)⇒ {awp(C1;C2, Q)} C1;C2 {Q} is

∧
(wvc(C1, awp(C2, Q))∪wvc(C2, Q))⇒ {awp(C1, awp(C2, Q))} C1;C2 {Q}.

By induction
∧
wvc(C2, Q)⇒ {awp(C2, Q)} C2 {Q}

and
∧
wvc(C1, awp(C2, Q))⇒ {awp(C1, awp(C2, Q))} C1 {awp(C2, Q)},

hence result by the Sequencing Rule.

C = IF S THEN C1 ELSE C2.
∧
wvc(IF S THEN C1 ELSE C2, Q)
⇒ {awp(IF S THEN C1 ELSE C2, Q)} IF S THEN C1 ELSE C2 {Q}

is

∧
(wvc(C1, Q) ∪ wvc(C2, Q))
⇒ {(S ∧ awp(C1, Q)) ∨ (¬S ∧ awp(C2, Q)} IF S THEN C1 ELSE C2 {Q} .

By induction
∧
wvc(C1, Q)⇒ {awp(C1, Q)} C1 {Q}

and
∧
wvc(C2, Q)⇒ {awp(C2, Q)} C2 {Q}. Strengthening preconditions

gives
∧
wvc(C1, Q)⇒ {awp(C1, Q) ∧ S} C1 {Q}

and
∧
wvc(C2, Q)⇒ {awp(C2, Q) ∧ ¬S} C2 {Q}, hence

∧
wvc(C1, Q)⇒ {((S ∧ awp(C1, Q)) ∨ (¬S ∧ awp(C2, Q))) ∧ S} C1 {Q}

and
∧
wvc(C2, Q)⇒ {((S ∧awp(C1, Q))∨ (¬S∧awp(C2, Q)))∧¬S} C2 {Q},

hence result by the Conditional Rule.

C = WHILE S DO C.
∧
wvc(WHILE S DO {R} C,Q)⇒ {awp(WHILE S DO {R} C,Q)} WHILE S DO {R} C {Q}

is
∧
({R ∧ ¬S ⇒ Q, R ∧ S ⇒ awp(C,R)} ∪ wvc(C,R)) ⇒

{R} WHILE S DO {R} C {Q}.
By induction

∧
wvc(C,R) ⇒ {awp(C,R)} C {R}, hence result by WHILE-

Rule.

Q.E.D.
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Example

awp(R:=R-Y;Q:=Q+1, X = R+ Y× Q)
= wlp(R:=R-Y;Q:=Q+1, X = R + Y× Q)
= X = R-Y + Y× Q+1

awp(WHILE Y ≤ R DO {X = R+ Y× Q} R:=R-Y;Q:=Q+1, X = R+Y×Q ∧ R<Y)
= X = R + Y× Q

awp(Q:=0;WHILE Y ≤ R DO {X = R + Y× Q} R:=R-Y; Q:=Q+1, X = R+Y×Q ∧ R<Y)
= X = R + Y× 0

awp(R=X;Q:=0;WHILE Y ≤ R DO {X = R + Y× Q} R:=R-Y; Q:=Q+1, X = R+Y×Q ∧ R<Y)
= X = X + Y× 0

wvc(R:=R-Y;Q:=Q+1, X) = {}

wvc(WHILE Y ≤ R DO {X = R+ Y× Q} R:=R-Y;Q:=Q+1, X = R+Y×Q ∧ R<Y)
= {X = R+ Y× Q ∧ ¬(Y ≤ R)⇒ X = R+Y×Q ∧ R<Y,

X = R+ Y× Q ∧ Y ≤ R⇒ X = R-Y + Y× Q+1} ∪ {}

wvc(Q:=0;WHILE Y ≤ R DO {X = R + Y× Q} R:=R-Y; Q:=Q+1, X = R+Y×Q ∧ R<Y)
= {} ∪ {X = R + Y× Q ∧ ¬(Y ≤ R)⇒ X = R+Y×Q ∧ R<Y,

X = R + Y× Q ∧ Y ≤ R⇒ X = R-Y + Y× Q+1}

wvc(R=X;Q:=0;WHILE Y ≤ R DO {X = R + Y× Q} R:=R-Y; Q:=Q+1, X = R+Y×Q ∧ R<Y)
= {} ∪ {X = R + Y× Q ∧ ¬(Y ≤ R)⇒ X = R+Y×Q ∧ R<Y,

X = R + Y× Q ∧ Y ≤ R⇒ X = R-Y + Y× Q+1}

X = X+ Y× 0 is T so by the theorem proved above:

⊢ (X = R+ Y× Q ∧ ¬(Y ≤ R)⇒ X = R+Y×Q ∧ R<Y
∧
X = R+ Y× Q ∧ Y ≤ R⇒ X = R-Y + Y× Q+1)
⇒
{T} R=X;Q:=0;WHILE Y ≤ R DO {X = R+ Y× Q} {X = R+Y×Q ∧ R<Y}

The calculation of awp(C,Q) and wvc(C,Q) is not that different from clas-

sical verification condition generation, but has the advantage of requiring

fewer annotations.

4.4.1 Strongest postconditions

Weakest preconditions are calculated ‘backwards’ starting from a postcon-

dition. There is a dual theory of strongest postconditions that are calcu-
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lated ‘forwards’ starting from a precondition. The strongest postcondition

sp(C,P) has the property that ⊢ {P} C {sp(C,P)} and is strongest in

the sense that for any Q: if ⊢ {P} C {Q} then ⊢ sp(C,P) ⇒ Q. Intu-

itively sp(C,P) is a symbolic representation of the state after executing C

in an initial state described by P . For assignments:

sp(V :=E,P) = ∃v. (V = E[v/V ]) ∧ P[v/V ]}
The existentially quantified variable v is the value of V in the state before

executing the assignment (the initial state). The strongest postcondition

expresses that after the assignment, the value of V is the value of E evaluated

in the initial state (hence E[v/V ]) and the precondition evaluated in the

initial state (hence P[v/V ]) continues to hold. Thus if the initial state is

represented symbolically by the statement (V = v) ∧ P then the state after

executing V :=E is represented symbolically by (V = E[v/V ]) ∧ P[v/V ].

For loop-free commands C, the calculation of sp(C,P) amounts to the

‘symbolic execution’ of C starting from a symbolic state P . An advantages

of symbolic execution is that it can allow the representation of the symbolic-

state-so-far to be simplified ‘on-the-fly’, which may prune the statements

generated (e.g. if the truthvalue of a conditional test can be determined then

only one branch of the conditional need be symbolically executed). In the

extreme case when P is so constraining that it is only satisfied by a single

state, s say, then calculating sp(C,P) collapses to just running C in s - the

truthvalue of each test is determined so there is no need to consider both

branches of conditionals [12]. Backwards pruning, though possible, is less

natural when calculating weakest preconditions.

Several modern automatic verification methods are based on computing

strongest postconditions for loop free code by symbolic execution. It is also

possible to generate strongest postcondition verification conditions for WHILE-

commands in a manner similar, but dual, to that described above using

weakest preconditions. However, this is not the standard approach, though

it may have future potential, especially if combined with backward methods.

4.4.2 Syntactic versus semantic proof methods

Originally Hoare logic was a proof theory for program verification that pro-

vided a method to prove programs correct by formal deduction. In practice,

only simple programs could be proved by hand, and soon automated methods

based on verification conditions emerged. The first idea was to convert the
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problem of proving {P} C {Q} into a purely mathematical/logical problem

of proving statements in first order logic (i.e. verification conditions) as in the

early days theorem provers mainly supported first order logic. However, now

we have theorem proving technology for more expressive logics (e.g. higher

order logic) that are powerful enough to represent directly the semantics of

Hoare triples. Thus we now have two approaches to proving {P} C {Q}:

(i) Syntactic: first generate VCs and then prove them;

(ii) Semantic: directly prove Hsem (Ssem P ) (Csem C) (Ssem Q).

Both of these approaches are used. The VC method is perhaps more common

for shallow analysis of large code bases and the semantic method for full proof

of correctness, though this is an oversimplification.
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Chapter 5

Total Correctness

The axioms and rules of Hoare logic are extended to total correct-

ness. Verification conditions for total correctness specifications

are given.

In Section 1.3 the notation [P ] C [Q] was introduced for the total correct-

ness specification that C halts in a state satisfying Q whenever it is executed

in a state satisfying P . At the end of the section describing the WHILE-rule

(Section 2.1.8), it is shown that the rule is not valid for total correctness spec-

ifications. This is because WHILE-commands may introduce non-termination.

None of the other commands can introduce non-termination, and thus the

rules of Hoare logic can be used.

5.1 Non-looping commands

Replacing curly brackets by square ones results in the following axioms and

rules.

Assignment axiom for total correctness

⊢ [P[E/V ]] V :=E [P ]

Precondition strengthening for total correctness

⊢ P ⇒ P ′, ⊢ [P ′] C [Q]

⊢ [P ] C [Q]

Postcondition weakening for total correctness

⊢ [P ] C [Q′], ⊢ Q′ ⇒ Q

⊢ [P ] C [Q]
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Specification conjunction for total correctness

⊢ [P1] C [Q1], ⊢ [P2] C [Q2]

⊢ [P1 ∧ P2] C [Q1 ∧Q2]

Specification disjunction for total correctness

⊢ [P1] C [Q1], ⊢ [P2] C [Q2]

⊢ [P1 ∨ P2] C [Q1 ∨Q2]

Sequencing rule for total correctness

⊢ [P ] C1 [Q], ⊢ [Q] C2 [R]

⊢ [P ] C1;C2 [R]

Derived sequencing rule for total correctness

⊢ P ⇒ P1

⊢ [P1] C1 [Q1] ⊢ Q1 ⇒ P2

⊢ [P2] C2 [Q2] ⊢ Q2 ⇒ P3

. .

. .

. .
⊢ [Pn] Cn [Qn] ⊢ Qn ⇒ Q

⊢ [P ] C1; . . . ; Cn [Q]

Conditional rule for total correctness

⊢ [P ∧ S] C1 [Q], ⊢ [P ∧ ¬S] C2 [Q]

⊢ [P ] IF S THEN C1 ELSE C2 [Q]

The rules just given are formally identical to the corresponding rules of

Hoare logic, except that they have [ and ] instead of { and }. It is thus clear
that the following is a valid derived rule.

⊢ {P} C {Q}
⊢ [P ] C [Q]

C contains no WHILE-commands
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5.2 The termination of assignments

Note that the assignment axiom for total correctness states that assignment

commands always terminate, which implicitly assumes that all function ap-

plications in expressions terminate. This might not be the case if func-

tions could be defined recursively. For example, consider the assignment:

X := fact(−1), where fact(n) is defined recursively by:

fact(n) = if n = 0 then 1 else n× fact(n− 1)

It is also assumed that erroneous expressions like 1/0 do not cause problems.

Most programming languages will cause an error stop when division by zero

is encountered. However, in our logic it follows that:

⊢ [T] X := 1/0 [X = 1/0]

i.e. the assignment X := 1/0 always halts in a state in which the condition

X = 1/0 holds. This assumes that 1/0 denotes some value that X can have.

There are two possibilities:

(i) 1/0 denotes some number;

(ii) 1/0 denotes some kind of ‘error value’.

It seems at first sight that adopting (ii) is the most natural choice. However,

this makes it tricky to see what arithmetical laws should hold. For example, is

(1/0)×0 equal to 0 or to some ‘error value’? If the latter, then it is no longer

the case that n× 0 = 0 is a valid general law of arithmetic? It is possible to

make everything work with undefined and/or error values, but the resultant

theory is a bit messy. We shall assume here that arithmetic expressions

always denote numbers, but in some cases exactly what the number is will

be not fully specified. For example, we will assume that m/n denotes a

number for any m and n, but the only property of “/” that is assumed is:

¬(n = 0) ⇒ (m/n)× n = m

It is not possible to deduce anything about m/0 from this.

Another approach to errors is to extend the semantics of commands to

allow ‘faults’ to be results as well as states. This approach is used in Chap-

ter 7 to handle memory errors, but a similar idea could also handle other

expression evaluation errors (though at the expense of a more complex se-

mantics).
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5.3 WHILE-rule for total correctness

WHILE-commands are the only commands in our little language that can

cause non-termination, they are thus the only kind of command with a non-

trivial termination rule. The idea behind the WHILE-rule for total correctness

is that to prove WHILE S DO C terminates one must show that some non-

negative quantity decreases on each iteration of C. This decreasing quantity

is called a variant. In the rule below, the variant is E, and the fact that

it decreases is specified with an auxiliary variable n. An extra hypothesis,

⊢ P ∧ S ⇒ E ≥ 0, ensures the variant is non-negative.

WHILE-rule for total correctness

⊢ [P ∧ S ∧ (E = n)] C [P ∧ (E < n)], ⊢ P ∧ S ⇒ E ≥ 0

⊢ [P ] WHILE S DO C [P ∧ ¬S]

where E is an integer-valued expression and n is an auxiliary variable not
occurring in P , C, S or E.

Example: We show:

⊢ [Y > 0] WHILE Y≤R DO (R:=R-Y; Q:=Q+1) [T]

Take

P = Y > 0

S = Y ≤ R

E = R

C = (R:=R-Y Q:=Q+1)

We want to show ⊢ [P ] WHILE S DO C [T]. By the WHILE-rule for total

correctness it is sufficient to show:

(i) ⊢ [P ∧ S ∧ (E = n)] C [P ∧ (E < n)]

(ii) ⊢ P ∧ S ⇒ E ≥ 0

and then use postcondition weakening to weaken the postcondition in the

conclusion of the WHILE-rule to T. Statement (i) above is proved by showing:

⊢ {P ∧ S ∧ (E = n)} C {P ∧ (E < n)}
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and then using the total correctness rule for non-looping commands. The

verification condition for this partial correctness specification is:

Y > 0 ∧ Y ≤ R ∧ R = n ⇒ (Y > 0 ∧ R < n)[Q+1/Q][R−Y/R]
i.e.

Y > 0 ∧ Y ≤ R ∧ R = n ⇒ Y > 0 ∧ R−Y < n

which follows from the laws of arithmetic.

Statement (ii) above is just ⊢ Y > 0 ∧ Y ≤ R ⇒ R ≥ 0, which follows

from the laws of arithmetic.

5.4 Termination specifications

As already discussed in Section 1.3, the relation between partial and total

correctness is informally given by the equation:

Total correctness = Termination + Partial correctness.

This informal equation above can now be represented by the following

two formal rule of inferences.

⊢ {P} C {Q}, ⊢ [P ] C [T]

⊢ [P ] C [Q]

⊢ [P ] C [Q]

⊢ {P} C {Q}, ⊢ [P ] C [T]

5.5 Verification conditions for termination

The idea of verification conditions is easily extended to deal with total cor-

rectness. We just consider the simple approach of Chapter 3 here, but the

improved method based on weakest preconditions described in Section 4.4 is

easily adapted to deal with termination.

To generate verification conditions for WHILE-commands, it is necessary

to add a variant as an annotation in addition to an invariant. No other extra

annotations are needed for total correctness. We assume this is added directly

after the invariant, surrounded by square brackets. A correctly annotated

total correctness specification of a WHILE-command thus has the form

[P ] WHILE S DO {R}[E] C [Q]
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where R is the invariant and E the variant. Note that the variant is intended

to be a non-negative expression that decreases each time around the WHILE

loop. The other annotations, which are enclosed in curly brackets, are meant

to be conditions that are true whenever control reaches them. The use of

square brackets around variant annotations is meant to be suggestive of this

difference.

The rules for generating verification conditions from total correctness

specifications are now given in the same format as the rules for generating

partial correctness verification conditions given in Section 3.4.

5.6 Verification condition generation

Assignment commands

The single verification condition generated by

[P ] V :=E [Q]

is
P ⇒ Q[E/V ]

Example: The single verification condition for: [X=0] X:=X+1 [X=1] is:

X=0 ⇒ (X+1)=1. This is the same as for partial correctness.

Conditionals

The verification conditions generated from

[P ] IF S THEN C1 ELSE C2 [Q]

are

(i) the verification conditions generated by [P ∧ S] C1 [Q]

(ii) the verifications generated by [P ∧ ¬S] C2 [Q]

If C1; . . . ;Cn is properly annotated, then (see page 41) it must be of one

of the two forms:

1. C1; . . . ;Cn−1;{R}Cn, or

2. C1; . . . ;Cn−1;V := E.
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where, in both cases, C1; . . . ;Cn−1 is a properly annotated command.

Sequences

1. The verification conditions generated by:

[P ] C1; . . . ;Cn−1; {R} Cn [Q]

(where Cn is not an assignment) are:

(a) the verification conditions generated by

[P ] C1; . . . ;Cn−1 [R]

(b) the verification conditions generated by

[R] Cn [Q]

2. The verification conditions generated by

[P ] C1; . . . ;Cn−1;V :=E [Q]

are the verification conditions generated by

[P ] C1; . . . ;Cn−1 [Q[E/V ]]

Example: The verification conditions generated from

[X=x ∧ Y=y] R:=X; X:=Y; Y:=R [X=y ∧ Y=x]

are those generated by

[X=x ∧ Y=y] R:=X; X:=Y [(X=y ∧ Y=x)[R/Y]]

which, after doing the substitution, simplifies to

[X=x ∧ Y=y] R:=X; X:=Y [X=y ∧ R=x]

The verification conditions generated by this are those generated by

[X=x ∧ Y=y] R:=X [(X=y ∧ R=x)[Y/X]]

which, after doing the substitution, simplifies to
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[X=x ∧ Y=y] R:=X [Y=y ∧ R=x].

The only verification condition generated by this is

X=x ∧ Y=y ⇒ (Y=y ∧ R=x)[X/R]

which, after doing the substitution, simplifies to

X=x ∧ Y=y ⇒ Y=y ∧ X=x

which is obviously true.

A correctly annotated specification of a WHILE-command has the form

[P ] WHILE S DO {R}[E] C [Q]

The verification conditions are:

WHILE-commands

The verification conditions generated from

[P ] WHILE S DO {R}[E] C [Q]

are

(i) P ⇒ R

(ii) R ∧ ¬S ⇒ Q

(iii) R ∧ S ⇒ E ≥ 0

(iv) the verification conditions generated by

[R ∧ S ∧ (E = n)] C[R ∧ (E < n)]

where n is an auxiliary variable not occurring in P , C, S R, E, Q.

Example: The verification conditions for

[R=X ∧ Q=0]
WHILE Y≤R DO {X=R+Y×Q}[R]
(R:=R-Y; Q=Q+1)

[X = R+(Y×Q) ∧ R<Y]

are:
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(i) R=X ∧ Q=0 ⇒ (X = R+(Y×Q))

(ii) X = R+Y×Q ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

(iii) X = R+Y×Q ∧ Y≤R ⇒ R≥0

together with the verification condition for

[X = R+(Y×Q) ∧ (Y≤R) ∧ (R=n)]
(R:=R-Y; Q:=Q+1)

[X=R+(Y×Q) ∧ (R<n)]

which (exercise for the reader) consists of the single condition

(iv) X = R+(Y×Q) ∧ (Y≤R) ∧ (R=n) ⇒ X = (R-Y)+(Y×(Q+1)) ∧ ((R-Y)<n)

But this isn’t true (take Y=0)!

We leave it as an exercise for the reader to extend the argument given in

Section 3.5 to a justification of the total correctness verification conditions.
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Chapter 6

Program Refinement

Floyd-Hoare Logic is a method of proving that existing programs

meet their specifications. It can also be used as a basis for ‘refin-

ing’ specifications to programs – i.e. as the basis for a program-

ming methodology.

6.1 Introduction

The task of a programmer can be viewed as taking a specification consisting of

a precondition P and postcondition Q and then coming up with a command

C such that ⊢ [P ] C [Q].

Theories of refinement present rules for ‘calculating’ programs C from

specification P and Q. A key idea, due to Ralph Back [3] of Finland (and

subsequently rediscovered by both Joseph Morris [21] and Carroll Morgan

[20]), is to introduce a new class of programming constructs, called specifica-

tions. These play the same syntactic role as commands, but are not directly

executable though they are guaranteed to achieve a given postcondition from

a given precondition. The resulting generalized programming language con-

tains pure specifications, pure code and mixtures of the two. Such languages

are called wide spectrum languages.

The approach taken here1 follows the style of refinement developed by

Morgan, but is founded on Floyd-Hoare logic, rather than on Dijkstra’s the-

ory of weakest preconditions (see Section 4.3.3). This foundation is a bit more

concrete and syntactical than the traditional one: a specification is identi-

fied with its set of possible implementations and refinement is represented as

manipulations on sets of ordinary commands. This approach aims to con-

1The approach to refinement described here is due to Paul Curzon. Mark Staples and
Joakim Von Wright provided some feedback on an early draft, which I have incorporated

89
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vey the ‘look and feel’ of (Morgan style) refinement using the notational and

conceptual ingredients introduced in the preceding chapters.

The notation [P, Q] will be used for specifications, and thus:

[P, Q] = { C | ⊢ [P ] C [Q] }

The process of refinement will then consist of a sequence of steps that make

systematic design decisions to narrow down the sets of possible implemen-

tations until a unique implementation is reached. Thus a refinement of a

specification S to an implementation C has the form:

S ⊇ S1 ⊇ S2 · · · ⊇ Sn ⊇ {C}
The initial specification S has the form [P, Q] and each intermediate

specification Si is obtained from its predecessor S i−1 by the application of a

refinement law.

In the literature S ⊇ S ′ is normally written S ⊑ S ′. The use of “⊇”
here, instead of the more abstract “⊑”, reflects the concrete interpretation

of refinement as the narrowing down of sets of implementations.

6.2 Refinement laws

The refinement laws are derived from the axioms and rules of Floyd-Hoare

Logic. In order to state these laws, the usual notation for commands is

extended to sets of commands as follows (C, C1, C2 etc. range over sets of

commands):

C1; · · · ;Cn = { C1; · · · ;Cn | C1 ∈ C1 ∧ · · · ∧ Cn ∈ Cn }

BEGIN VAR V1; · · · VAR Vn; C END = { BEGIN VAR V1; · · · VAR Vn; C END | C ∈ C }

IF S THEN C = { IF S THEN C | C ∈ C }

IF S THEN C1 ELSE C2 = { IF S THEN C1 ELSE C2 | C1 ∈ C1 ∧ C2 ∈ C2 }

WHILE S DO C = { WHILE S DO C | C ∈ C }

This notation for sets of commands can be viewed as constituting a wide

spectrum language.

Note that such sets of commands are monotonic with respect to refine-

ment (i.e. inclusion). If C ⊇ C′, C1 ⊇ C′1, . . . , Cn ⊇ C′n then:
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C1; · · · ;Cn ⊇ C ′
1
; · · · ;C′

n

BEGIN VAR V1; · · · VAR Vn; C END ⊇ BEGIN VAR V1; · · · VAR Vn; C′ END

IF S THEN C ⊇ IF S THEN C′

IF S THEN C1 ELSE C2 ⊇ IF S THEN C′
1
ELSE C′

2

WHILE S DO C ⊇ WHILE S DO C′

This monotonicity shows that a command can be refined by separately re-

fining its constituents.

The following ‘laws’ follow directly from the definitions above and the

axioms and rules of Floyd-Hoare logic.

The Skip Law

[P, P ] ⊇ {SKIP}

Derivation

C ∈ {SKIP}
⇔ C = SKIP

⇒ ⊢ [P ] C [P ] (Skip Axiom)
⇔ C ∈ [P, P ] (Definition of [P, P ])

The Assignment Law

[P[E/V ], P ] ⊇ {V := E}

Derivation

C ∈ {V := E}
⇔ C = V := E
⇒ ⊢ [P[E/V ]] C [P ] (Assignment Axiom)
⇔ C ∈ [P[E/V ], P ] (Definition of [P[E/V ], P ])
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Derived Assignment Law

[P, Q] ⊇ {V :=E}
provided ⊢ P ⇒ Q[E/V ]

Derivation

C ∈ {V := E}
⇔ C = V := E
⇒ ⊢ [Q[E/V ]] C [Q] (Assignment Axiom)
⇒ ⊢ [P ] C [Q] (Precondition Strengthening & ⊢ P ⇒ Q[E/V ])
⇔ C ∈ [P, Q] (Definition of [P, Q])

Precondition Weakening

[P, Q] ⊇ [R, Q]

provided ⊢ P ⇒ R

Derivation

C ∈ [R, Q]
⇔ ⊢ [R] C [Q] (Definition of [R, Q])
⇒ ⊢ [P ] C [Q] (Precondition Strengthening & ⊢ P ⇒ R)
⇔ C ∈ [P, Q] (Definition of [P, Q])

Postcondition Strengthening

[P, Q] ⊇ [P, R]

provided ⊢ R ⇒ Q

Derivation

C ∈ [P, R]
⇔ ⊢ [P ] C [R] (Definition of [R, Q])
⇒ ⊢ [P ] C [Q] (Postcondition Weakening & ⊢ R⇒ Q)
⇔ C ∈ [P, Q] (Definition of [P, Q])
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The Sequencing Law

[P, Q] ⊇ [P, R] ; [R, Q]

Derivation

C ∈ [P, R] ; [R, Q]
⇔ C ∈ { C1 ; C2 | C1 ∈ [P, R] & C2 ∈ [R, Q]} (Definition of C1 ; C2)
⇔ C ∈ { C1 ; C2 | ⊢ [P ] C1 [R] & ⊢ [R] C2 [Q]} (Definition of [P, R] and [R, Q])
⇒ C ∈ { C1 ; C2 | ⊢ [P ] C1 ; C2 [Q]} (Sequencing Rule)
⇒ ⊢ [P ] C [Q]
⇔ C ∈ [P, Q] (Definition of [P, Q])

The Block Law

[P, Q] ⊇ BEGIN VAR V ; [P, Q] END

where V does not occur in P or Q

Derivation

C ∈ BEGIN VAR V ; [P, Q] END
⇔ C ∈ {BEGIN VAR V ; C′ END |

C′ ∈ [P, Q]} (Definition of BEGIN VAR V ; C END)
⇔ C ∈ {BEGIN VAR V ; C′ END |

⊢ [P ] C′ [Q]} (Definition of [P, Q])
⇒ C ∈ {BEGIN VAR V ; C′ END |

⊢ [P ] BEGIN VAR V ; C′ END [Q]} (Block Rule & V not in P or Q)
⇒ ⊢ [P ] C [Q]
⇔ C ∈ [P, Q] (Definition of [P, Q])

The One-armed Conditional Law

[P, Q] ⊇ IF S THEN [P ∧ S, Q]

provided ⊢ P ∧ ¬S ⇒ Q



94 Chapter 6. Program Refinement

Derivation

C ∈ IF S THEN [P ∧ S, Q]
⇔ C ∈ {IF S THEN C′ |

C′ ∈ [P ∧ S, Q]} (Definition of IF S THEN C)
⇔ C ∈ {IF S THEN C′ |

⊢ [P ∧ S] C′ [Q]} (Definition of [P ∧ S, Q])
⇒ C ∈ {IF S THEN C′ |

⊢ [P ] IF S THEN C′ [Q]} (One-armed Conditional Rule & ⊢ P ∧ ¬S ⇒ Q)
⇒ ⊢ [P ] C [Q]
⇔ C ∈ [P, Q] (Definition of [P, Q])

The Two-armed Conditional Law

[P, Q] ⊇ IF S THEN [P ∧ S, Q] ELSE [P ∧ ¬S, Q]

Derivation

C ∈ IF S THEN [P∧S, Q] ELSE [P∧¬S, Q]
⇔ C ∈ {IF S THEN C1 ELSE C2 |

C1 ∈ [P∧S, Q] & C2 ∈ [P∧¬S, Q]} (Definition of IF S THEN C1 ELSE C2)
⇔ C ∈ {IF S THEN C1 THEN C2 |

⊢ [P∧S] C1 [Q] & ⊢ [P∧¬S] C2 [Q]} (Definition of [P∧S, Q] & [P∧¬S, Q])
⇒ C ∈ {IF S THEN C1 ELSE C2 |

⊢ [P ] IF S THEN C1 ELSE C2 [Q]} (Two-armed Conditional Rule)
⇒ ⊢ [P ] C [Q]
⇔ C ∈ [P, Q] (Definition of [P, Q])

The While Law

[P, P ∧ ¬S] ⊇ WHILE S DO [P ∧ S ∧ (E=n), P ∧ (E<n)]

provided ⊢ P ∧ S ⇒ E ≥ 0

where E is an integer-valued expression and n is an identifier
not occurring in P , S or E.
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Derivation

C ∈ WHILE S DO [P ∧ S ∧ (E = n), P ∧ (E < n)]
⇔ C ∈ {WHILE S DO C′ |

C′ ∈ [P ∧ S ∧ (E = n), P ∧ (E < n)]} (Definition of WHILE S DO C)
⇔ C ∈ {WHILE S DO C′ | (Definition of

⊢ [P ∧ S ∧ (E = n)] C′ [P ∧ (E < n)]} [P ∧ S ∧ (E = n), P ∧ (E < n)])
⇒ C ∈ {WHILE S DO C′ |

⊢ [P ] WHILE S DO C′ [P ∧ ¬S]} (While Rule & ⊢ P ∧ S ⇒ E ≥ 0)
⇒ ⊢ [P ] C [P ∧ ¬S]
⇔ C ∈ [P, P ∧ ¬S] (Definition of [P, P ∧ ¬S])

6.3 An example

The notation [P1, P2, P3, · · · , Pn−1, Pn] will be used to abbreviate:

[P1, P2] ; [P2, P3] ; · · · ; [Pn−1, Pn]

The brackets around fully refined specifications of the form {C} will be

omitted – e.g. if C is a set of commands, then R := X ; C abbreviates

{R := X} ; C.

The familiar division program can be ‘calculated’ by the following refine-

ment of the specification: [Y > 0, X = R + (Y ×Q) ∧ R ≤ Y ]

Let I stand for the invariant X = R + (Y × Q). In the refinement that

follows, the comments in curley brackets after the symbol “⊇” indicate the

refinement law used for the step.
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[Y > 0, I ∧ R ≤ Y ]
⊇ (Sequencing)
[Y > 0, R = X ∧ Y > 0, I ∧ R ≤ Y ]
⊇ (Assignment)
R := X ; [R = X ∧ Y > 0, I ∧ R ≤ Y ]
⊇ (Sequencing)
R := X ; [R = X ∧ Y > 0, R = X ∧ Y > 0 ∧ Q = 0, I ∧ R ≤ Y ]
⊇ (Assignment)
R := X ; Q := 0 ; [R = X ∧ Y > 0 ∧ Q = 0, I ∧ R ≤ Y ]
⊇ (Precondition Weakening)
R := X ; Q := 0 ; [I ∧ Y > 0, I ∧ R ≤ Y ]
⊇ (Postcondition Strengthening)
R := X ; Q := 0 ; [I ∧ Y > 0, I ∧ Y > 0 ∧ ¬(Y ≤ R)]
⊇ (While)
R := X ; Q := 0 ;

WHILE Y ≤ R DO [I ∧ Y > 0 ∧ Y ≤ R ∧ R = n,
I ∧ Y > 0 ∧ R < n]

⊇ (Sequencing)
R := X ; Q := 0 ;

WHILE Y ≤ R DO [I ∧ Y > 0 ∧ Y ≤ R ∧ R = n,
X = (R− Y ) + (Y ×Q) ∧ Y > 0 ∧ (R− Y ) < n,
I ∧ Y > 0 ∧ R < n]

⊇ (Derived Assignment)
R := X ; Q := 0 ;

WHILE Y ≤ R DO [I ∧ Y > 0 ∧ Y ≤ R ∧ R = n,
X = (R− Y ) + (Y ×Q) ∧ Y > 0 ∧ (R− Y ) < n]
R := R− Y

⊇ (Derived Assignment)
R := X ; Q := 0 ;

WHILE Y ≤ R DO Q := Q+ 1 ; R := R− Y

6.4 General remarks

The ‘Morgan style of refinement’ illustrated here provides laws for system-

atically introducing structure with the aim of eventually getting rid of spec-

ification statements. This style has been accused of being “programming in

the microscopic”.

The ‘Back style’ is less rigidly top-down and provides a more flexible

(but maybe also more chaotic) program development framework. It also

emphasises and supports transformations that distribute control (e.g. going

from sequential to parallel programs). General algebraic laws not specifically

involving specification statements are used, for example:

C = IF S THEN C ELSE C

which can be used both to introduce and eliminate conditionals.
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Both styles of refinement include large-scale transformations (data refine-

ment and superposition) where a refinement step actually is a much larger

change than a simple IF or WHILE introduction. However, this will not be

covered here.
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Chapter 7

Pointers and Local Reasoning

Reasoning about programs that manipulate pointers (e.g. in-place

list reversal) can be done using Hoare logic, but with traditional

methods it is cumbersome. In the last 10 years a new elegant

approach based on ‘local reasoning’ has emerged and given rise to

a version of Hoare logic called separation logic.

Programs are represented semantically as relations between initial and

final states. Up to now states have been represented by functions from vari-

ables to values. To represent the pointer structures used to represent lists,

trees etc. we need to add another component to states called the heap.

7.1 Pointer manipulation constructs

For the simple (non pointer manipulating) language in previous chapters the

state was a function mapping variables to values. We now need to add a

representation of the heap. Following Yang and O’Hearn [25], a store is

defined to be what previously we called the state.1 The set Store of stores is

thus defined by:

Store = V ar → Val

Pointers will be represented by locations , which are mathematical abstrac-

tions of computer memory address and will be modelled by natural numbers.

The contents of locations will be values, which are assumed to include both

locations and data values, e.g. integers and nil (see later). The contents of

pointers are stored in the heap, which is a finite function – i.e. a function with

a finite domain – from natural numbers (representing pointers) to values.

Heap = Num ⇀fin Val

where we use the notation A ⇀fin B to denote the set of finite functions

from A to B. If f : A ⇀fin B then the domain of f is a finite subset of A

1In early work the store was called the environment [29] and it is now sometimes also
called the stack .

99
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denoted by dom(f) (or dom f) and is the subset of A on which f is defined.

The notation f[b/a] denotes the function that is the same as f except that

it maps a to b. If a /∈ dom(f), then a is added to the domain of f[b/a],

thus: dom(f[b/a]) = dom(f) ∪ {a}. The notation f-a denotes the function

obtained from f by deleting a from its domain, thus dom(f-a) = dom(f)\{a}
(where A\B denotes the set of elements of A that are not in B). The notation

{l1 7→ v1, . . . , ln 7→ vn} denotes the finite function with domain {l1, . . . , ln}
which maps li to vi (for 1 ≤ i ≤ n). A location, or pointer, is said to be in

the heap h if it is a member of dom(h).

The new kind of state will be a pair (s, h) where s ∈ Store and h ∈ Heap.

To extend states to include heaps we redefine the set State of states to be:

State = Store×Heap

We add to our language four new kinds of atomic commands that read

from, write to, extend or shrink the heap. An important feature is that some

of them can fault . For example, an attempt to read from a pointer that is

not in the heap faults. The executions of these constructs takes place with

respect to a given heap. The new commands are described below.

1. Fetch assignments: V :=[E]

Evaluate E to get a location and then assign its contents to the variable

V . Faults if the value of E is not in the heap.

2. Heap assignments: [E1]:=E2

Evaluate E1 to get a location and then store the value resulting from

evaluating E2 as its contents. Faults if the value of E1 is not in the

heap.

3. Allocation assignments: V :=cons(E1, . . . , En)

Choose n consecutive locations that are not in the heap, say l, l+1, . . .,

extend the heap by adding these to its domain, assign l to the variable

V and store the values of expressions E1, E2, . . . as the contents of

l, l+1, . . . . This is non-deterministic because any suitable l, l+1, . . .

not in the heap can be chosen. Such numbers exist because the heap

is finite. This never faults.

4. Pointer disposal: dispose(E)

Evaluate E to get a pointer l (a number) and then remove this from the

heap (i.e. remove it from the domain of the finite function representing

the heap). Faults if l is not in the heap.
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Example

Here is a nonsense sequence of assignments as a concrete illustration:

X:=cons(0,1,2); [X]:=Y+1; [X+1]:=Z; [X+2]:=Y+Z; Y:=[Y+Z]

The first assignment allocates three new pointers – say l, l+1, l+2 – at

consecutive locations; the first is initialised with contents 0, the second with

1 and the third with 2 and the variable X is assigned to point to l. The

second command changes the contents of l to be the value of Y+1. The

third command changes the contents of l+1 to be the value of Z. The last

command changes the value of Y in the store to the contents in the heap of

the value of the expression Y+Z, considered as a location; this might fault if

the expression Y+Z evaluates to a number not in the heap.

For simplicity, expressions only depend on the state not the heap. Thus

expressions like [E1]+[E2] are not allowed. In our language, which is

adapted from the standard reference [25], only commands depend on the

heap. Expressions denote functions from stores to values.

Pointers are used to represent data-structures such as linked lists and

trees. We need to introduce some specification mechanisms to deal with

these, which we will do in Section 7.3.5. First, as preparation, we consider

some simple examples that illustrate subtleties that we have to face. Consider

the following sequence of assignments:

X:=cons(0); Y:=X; [Y]:=Z; W:=[X]

This assigns X and Y to a new pointer, then makes the contents of this

pointer be the value of Z and then assigns W to the value of the pointer. Thus

intuitively we would expect that the following Hoare triple holds:

{T} X:=cons(0); Y:=X; [Y]:=Z; W:=[X] {W = Z}

How can we prove this? We need additional assignment axioms to handle

fetch, store and allocation assignments. But this is not all ... how can we

specify that the contents of the pointer values of X and Y are equal to the

value of the expression Y? This is a property of the heap, so we need to be

able to specify postconditions whose truth depends on the heap as well as on

the state. We would also like to be able to specify preconditions on the heap

so as to be able to prove things like:

{contents of pointers X and Y are equal} X:=[X]; Y:=[Y] {X = Y}
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For example, if X is 1 and Y is 2 in the state, and if both locations 1 and 2

have contents v in the heap, then the two fetch assignments will assign v to

both X and Y.

Separation logic is one of several competing methods for reasoning about

pointer manipulating programs. It is a development from Hoare logic and

smoothly extends the earlier material in this course. Separation logic pro-

vides various constructs for making assertions about the heap and Hoare-like

axioms and rules for proving Hoare triples that use these assertions. The

details are quite delicate and have taken many years to evolve, starting from

work by Rod Burstall in the 1970s [27] then evolving via several only par-

tially successful attempts until finally, reaching the current form in the work

of O’Hearn, Reynolds and Yang [26] (this paper contains a short history and

further references). A good introduction is John Reynolds’ course notes [23],

from which I have taken many ideas including the linked list reversal example

in the following section.

7.2 Example: reversing a linked list

Linked lists are a simple example of a data-structure. We need to distinguish

the elements of a list – the data – from the pointer structure that represents

it. Each element of the list is held as the contents of a location and then

the contents of the successor location is the address of the next element in

the list. The end of the list is indicated by nil. The diagram below shows

the list [a, b, c] stored in a linked list data-structure where a is the contents

of location l, b is the contents of location m and c then contents of n. The

contents of n+1 is nil, indicating the end of the list.

a b c

l l+1 m m+1 n n+1

nilm n

If X has value l in the store, then X points to a linked list holding [a, b, c].

The following program reverses a linked list pointed to by X with the

resulting reversed list being pointed to by Y after the loop halts.

Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

Below is a trace of the execution when X points to a linked list holding

the data list [a, b, c]. A blank line precedes each loop iteration.
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Store Heap

X = l, Y =?, Z =? l 7→ a, l+1 7→ m, m 7→ b, m+1 7→ n, n 7→ c, n+1 7→ nil

X = l, Y = nil, Z =? l 7→ a, l+1 7→ m, m 7→ b, m+1 7→ n, n 7→ c, n+1 7→ nil

X = l, Y = nil, Z = m l 7→ a, l+1 7→ m, m 7→ b, m+1 7→ n, n 7→ c, n+1 7→ nil

X = l, Y = nil, Z = m l 7→ a, l+1 7→ nil, m 7→ b, m+1 7→ n, n 7→ c, n+1 7→ nil

X = l, Y = l, Z = m l 7→ a, l+1 7→ nil, m 7→ b, m+1 7→ n, n 7→ c, n+1 7→ nil

X = m, Y = l, Z = m l 7→ a, l+1 7→ nil, m 7→ b, m+1 7→ n, n 7→ c, n+1 7→ nil

X = m, Y = l, Z = n l 7→ a, l+1 7→ nil, m 7→ b, m+1 7→ n, n 7→ c, n+1 7→ nil

X = m, Y = l, Z = n l 7→ a, l+1 7→ nil, m 7→ b, m+1 7→ l, n 7→ c, n+1 7→ nil

X = m, Y = m, Z = n l 7→ a, l+1 7→ nil, m 7→ b, m+1 7→ l, n 7→ c, n+1 7→ nil

X = n, Y = m, Z = n l 7→ a, l+1 7→ nil, m 7→ b, m+1 7→ l, n 7→ c, n+1 7→ nil

X = n, Y = m, Z = nil l 7→ a, l+1 7→ nil, m 7→ b, m+1 7→ l, n 7→ c, n+1 7→ nil

X = n, Y = m, Z = nil l 7→ a, l+1 7→ nil, m 7→ b, m+1 7→ l, n 7→ c, n+1 7→ m

X = n, Y = n, Z = nil l 7→ a, l+1 7→ nil, m 7→ b, m+1 7→ l, n 7→ c, n+1 7→ m

X = nil, Y = n, Z = nil l 7→ a, l+1 7→ nil, m 7→ b, m+1 7→ l, n 7→ c, n+1 7→ m

Below is a pointer diagram that shows the states at the start of each of

the three iterations and the final state. The bindings of X, Y and Z in the

store are shown to the left. The heap is to the right; addresses (locations) of

the ‘cons cell’ boxes are shown below them.

a b c

a c

a b c

Y=l Z=n

l l+1 m m+1 n n+1

nilY=nilX=l

bX=m

Z=?

l l+1 m m+1 n n+1

nil nil

Y=m Z=nilX=n

l l+1 m m+1 n n+1

nil

a b cY=n Z=nilX=nil

l l+1 m m+1 n n+1

nil
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To specify that the reversing program works we will formulate a Hoare triple

that, intuitively, says:

{X points to a linked list holding x}
Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

{Y points to a linked list holding rev(x)}
where x is an auxiliary variable representing a list (e.g. [a, b, c]) and rev(x)

is the reversed list (e.g. [c, b, a]). This is formalised using separation logic

assertions, which are described in the next section.

7.3 Separation logic assertions

In Section 4.2, the semantics of a statement was represented by a predicate on

states, where what we called states in that section are called stores here. We

will call such statements classical statements . They correspond to functions

of type Store → Bool and say nothing about the heap. The set of classical

statements is Sta. For the current setting we need to redefine Ssem to map

stores (rather than states) to Booleans (i.e. Ssem : Sta→ Store→ Bool).

Separation logic [26] introduces a Hoare triple {P} C {Q} where P and

Q are predicates on the state and the state is a store-heap pair (s, h). The

function SSsem maps a separation logic statement to a predicate on states.

Thus if SSta is the set of separation logic statements (which we haven’t yet

described) then:

SSsem : SSta→ State→ Bool

We call separation logic statements separation statements .

A classical statement S can then be regarded as a separation statement

by defining:

SSsem S (s, h) = Ssem S s

We now describe the separation statements that do depend on the heap.

In what follows, E and F are expressions, which don’t depend on the heap

and have semantics given by Esem, which we assume maps expressions to

functions on stores (i.e. Esem : Exp → Store → Val). P and Q will range

over separation statements with semantics given by SSsem. We will give the

semantics by first defining operators on the meanings of expressions and the

meanings of statements and then, using these operators, define the meanings
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of formulae. The variables e and f will range over the meanings of expressions

and p and q over the meanings of statements. Thus E and F have type Exp

but e and f have type Store→ Val. Similarly P and Q have type SSta, but

p and q have type State→ Bool.

In what follows we sometimes use Boolean operators that have been

‘lifted’ to act pointwise on properties, e.g. if p and q are properties of the

state (i.e. p : State→ Bool and q : State→ Bool) then we overload ¬, ∧, ∨
and ⇒ by defining:

¬p = λstate. ¬(p state)
p ∧ q = λstate. p state ∧ q state
p ∨ q = λstate. p state ∨ q state
p⇒ q = λstate. p state⇒ q state

where the occurrence of ¬, ∧, ∨ and ⇒ on the left of these equations is

lifted to operate on predicates and the occurrence on the right is the normal

Boolean operator. The lifted operators can be used to give semantics to

corresponding specification language constructs:

SSsem (¬P ) = ¬(SSsem P )
SSsem (P ∧Q) = (SSsem P ) ∧ (SSsem Q)
SSsem (P ∨Q) = (SSsem P ) ∨ (SSsem Q)
SSsem (P ⇒ Q) = (SSsem P )⇒ (SSsem Q)

Defining quantifiers for the specification language is slightly subtle. If P is a

separation statement (normally one containing an occurrence of the variable

X , though this is not required), then we can form statements ∀X. P , ∃X. P

with meaning given by:

SSsem (∀X. P ) (s, h) = ∀v. SSsem P (s[v/X], h)
SSsem (∃X. P ) (s, h) = ∃v. SSsem P (s[v/X], h)

An example is ∃X. E 7→X defined in the next section.

7.3.1 Points-to relation: E 7→ F

E 7→ F is true in state (s, h) if the domain of h is the set containing only the

value of E in s and the heap maps this value to the value of F in s.

(e 7→ f) (s, h) = (dom h = {e s}) ∧ (h(e s) = f s)

SSsem (E 7→ F ) = (Esem E) 7→ (Esem F )
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The first definition in the box above defines a semantic operator 7→ and the

section definition uses this operator to give the semantics of formulae of the

form E 7→ F . Subsequent definitions will have this form.

Example

The assertion X 7→ Y+1 is true for heap {20 7→ 43} if in the store X has value

20 and Y has value 42.

Points-to assertions specify the contents of exactly one location in the

heap. Thus (using lifted ∧):
(e1 7→ f1 ∧ e2 7→ f2)(s, h) =
(dom h = {e1 s}) ∧ (h(e1 s) = f1 s)
∧
(dom h = {e2 s}) ∧ (h(e2 s) = f2 s)

Thus if e1 7→ f1 ∧ e2 7→ f2 is true in a state (s, h) then e1 s = e2 s and

f1 s = f2 s.

Abbreviation

We define E 7→ so that it is true of a state (s, h) when h is any heap whose

domain is the singleton set {Esem E s}.

E 7→ = ∃X. E 7→ X (where X does not occur in E)

Using the semantics of “∃X” given earlier, and assuming that if X doesn’t

occur in E then Esem E (s[v/X]) = Esem E s, we have:

SSsem (E 7→ ) (s, h)
= SSsem (∃X. E 7→X) (s, h)
= ∃v. SSsem (E 7→X) (s[v/X], h)
= ∃v. (Esem E 7→ Esem X) (s[v/X], h)
= ∃v. (dom h = {Esem E (s[v/X])}) ∧

(h(Esem E (s[v/X])) = Esem X (s[v/X]))
= ∃v. (dom h = {Esem E s}) ∧ (h(Esem E s) = v)
= (dom h = {Esem E s}) ∧ ∃v. h(Esem E s) = v
= (dom h = {Esem E s}) ∧ T

= (dom h = {Esem E s})
which shows that E 7→ is true of a state (s, h) when h is any heap whose

domain is {Esem E s}.
The separating conjunction operator ⋆ defined below can be used to com-

bine points-to assertions to specify heaps with bigger (i.e. non-singleton)

domains.
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7.3.2 Separating conjunction: P ⋆ Q

Before defining the semantics of P ⋆Q we need some preparatory definitions

concerning the combination of heaps with disjoint domains.

If h1 and h2 are heaps then define Sep h1 h2 h to be true if and only if

the domains of h1 and h2 are disjoint, their union is the domain of h and

the contents specified by h of a location l ∈ dom h (i.e. h l) is the contents

specified by h1 (i.e. h1 l) if l ∈ dom h1 and is the contents specified by h2

(i.e. h2 l) if l ∈ dom h2. This is perhaps clearer when specified formally:

Sep h1 h2 h =
((dom h1) ∩ (dom h2) = {})
∧
((dom h1) ∪ (dom h2) = (dom h))
∧
∀l ∈ dom h. h l = if l ∈ dom h1 then h1 l else h2 l

The relation Sep h1 h2 h is usually written h1 ⋆ h2 = h, where ⋆ is a partial

operator that is only defined on heaps with disjoint domains.

If (dom h1)∩ (dom h2) = {}, then h1 ⋆ h2 is defined to be the union of h1

and h2, i.e.:

∀l ∈ (dom h1∪dom h2). (h1 ⋆h2) l = if l ∈ dom h1 then h1 l else h2 l

Separating conjunction also uses the ⋆-symbol, but as an operator to

combine separation properties: P ⋆ Q is true in state (s, h) if there exist h1

and h2 such that Sep h1 h2 h and P is true in state (s, h1) and Q is true in

(s, h2). We first define a semantic version: p ⋆ q where p and q are predicates

on states and then define the specification combining operator using this.

(p ⋆ q) (s, h) = ∃h1 h2. Sep h1 h2 h ∧ p (s, h1) ∧ q (s, h2)

SSsem (P ⋆ Q) = (SSsem P ) ⋆ (SSsem Q)

Note that the symbol ⋆ is used with three meanings: to combine heaps

(h1 ⋆ h2), to combine semantic predicates (p ⋆ q) and to combine separation

statements (P ⋆ Q).

Example

The assertion X 7→ 0 ⋆ X+1 7→ 0 is true of the heap {20 7→ 0, 21 7→ 0} if X has

value 20 in the store.

Abbreviation

The following notation defines the contents of a sequence of contiguous loca-

tions starting at the value of E to hold the values of F0,. . . ,Fn.
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E 7→ F0, . . . , Fn = (E 7→ F0) ⋆ · · · ⋆ (E+n 7→ Fn)

Example

X 7→ Y, Z specifies that if l is the value of X in the store, then heap locations

l and l+1 holds the values of Y and Z, respectively.

We can also define a ‘semantic’ version of the notation which operates on

functions:

e 7→ f0, . . . , fn = (e 7→ f0) ⋆ · · · ⋆ ((λs. (e s)+n) 7→ fn)

SSsem (E 7→ F0, . . . , Fn) = Esem E 7→ (Esem F0), . . . , (Esem Fn)

7.3.3 Empty heap: emp

The atomic property emp is true in a state (s, h) if and only if h is the empty

heap (i.e. has empty domain).

emp (s, h) = (dom h = {})

SSsem emp = emp

Example

If P is a classical property (i.e. doesn’t depend on the heap) then the formula

P ∧ emp is true iff P holds and the heap is empty.

Abbreviation

We define E
.
= F to mean that E and F have equal values and the heap is

empty. We also define a semantic version.

(e
.
= f) = λ(s, h). (e s = f s) ∧ (dom h = {})

(E
.
= F ) = (E = F ) ∧ emp

From these definitions it follows that:

SSsem (E
.
= F ) = ((Esem E)

.
= (Esem F )).

It also follows from the semantics that:

∀s h. SSsem ((E
.
= F ) ⋆ P ) (s, h) =

(Esem E s = Esem F s) ∧ Ssem P (s, h)

Using lifted ∧ notation, we can write: (e
.
= f) ⋆ p = (e = f) ∧ p .
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7.3.4 Separating implication: P −∗ Q

P −∗ Q is true in a state (s, h) if whenever P holds of a state (s, h′), where

h′ is disjoint from h then Q holds for the state (s, h ⋆ h′) in which the heap

h is extended by h′.

(p−∗ q) (s, h) = ∀h′ h′′. Sep h h′ h′′ ∧ p (s, h′)⇒ q (s, h′′)

SSsem (P −∗ Q) = (SSsem P )−∗ (SSsem Q)

We do not use separating implication here, but are mentioning it as it is

a standard part of separation logic.

7.3.5 Formal definition of linked lists

If α is a list (e.g. [a, b, c]) and e is the meaning of an expression (i.e. a

function from stores to values) then list α e (s, h) is defined to mean that α

is represented as a linked list in the heap h starting at the location specified

by e s. The definition is by structural recursion on α:

list [] e = (e
.
= nil)

list ([a0, a1, . . . , an]) e = ∃e′. (e 7→ a0, e
′) ⋆ list [a1, . . . , an] e

′

LetList[X ] be the set of lists whose elements are in X . The meaning of

List[X ] is somewhat analogous to the meaning of the regular expression X⋆.

Here is type of the function list:

list : List[Val]→ (Store→ Val)→ State→ Bool

The definition of list above defines a semantic operator. We also use list to

formulate separation properties.

SSsem (list α E) = list α (Esem E)

where the occurrence of list on the left of this definition is part of the speci-

fication language and the occurrence on the right is the semantic operator.

Recall the informal Hoare triple given earlier to specify the list reversing

function.

{X points to a linked list holding α0}
Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

{Y points to a linked list holding rev(α0)}
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Using separation logic this can be formalised as:

{list α0 X}
Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

{list (rev(α0)) Y}
and the invariant for the WHILE-loop turns out to be:

∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)
where “·” is the list concatenation operator (later we also use it for list ‘cons’).

7.4 Semantics and separation logic

In this section we give both semantics for the extended programming lan-

guage and for Hoare logic axioms and rules for reasoning about it.

As heap operations may fault, we define the set Result of results of com-

mand executions to be:

Result = State ∪ {fault} (where it is assumed that fault /∈ State)

and then the semantic function for commands, Csem, will have the more

general type:

Csem : Com→ State→ Result→ Bool

and now Csem C (s, h) r will mean that if C is started in state (s, h) then r

is a possible result. As mentioned earlier, we assume that expressions do not

depend on the heap, only on the store. We also assume this about classical

statements. Furthermore, the evaluation of neither of these can fault, thus

we redefine:

Esem : Exp→ Store→ Val

Ssem : Sta→ Store→ Bool

For comparison, here are the various types and semantic functions for the

previous simple semantics and then for the new heap semantics.

Simple semantics (state maps variables to values)

State = V ar → Val

Esem : Exp→ State→ Val

Ssem : Sta→ State→ Bool

Csem : Com→ State→ State→ Bool
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Heap semantics (state is store and heap)

Store = V ar → Val (assume Num ⊆ Val, nil ∈ Val and nil /∈ Num)
Heap = Num ⇀fin Val

State = Store×Heap

Result = State ∪ {fault} (assume fault /∈ State)

Esem : Exp→ Store→ Val

Ssem : Sta→ Store→ Bool (classical statements)
SSsem : Sta→ State→ Bool (separation statements)
Csem : Com→ State→ Result→ Bool

The meaning of Hoare triples {P} C {Q} is subtly, but very significantly,

different for separation logic: it is required that for the triple to be true the

execution of C in a state satisfying P must not fault , as well as Q holding in

the final state if execution terminates. Formally, the semantics of {P} C {Q}
for separation logic is SHsem P C Q, where:

SHsem P C Q =
∀s h. SSsem P (s, h)

⇒
¬(Csem C (s, h) fault) ∧ ∀r. Csem C (s, h) r ⇒ SSsem Q r

The function SHsem has type Sta → Com → Sta → Bool. It is useful to

define a semantic function shsem so that:

SHsem P C Q = shsem (SSsem P ) (Csem C) (SSsem Q)

The definition is just:

shsem p c q = ∀s h. p(s, h)⇒ ¬(c (s, h) fault) ∧ ∀r. c (s, h) r ⇒ q r

The type of shsem is:

(State→ Bool)→ (State→ Result→ Bool)→ (State→ Bool)→ Bool

There are two reasons for the non-faulting semantics of Hoare triples:

(i) to support verifying that programs do not read or write locations not

specified in the precondition – i.e. memory safety;

(ii) the non-faulting semantics is needed for the soundness of the crucial

Frame Rule for local reasoning, which is discussed later.

Non-faulting should not be confused with non-termination: the non-faulting

requirement is a safety property (“nothing bad happens”) not a liveness prop-

erty (“something good happens”). Separation logic can straightforwardly be

extended to total correctness – a liveness property – but we do not do this.
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The semantics we give here is equivalent to the large-step operational se-

mantics of Yang and O’Hearn [25, Table 2], but presented in the denotational

style used in Chapter 4 for the simple language. With the semantics given

here, proofs are done by structural induction for loop-free commands plus

mathematical induction for WHILE-commands. With an operational seman-

tics, the equivalent same proofs are done using rule-induction.

For each construct we give the semantics followed by the separation logic

axiom schemes or rules of inference. It is only the axiom schemes for the

atomic commands that read or modify the heap that are new. The rules

for sequences, conditionals and WHILE-commands remain the same (the non-

faulting semantics makes their soundness justification slightly more complex).

7.4.1 Purely logical rules

From the definition of SHsem it follows that the rules of consequence, i.e. pre-

condition strengthening and postcondition weakening are sound by logic

alone: their soundness doesn’t depend on the semantics of commands.

Rules of consequence

⊢ P ⇒ P ′, ⊢ {P ′} C {Q}
⊢ {P} C {Q}

⊢ {P} C {Q′}, ⊢ Q′ ⇒ Q

⊢ {P} C {Q}

Another rule that follows from the definition of SHsem (and also from

that of Hsem) is the following.

Exists introduction

⊢ {P} C {Q}
⊢ {∃x. P} C {∃x. Q}

where x does not occur in C

Although valid for ordinary Hoare logic, this is not much use there. However,

it is very useful in separation logic, as we shall see in Section 7.8.
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7.4.2 Semantics of store assignments

Store assignments V :=E were in the earlier language without pointers. They

ignore the heap and always succeed.

Csem (V :=E) (s, h) r = (r = (s[(Esem E s)/V ], h))

Note that s here ranges over stores not states, thus in the above semantic

equation: s ∈ Store, h ∈ Heap, (s, h) ∈ State and r ∈ Result.

7.4.3 Store assignment axiom

First recall the classical Hoare assignment axiom scheme:

⊢ {Q[E/V ]} V :=E {Q}
Although this is sound for separation logic, it is not the axiom usually given

[26] – a ‘small’ Floyd-style forward axiom is used instead. This style of axiom

is also used for all the axioms below. Perhaps the reason for this forward

‘strongest postcondition’ style is because it connects more directly with sym-

bolic execution, which is a technique widely used by program analysis tools

based on separation logic.

Store assignment axiom

⊢ {V .
= v} V :=E {V .

= E[v/V ]}

where v is an auxiliary variable not occurring in E.

Note that the meaning of
.
= forces any state for which the precondition is

true to have an empty heap. Store assignments do not fault, so this is sound.

If V does not occur in E, then, as (V
.
= V ) = emp and E[V /V ] = E it

follows that the following is a derived axiom:

⊢ {emp} V :=E {V .
= E} (where V doesn’t occur in E)

Another derived axiom is obtained using the exists introduction rule to

obtain the following from the store assignment axiom:

⊢ {∃v. V .
= v} V :=E {∃v. V .

= E[v/V ]}
The precondition of this is emp. This follows from the definitions of

.
= and

lifted quantification:
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(∃v. V .
= v)(s, h) = ∃v. (s V = v s) ∧ (dom h = {})

The statement ∃v. (s V = v s) is true – to see this take v to be λs. s V –

hence (∃v. V .
= v) = emp and so the following is a derived axiom:

⊢ {emp} V :=E {∃v. V .
= E[v/V ]} (where v doesn’t occur in E)

7.4.4 Semantics of fetch assignments

Fetch assignments change the store with the value of a location in the heap,

faulting if the location is not in the heap. They do not change the heap.

Csem (V :=[E]) (s, h) r =
(r = if Esem E s ∈ dom(h) then (s[h(Esem E s)/Esem E s], h) else fault)

In the above semantic equation: s ∈ Store, h ∈ Heap, (s, h) ∈ State and

r ∈ Result.

7.4.5 Fetch assignment axiom

Fetch assignment axiom

⊢ {(V = v1) ∧ E 7→ v2} V :=[E] {(V = v2) ∧ E[v1/V ] 7→ v2}

where v1, v2 are auxiliary variables not occurring in E.

Like the store assignment axiom above, this is best understood as describing

symbolic execution. Note that the precondition requires the heap to contain

a single location given by the value of E in the store and whose contents is v2.

After the fetch assignment, the variable V has the value v2 in the store and the

heap is unchanged (because the value of E[v1/V ] in the postcondition state

is the same as the value of E in the precondition state). The precondition

ensures that the fetch assignment won’t fault since the value of E is specified

by E 7→ v2 to be in the heap.

7.4.6 Semantics of heap assignments

Heap assignments change the value of a location in the heap, faulting if the

location is not in its domain. The store is unchanged.

Csem ([E1]:=E2) (s, h) r =
(r = if Esem E1 s ∈ dom(h) then (s, h[Esem E2 s/Esem E1 s]) else fault)
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7.4.7 Heap assignment axiom

Heap assignment axiom

⊢ {E 7→ } [E]:=F {E 7→ F}

This is another forward symbolic execution style axiom. The precondition

asserts that domain of the heap consists of the value of E in the store and

thus the heap assignment does not fault.

7.4.8 Semantics of allocation assignments

Allocation assignments change both the store and the heap. They non-

deterministically choose n contiguous locations, say l, l+1, . . . , l+(n−1), that
are not in the heap (where n is the number of arguments of the cons) and

then set the contents of these new locations to be the values of the arguments

of the cons. Allocation assignments never fault.

Csem (V :=cons(E1, . . . , En)) (s, h) r =
∃l. l /∈ dom(h) ∧ · · · ∧ l+(n−1) /∈ dom(h) ∧

(r = (s[l/V ], h[Esem E1 s/l] · · · [Esem En s/l+(n−1)]))

This is non-deterministic because Csem (V :=cons(E1, . . . , En)) (s, h) r is

true for any result r for which the right hand side of the equation above

holds. As the heap is finite, there will be infinitely many such results.

7.4.9 Allocation assignment axioms

Allocation assignment axioms

⊢ {V .
= v} V :=cons(E1, . . . , En) {V 7→ E1[v/V ], . . . , En[v/V ]}

where v is an auxiliary variable not equal to V .

⊢ {emp} V :=cons(E1, . . . , En) {V 7→ E1, . . . , En}

where V is an auxiliary variable not occurring in E1,. . .,En.
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These are also forward symbolic execution style axioms – but they are non-

deterministic. The preconditions assert that the heap is empty. In the first

axiom, the precondition also specifies that V has value v in the store. The

postconditions use the abbreviation in Section 7.3.2 for specifying a contigu-

ous chunk of memory and asserts that the domain of the heap is n contiguous

locations which contain the values of E1,· · · ,En in the precondition store. No-

tice that this axiom does not determine that value of V after the assignment

– so is non-deterministic – it merely requires that V points to any location

not in the heap before the command is executed.

7.4.10 Semantics of pointer disposal

Pointer disposals deallocate a location by deleting it from the heap’s domain,

faulting if the location isn’t in the domain. The store is unchanged.

Csem (dispose(E)) (s, h) r =
(r = if Esem E s ∈ dom(h) then (s, h-(Esem E s)) else fault)

7.4.11 Dispose axiom

Dispose axiom

⊢ {E 7→ } dispose(E) {emp}

Requires the heap to contain only one location and then deallocates it re-

sulting in the empty heap.

7.4.12 Semantics of sequences

If neither C1 nor C2 faults then the semantics of C1;C2 is as before. If either

C1 or C2 faults, then so does C1;C2.

Csem (C1;C2) (s, h) r =
if (∃s′ h′. r = (s′, h′))
then (∃s′ h′. Csem C1 (s, h) (s′, h′) ∧ Csem C2 (s′, h′) r)
else ((Csem C1 (s, h) r ∧ (r = fault))

∨
∃s′ h′. Csem C1 (s, h) (s′, h′) ∧ Csem C2 (s′, h′) r ∧ (r = fault))
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7.4.13 The sequencing rule

The sequencing rule is unchanged for separation logic. Note that if the

hypotheses are true, then there is no faulting.

The sequencing rule

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

The proof of soundness of the sequencing rule is straightforward. The argu-

ment is similar to the one given for simple Hoare logic in Section 4.2 with

some additional arguments to handle faults. One proves:

∀p q r c1 c2.
shsem p c1 r ∧ shsem r c2 q
⇒
shsem p (λ(s, h) r. ∃s′ h′. c1 (s, h) (s

′, h′) ∧ c2 (s
′, h′) r) q

where shsem is the semantic function representing the meaning of separation

logic Hoare triples which was defined on page 111.

7.4.14 Semantics of conditionals

The semantics of conditionals is as before (see Section 4.1.2).

Csem (IF S THEN C1 ELSE C2) (s, h) r =
if Ssem S s then Csem C1 (s, h) r else Csem C2 (s, h) r

7.4.15 The conditional rule

The conditional rule is unchanged.

The conditional rule

⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧ ¬S} C2 {Q}
⊢ {P} IF S THEN C1 ELSE C2 {Q}

The proof of soundness of the conditional rule is straightforward. One proves:

∀p q b c1 c2.
shsem (p ∧ b) c1 q ∧ shsem (p ∧ ¬b) c2 q
⇒
shsem p (λ(s, h) r. if b(s, h) then c1 (s, h) r else c2 (s, h) r) q
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Notice that in (p ∧ b) and (p ∧ ¬b) the conjunction ∧ and negation ¬ are

lifted (see page 105).

7.4.16 Semantics of WHILE-commands

The semantics of WHILE-commands is similar to the one given in Section 4.1.2

except that if a fault arises during the execution then the iteration aborts

with a fault.

Csem (WHILE S DO C) (s, h) r = ∃n. Iter n (Ssem S) (Csem C) (s, h) r

The function Iter is redefined to handle faulting:

Iter 0 p c (s, h) r = ¬(p s) ∧ (r = (s, h))

Iter (n+1) p c (s, h) r =
p s ∧ (if (∃s′ h′. r = (s′h′))

then (∃s′ h′. c(s, h)(s′h′) ∧ Iter n p c (s′, h′) r)
else ((c (s, h) r ∧ (r = fault))

∨
∃s′ h′. c (s, h) (s′, h′) ∧ Iter n p c (s′, h′) r ∧ (r = fault)))

The type of Iter is:

Iter : Num→(Store→Bool)→(State→Result→Bool)→State→Result→Bool

7.4.17 The WHILE-rule

The WHILE-rule is unchanged.

The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

The semantics of WHILE commands is defined in terms of the function Iter.

The following two lemmas about Iter are straightforward to prove by induc-

tion on n.

shsem (p ∧ b) c p⇒ ∀n s h. p(s, h)⇒ ¬(Iter n b c (s, h) fault)

shsem (p ∧ b) c p
⇒
∀n s h s′ h′. p(s, h) ∧ Iter n b c (s, h) (s′, h′)⇒ p(s′, h′) ∧ ¬(b(s′, h′))

Notice that in (p∧b) the conjunction ∧ is lifted. The soundness of the WHILE

rule follows easily from these lemmas.
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7.5 The frame rule

The frame rule is the key rule of separation logic. The motivation given

here is based on the account in Reynolds’ notes [23]. The purpose of the

frame rule is to enable local reasoning about just those locations that a

command reads and writes to be extended to uninvolved locations, which

are unchanged. How to handle this gracefully is the so called frame problem

that was identified 50 years ago as a problem in using logic to model actions

in artificial intelligence.2

The following rule, which Reynolds calls the rule of constancy, holds in

the simple language without a heap (the proof is by structural induction on

C). A variable V is said to be modified by C is it occurs on the left of :=

in a store, fetch or allocation assignment in C (variables on the left of heap

assignments are not modified).

The rule of constancy

⊢ {P} C {Q}
⊢ {P ∧ R} C {Q ∧ R}

where no variable modified by C occurs free in R.

this is not valid for heap assignments because although by the heap assign-

ment axiom:

⊢ {X 7→ } [X]:=0 {X 7→ 0}
the following is not true (since X = Y is a possibility):

{X 7→ ∧ Y 7→ 1} [X]:=0 {X 7→ 0 ∧ Y 7→ 1}
They key insight, attributed to O’Hearn by Reynolds, is to use ⋆ instead of

∧ to ensure that the added assertion R is disjoint from P and Q. This gives

rise to the frame rule below:

The frame rule

⊢ {P} C {Q}
⊢ {P ⋆ R} C {Q ⋆ R}

where no variable modified by C occurs free in R.

2http://en.wikipedia.org/wiki/Frame_problem
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In the frame rule a variable V is said to be modified by C is it occurs on the

left of := in a store, fetch or allocation assignment in C.

The proof that the frame rule is sound is quite tricky and depends on the

no-faulting semantics of Hoare triples. The key lemmas are Monotonicity :

∀C s h0 h1 h2.
¬(SHsem C (s, h0) fault) ∧ Sep h0 h1 h2 ⇒ ¬(SHsem C (s, h2) fault)

and The Frame Property :

∀C s s′ h0 h1 h2 h′.
¬(SHsem C (s, h0) fault) ∧ SHsem C (s, h2) (s

′, h′) ∧ Sep h0 h1 h2

⇒
∃h′

0. SHsem C (s, h0) (s′, h′

0) ∧ Sep h′

0 h1 h
′

For further details of what these lemmas mean and why they are key to

the soundness of the fame rule see the original paper [25]. Notice that in

these two lemmas the quantification is over commands C, not over arbitrary

functions c : State → Result → Bool. This is because the lemmas do not

hold for arbitrary functions, only for functions that are the meaning of com-

mands (e.g. for Csem C). Abstract separation logic assumes these lemmas

as axioms and then develops a generalised version of separation logic that

can be instantiated to different models of states. The original paper on ab-

stract separation logic [30] provides more details. See also recent research

by Thomas Tuerk [31] on using abstract separation logic as a framework for

building mechanised program verification tools.

7.6 Example

The informal Hoare triple:

{contents of pointers X and Y are equal} X:=[X]; Y:=[Y] {X = Y}

can be formalised as

{∃v. X 7→ v ⋆ Y 7→ v} X:=[X]; Y:=[Y] {X = Y}

By the fetch assignment axiom:

⊢ {(X = x) ∧ X 7→ v} X:=[X] {(X = v) ∧ x 7→ v}

⊢ {(Y = y) ∧ Y 7→ v} Y:=[Y] {(Y = v) ∧ y 7→ v}
By the frame rule:
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⊢ {((X = x) ∧ X 7→ v) ⋆ ((Y = y) ∧ Y 7→ v)}
X:=[X]

{((X = v) ∧ x 7→ v) ⋆ (((Y = y) ∧ Y 7→ v))}

⊢ {((Y = y) ∧ Y 7→ v) ⋆ ((X = v) ∧ x 7→ v)}
Y:=[Y]

{((Y = v) ∧ y 7→ v) ⋆ ((X = v) ∧ x 7→ v)}
Hence by the sequencing rule and the commutativity of the ⋆ operator (see

next section):

⊢ {((X = x) ∧ X 7→ v) ⋆ ((Y = y) ∧ Y 7→ v)}
X:=[X];Y:=[Y]

{((X = v) ∧ x 7→ v) ⋆ ((Y = v) ∧ y 7→ v)}
Next use the exists introduction rule three times to get:

⊢ {∃v x y. ((X = x) ∧ X 7→ v) ⋆ ((Y = y) ∧ Y 7→ v)}
X:=[X];Y:=[Y]

{∃v x y. ((X = v) ∧ x 7→ v) ⋆ ((Y = v) ∧ y 7→ v)}
The following implications are true (we say more on why later):

(∃v. X 7→ v ⋆ Y 7→ v) ⇒ ∃v x y. ((X = x) ∧ X 7→ v) ⋆ ((Y = y) ∧ Y 7→ v)

(∃v x y. ((X = v) ∧ x 7→ v) ⋆ ((Y = v) ∧ y 7→ v)) ⇒ (X = Y)

Hence by the rules of consequence:

⊢ {∃v. X 7→ v ⋆ Y 7→ v} X:=[X]; Y:=[Y] {X = Y}
This proof seems rather heavy for such a trivial result, but, as we have seen

for simple Hoare logic, derived rules and automation can eliminate most of

the fine details. In the next section we say more about proving formulae like

the two implications we used with the rules of consequence in the last step.

7.7 The logic of separating assertions

In simple Hoare logic the assertion language consists of standard predicate

calculus formulae and thus the standard deductive system of predicate logic

can be used to prove formulae, e.g. when needed for applying the rules of

consequence. Alternatively one can take a semantic view and regard asser-

tions as predicates on the state and then just use ‘ordinary mathematics’ to

prove assertions.

In separation logic there are additional operators such as ⋆ and 7→ which

are not part of standard logic. One can try to develop a deductive system
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for such operators and then prove properties of the assertions, but (as far as

I know, e.g. [28]) there is no complete deductive system for such assertions.

One can accumulate a collection of ad hoc rules for doing proofs, but, as

Reynolds says in his notes [23] these are likely to be “far from complete”,

though they might be good enough for most examples that come up in prac-

tice. In the last section it was asserted that the following two implications

were true:

(∃v. X 7→ v ⋆ Y 7→ v) ⇒ ∃v x y. ((X = x) ∧ X 7→ v) ⋆ ((Y = y) ∧ Y 7→ v)

(∃v x y. ((X = v) ∧ x 7→ v) ⋆ ((Y = v) ∧ y 7→ v)) ⇒ (X = Y)

To verify that these are true one must show that they hold for all states (s, h)

– i.e. that ∀s h. SSsem P (s, h). One could just prove this directly from the

definitions, but an alternative is to use derived laws for the separation logic

operators to prove the assertions ‘algebraically’. For example, the following

equations can be derived from the definition of ⋆ (see Section 7.3.2):

∃x. P1 ⋆ P2 = P1 ⋆ (∃x. P2) (when x not free in P1)

∃x. P1 ⋆ P2 = (∃x. P1) ⋆ P2 (when x not free in P2)

hence:

∃v x y. ((X = x) ∧ X 7→ v) ⋆ ((Y = y) ∧ Y 7→ v)

= ∃v. (∃x. (X = x) ∧ X 7→ v) ⋆ (∃y. (Y = y) ∧ Y 7→ v)

= ∃v. ((∃x. X = x) ∧ X 7→ v) ⋆ ((∃y. Y = y) ∧ Y 7→ v)

= ∃v. (T ∧ X 7→ v) ⋆ (T ∧ Y 7→ v)

= ∃v. X 7→ v ⋆ Y 7→ v

This establishes the first implication (actually it establishes a stronger result:

an equation rather than an implication).

To prove the second implication, first start by a similar calculation to the

one above:

(∃v x y. ((X = v) ∧ x 7→ v) ⋆ ((Y = v) ∧ y 7→ v))

= ∃v. ((X = v) ∧ (∃x. x 7→ v)) ⋆ ((Y = v) ∧ (∃y. y 7→ v))

We say a property is heap independent if it doesn’t depend on the heap. The

classical statements discussed in Section 7.3 are heap independent. Semanti-

cally P is heap independent iff ∀s h1 h2. P (s, h1) = P (s, h2). The following

law is then true:

((P1 ∧Q1) ⋆ (P2 ∧Q2))⇒ (P1 ∧ P2) (P1, P2 heap independent)
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The values of variables don’t depend on the heap, so both X = v and Y = v

are heap independent. Thus:

(∃v. ((X = v) ∧ (∃x. x 7→ v)) ⋆ ((Y = v) ∧ (∃y. y 7→ v)))

⇒ ∃v. (X = v) ∧ (Y = v)

⇒ X = Y

This completes the proof that:

(∃v x y. ((X = v) ∧ x 7→ v) ⋆ ((Y = v) ∧ y 7→ v)) ⇒ (X = Y)

7.8 The list reversal program

In this section we take a preliminary look at the list reversing program dis-

cussed earlier. Further details (e.g. a full proof) may be added to a future

version of these notes. A proof outline can be found in Reynolds notes [23].

The Hoare triple to be proved is:

{list α0 X}
Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

{list (rev(α0)) Y}
We previously mentioned that “·” is the list concatenation operator (we will

also write a ·α for the result of ‘consing’ an element a onto α). The invariant

given by Reynolds in his notes is:

∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)
We need to show that:

1. this holds just before the loop is entered;

2. it is indeed an invariant;

3. with the loop exit condition X = nil it implies list (rev(α0)) Y.

What follows has not been fully checked and may contain errors!

To show 1 we need to prove:

{list α0 X} Y:=nil {∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)}
By the store assignment axiom:
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⊢ {Y .
= v} Y:=nil {Y .

= nil[v/Y]}
hence, as Y doesn’t occur in nil:

⊢ {Y .
= v} Y:=nil {Y .

= nil}
By the definition of list (base case): list [] e = (e

.
= nil)

⊢ {Y .
= v} Y:=nil {list [] Y}

By the frame rule (and commutativity of ⋆):

⊢ {list α0 X ⋆ (Y
.
= v)} Y:=nil {list α0 X ⋆ list [] Y}

Clearly rev(α0) = rev(α0) · [], so:
⊢ {list α0 X ⋆ (Y

.
= v)} Y:=nil {list α0 X ⋆ list [] Y ∧ (rev(α0) = rev(α0) · [])}

By exists introduction (see Section 7.4.1):

⊢ {∃v. list α0 X ⋆ (Y
.
= v)} Y:=nil {∃v. list α0 X ⋆ list [] Y ∧ (rev(α0) = rev(α0) · [])}

Let us assume the following two purely logical implications:

(P1.1) ⊢ list α0 X⇒ ∃v. list α0 X ⋆ (Y
.
= v)

(P1.2) ⊢ (∃v. list α0 X ⋆ list [] Y ∧ (rev(α0) = rev(α0) · []))
⇒
(∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β))

From P1.1 and P1.2, the result of exists introduction above and the conse-

quence rules:

{list α0 X} Y:=nil {∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)}
which is 1.

To show 2 we need to prove:

{(∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)) ∧ ¬(X = nil)}
Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z
{∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)}

which we do by proving the following three statements and then using the

Sequencing Rule.

{(∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)) ∧ ¬(X = nil)}
Z:=[X+1]

{∃a α β. X 7→ a, Z ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β)}
{∃a α β. X 7→ a, Z ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β)}
[X+1]:=Y

{∃α β. list α Z ⋆ list β X ∧ (rev(α0) = rev(α) · β)}
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{∃α β. list α Z ⋆ list β X ∧ (rev(α0) = rev(α) · β)}
Y:=X; X:=Z
{∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)}

The last of these follows by two applications of the ordinary Hoare assignment

axiom and the sequencing rule. The first two are more tricky, and require

the fetch and heap assignment axioms, respectively. Recall:

Fetch assignment axiom

⊢ {(V = v1) ∧ E 7→ v2} V :=[E] {(V = v2) ∧ E[v1/V ] 7→ v2}

where v1, v2 are auxiliary variables not occurring in E.

The instance of this we need is:

⊢ {(Z = v1) ∧ X+1 7→ v2} Z:=[X+1] {(Z = v2) ∧ X+1[v1/Z] 7→ v2}
As Z does not occur in X+1 we have X+1[v1/Z] = X+1. The variable v1 serves

no useful role here, so we can eliminate it by instantiating it to Z. We also

rename the logical variable v2 to l. Thus:

⊢ {X+1 7→ l} Z:=[X+1] {(Z = l) ∧ X+1 7→ l}
This is a local property just describing the change to a one-element heap

(containing X+1). From this, we must somehow deduce a global property

about the whole list. Let :

R = X 7→ a ⋆ list α′ l ⋆ list β Y ∧ (rev(α0) = rev(a · α′) · β) ∧ ¬(X = nil)

The process of finding this R is related to abduction, a kind of frame inference

that is a hot topic in recent research [4]. By the frame rule, followed by

repeated applications of the exists rule:

⊢ {∃α β a l α′. X+1 7→ l ⋆ R} Z:=[X+1] {∃α β a l α′. (Z = l) ∧ X+1 7→ l ⋆ R}
From this we need to deduce:

⊢ {(∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)) ∧ ¬(X = nil)}
Z:=[X+1]

{∃a α β. X 7→ a, Z ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β)}
which can be done using the consequence rules if P2.1 and P2.2 below hold:

(P2.1) ⊢ (∃α β. (list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)) ∧ ¬(X = nil))
⇒ ∃α β a l α′. (X+1 7→ l) ⋆ R

(P2.2) ⊢ (∃α β a l α′. ((Z = l) ∧ X+1 7→ l) ⋆ R)
⇒ ∃a α β. X 7→ a, Z ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β)
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These are purely logical properties (in the assertion language of separation

logic). Their proof uses the definition of the list predicate list and logical

reasoning. Recall the list predicate:

list [] e = (e
.
= nil)

list ([a0, a1, . . . , an]) e = ∃e′. (e 7→ a0, e
′) ⋆ list [a1, . . . , an] e

′

where

E 7→ F0, . . . , Fn = (E 7→ F0) ⋆ · · · ⋆ (E+n 7→ Fn)

so

list [] e = (e
.
= nil)

list ([a0, a1, . . . , an]) e = ∃e′. (e 7→ a0) ⋆ (e+1 7→ e′) ⋆ list [a1, . . . , an] e
′

Arguing informally: from list α X and ¬(X = nil) it follows that for some

value a and α′ we have α = a ·α′. From this rev(α0) = rev(a ·α′) ·β and from

list α X there exists a location l such that X 7→ a, X+1 7→ l and list α′ l. Thus:

⊢ (list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)) ∧ ¬(X = nil)
⇒
((∃a l α′.

X 7→ a ⋆ X+1 7→ l ⋆ list α′ l ⋆ list β Y

∧ (rev(α0) = rev(a · α′) · β)) ∧ ¬(X = nil))

The first of the two needed logical properties follows from this using some

quantifier movement and the commutativity of ⋆. The second property re-

quires the list predicate to be unfolded.

This concludes a sketch of the proof of the first Hoare triple:

{(∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)) ∧ ¬(X = nil)}
Z:=[X+1]

{∃a α β. X 7→ a, Z ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β)}
The remaining Hoare triple is:

{∃a α β. X 7→ a, Z ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β)}
[X+1]:=Y

{∃α β. list α Z ⋆ list β X ∧ (rev(α0) = rev(α) · β)}
To prove this we need the heap assignment axiom:
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Heap assignment axiom

⊢ {E 7→ } [E]:=F {E 7→ F}

The appropriate instance is:

⊢ {∃v. X+1 7→ v} [X+1]:=Y {X+1 7→ Y}
By inventing a suitable frame, application of the frame rule and some logical

fiddling, including using the definition of list, one deduces from this:

⊢ {∃a α β. X 7→ a, Z ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β)}
[X+1]:=Y

{∃a α β. X 7→ a, Y ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β)}
and then one gets the desired result by postcondition weakening using:

(P2.3) ⊢ (∃a α β. X 7→ a, Y ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β))
⇒
(∃α β. list α Z ⋆ list β X ∧ (rev(α0) = rev(α) · β))

which is proved by first proving:

(P2.3.1) ⊢ (∃a α β. X 7→ a, Y ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β))
⇒
(∃a α β. list α Z ⋆ list (a · β) X ∧ (rev(α0) = rev(α) · a · β))

and then proving

(P2.3.2) ⊢ (∃a α β. list α Z ⋆ list (a · β) X ∧ (rev(α0) = rev(α) · a · β))
⇒
(∃α β. list α Z ⋆ list β X ∧ (rev(α0) = rev(α) · β))

and then using the transitivity of implication (⇒).

Finally, to show 3 (i.e. invariant and loop exit condition X=nil implies

list (rev(α0)) Y) we need to prove property P3, where:

(P3) ⊢ (∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)) ∧ (X = nil)
⇒
list (rev(α0)) Y

Which, again, is fiddly pure logic using the definition of the list predicate

list.

Proofs like the one sketched above, are normally shown as ‘proof outlines’

which are a similar to annotated programs. Reynolds’ proof outline for the

list reversing example [23] is (with some renaming of variables and other

minor changes):
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{list α0 X}
Y:=nil;

{∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)}
WHILE ¬(X=nil) DO {∃α β. list α X ⋆ list β Y ∧ (rev(α0)=rev(α) · β)}
({∃α β. list α X ⋆ list β Y ∧ (rev(α0)=rev(α) · β) ∧ ¬(X=nil)}
{∃α β a l α′.
(X+1 7→ l) ⋆ X 7→ a ⋆ list α′ l ⋆ list β Y ∧ (rev(α0)=rev(a · α′) · β) ∧ ¬(X=nil)}

Z:=[X+1];

{∃α β a l α′.
((Z=l) ∧ X+1 7→ l) ⋆ X 7→ a ⋆ list α′ l ⋆ list β Y ∧ (rev(α0)=rev(a · α′) · β) ∧ ¬(X=nil)}
{∃a α β. X 7→ a, Z ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β)}
[X+1]:=Y;

{∃a α β. X 7→ a, Y ⋆ list α Z ⋆ list β Y ∧ (rev(α0) = rev(a · α) · β)}
{∃a α β. list α Z ⋆ list (a · β) X ∧ (rev(α0) = rev(α) · a · β)}
{∃α β. list α Z ⋆ list β X ∧ (rev(α0) = rev(α) · β)}
Y:=X; X:=Z

{∃α β. list α X ⋆ list β Y ∧ (rev(α0) = rev(α) · β)})
{list (rev(α0)) Y}

Proof outlines like this are superficially similar to annotated Hoare triples as

described for verification condition generation. They do specify what has to

be done to get a complete proof, namely:

• prove ⊢ P ⇒ Q for each sequence of sentences {P}{Q};

• prove ⊢ {P} C {Q} for each occurrence of a Hoare triple.

However, proving these is not always straightforward or mechanisable.

• There is no established methodology for proving P ⇒ Q when P , Q are

arbitrary assertions of separation logic – one relies on manual methods

from incomplete sets of axioms and rules, or decision procedures for

weak subsets.

• The assignment axioms of separation logic only support local reason-

ing about the sub-heaps involved - one needs to the extend local Hoare

triples given by the axioms to global ones using the frame rule, and find-

ing the right frame to use is tricky and heuristic, somewhat analogous

to finding invariants, rather than algorithmic (it’s related to abduc-

tion [4]).
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Thus proof outlines are (currently) mainly an informal notation for writing

down hand proofs.

Mechanising separation logic is an active research area. Most success

so far has been on just verifying shape properties (i.e. shape analysis). The

classic work is a tool called Smallfoot (google Smallfoot Berdine). A recent

project at Cambridge to mechanise reasoning about the content of data-

structures, rather than just their shape, is Holfoot (google Holfoot Tuerk).

In addition to the mechanisation of separation logic, there is much cur-

rent research on extending the logic to support mainstream programming

methods, like concurrency and object-oriented programing.
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