Exercises for which solution notes are available

Exercise 1

Write a specification which is true if and only if the following program terminates.

```
WHILE X>1 DO IF ODD(X) THEN X := (3\times X)+1 ELSE X := X DIV 2
```

Exercise 2

Let C be the following command

```
R:=X;
Q:=0;
WHILE Y≤R DO (R:=R-Y; Q:=Q+1)
```

Find a condition P such that [P] C $[R < Y \land X = R + (Y \times Q)]$ is true.

Exercise 3

When is [T] C [T] true?

Exercise 4

Write a partial correctness specification which is true if and only if the command C has the effect of multiplying the values of X and Y and storing the result in X.

Exercise 5

Write a specification which is true if the execution of C always halts when execution is started in a state satisfying P.

Exercise 6

Find the flaw in the 'proof' of 1 = -1 below:

1. $\sqrt{-1 \times -1} = \sqrt{-1 \times -1}$ Reflexivity of =. 2. $\sqrt{-1 \times -1} = (\sqrt{-1}) \times (\sqrt{-1})$ Distributive law of $\sqrt{}$ over \times . 3. $\sqrt{-1 \times -1} = (\sqrt{-1})^2$ Definition of $()^2$. 4. $\sqrt{-1 \times -1} = -1$ definition of $\sqrt{}$. 5. $\sqrt{1} = -1$ As $-1 \times -1 = 1$. 6. 1 = -1 As $\sqrt{1} = 1$.

Exercise 7

Is the following specification true?

$$\vdash \{X=x \land Y=y\} \ X:=X+Y; \ Y:=X-Y; \ X:=X-Y \ \{Y=x \land X=y\}$$

If so, prove it. If not, give the circumstances in which it fails.

Exercise 8

Show in detail that $\vdash \{X=R+(Y\times Q)\}\ R:=R-Y;\ Q:=Q+1\ \{X=R+(Y\times Q)\}\$

Exercise 9

Give a detailed formal proof that

$$\vdash \{T\}$$
 IF $X \ge Y$ THEN MAX:=X ELSE MAX:=Y $\{MAX = max(X,Y)\}$ follows from $\vdash X \ge Y \Rightarrow max(X,Y) = X$ and $\vdash Y \ge X \Rightarrow max(X,Y) = Y$.

Exercise 10

Suppose we add to our little programming language commands of the form:

CASE
$$E$$
 OF BEGIN C_1 ; ...; C_n END

These are evaluated as follows:

- (i) First E is evaluated to get a value x.
- (ii) If x is not a number between 1 and n, then the CASE-command has no effect.
- (iii) If x = i where $1 \le i \le n$, then command C_i is executed.

Why is the following rule for CASE-commands wrong?

$$\frac{\vdash \{P \land E = 1\} C_1 \{Q\}, \dots, \vdash \{P \land E = n\} C_n \{Q\}}{\vdash \{P\} \text{ CASE } E \text{ OF BEGIN } C_1; \dots; C_n \text{ END } \{Q\}}$$

Hint: Consider the case when P is 'X = 0', E is 'X', C_1 is 'Y := 0' and Q is 'Y = 0'.

Exercise 11

Devise a proof rule for the CASE-commands in the previous exercise and use it to show:

$$\vdash$$
 {1 \le X \land X \le 3} CASE X OF BEGIN Y:=X-1; Y:=X-2; Y:=X-3 END {Y=0}

Exercise 12

Devise a proof rule for a command

REPEAT command UNTIL statement

The meaning of REPEAT C UNTIL S is that C is executed and then S is tested; if the result is true, then nothing more is done, otherwise the whole REPEAT command is repeated. Thus REPEAT C UNTIL S is equivalent to C; WHILE \neg S DO C.

Exercise 13

Show that

```
⊢ {M≥1}
  X:=0;
FOR N:=1 UNTIL M DO X:=X+N
  {X=(M×(M+1)) DIV 2}
```

Exercise 14

Show

$$\vdash \{A(X) = x \land A(Y) = y \land X \neq Y\}
A(X) := A(X) + A(Y);
A(Y) := A(X) - A(Y);
A(X) := A(X) - A(Y)
\{A(X) = y \land A(Y) = x\}$$

Why is the precondition $X\neq Y$ necessary?

Exercise 15

Prove

$$\vdash \{1 \le N\}$$
FOR I:=1 UNTIL N DO A(I):=0
$$\{SORTED(A,N)\}$$

Exercise 16

Prove

$$\vdash \{1 \leq N \land A = a\}$$

$$N:=1$$

$$\{SORTED(A,N) \land PERM(A,a,N)\}$$

Additional exercises without solution notes

Exercise 17

Use your REPEAT rule to deduce:

```
 \vdash \{S = C+R \land R<Y\} 
REPEAT (S:=S+1; R:=R+1) UNTIL R=Y 
\{S = C+Y\}
```

Exercise 18

Use your REPEAT rule to deduce:

```
H {X=x \( \times \) Y=y}
S:=0;
REPEAT
R:=0;
REPEAT (S:=S+1; R:=R+1) UNTIL R=Y;
X:=X-1
UNTIL X=0
{S = x \times y}
```

Exercise 19

The exponentiation function *exp* satisfies:

```
exp(m, 0) = 1

exp(m, n+1) = m \times exp(m, n)
```

Devise a command C that uses repeated multiplication to achieve the following partial correctness specification:

$$\{X=x \land Y=y \land Y \geq 0\} \ C \ \{Z=exp(x,y) \land X=x \land Y=y\}$$

Prove that your command C meets this specification.

Exercise 20

Assume gcd(X,Y) satisfies:

```
\begin{array}{l} \vdash (X \gt Y) \Rightarrow \gcd(X,Y) = \gcd(X \lnot Y,Y) \\ \vdash \gcd(X,Y) = \gcd(Y,X) \\ \vdash \gcd(X,X) = X \end{array}
```

Prove:

$$\vdash \{(A>0) \land (B>0) \land (\gcd(A,B)=\gcd(X,Y))\}$$
 WHILE A>B DO A:=A-B; WHILE B>A DO B:=B-A
$$\{(0$$

Hence, or otherwise, use your rule for REPEAT commands to prove:

```
⊢ {A=a ∧ B=b}
  REPEAT
  WHILE A>B DO A:=A-B;
  WHILE B>A DO B:=B-A
  UNTIL A=B
  {A=B ∧ A=gcd(a,b)}
```

Exercise 21

Deduce:

$$\vdash \{S = (x \times y) - (X \times Y)\}$$

$$\forall \text{WHILE } \neg \text{ODD}(X) \text{ DO } (Y := 2 \times Y; X := X \text{ DIV } 2)$$

$$\{S = (x \times y) - (X \times Y) \land \text{ODD}(X)\}$$

Exercise 22

Deduce:

$$\vdash \{S = (x \times y) - (X \times Y)\}$$

$$\forall \text{WHILE } \neg (X=0) \text{ DO}$$

$$\forall \text{WHILE } \neg \text{ODD}(X) \text{ DO } (Y:=2 \times Y; X:=X \text{ DIV } 2);$$

$$S:=S+Y;$$

$$X:=X-1$$

$$\{S = x \times y\}$$

Exercise 23

Deduce:

```
⊢ {X=x ∧ Y=y}
   S:=0;
WHILE ¬(X=0) D0
   (WHILE ¬ODD(X) D0 (Y:=2×Y; X:=X DIV 2);
   S:=S+Y;
   X:=X-1)
{S = x×y}
```

Exercise 24

Using $P \times X^N = x^n$ as an invariant, deduce:

```
H {X=x \( \times N=n \) }
P:=1;
WHILE \( \times (N=0) \) DO
(IF ODD(N) THEN P:=P \times X else P:=P;
N:=N DIV 2;
X:=X \times X)
{P = x^n}
```

Exercise 25

Prove that the command

```
Z:=0;
WHILE ¬(X=0) D0
  (IF ODD(X) THEN Z:=Z+Y ELSE Z:=Z;
   Y:=Y×2;
   X:=X DIV 2)
```

computes the product of the initial values of X and Y and leaves the result in Z.

Exercise 26

Prove that the command

```
Z:=1;
WHILE N>O DO
  (IF ODD(N) THEN Z:=Z×X else Z:=Z;
  N:=N DIV 2;
  X:=X×X)
```

assigns x^n to Z, where x and n are the initial values of X and N respectively and we assume $n \geq 0$.

Exercise 27

What are the verification conditions for the following specification?

```
\{T\} IF X \ge Y THEN MAX:=X ELSE MAX:=Y \{MAX=max(X,Y)\}
```

Are they true?

Exercise 28

What are the verification conditions for the following specification?

$$\{X = R+(Y\times Q)\}\ R:=R-Y;\ Q:=Q+1\ \{X = R+(Y\times Q)\}\$$

Are they true?

Exercise 29

What are the verification conditions generated by the following annotated specification. Are they true?

Exercise 30

Why are the verification conditions for the annotated specification

$$\{T\}$$
 WHILE F DO $\{F\}$ X:=0 $\{T\}$

not provable, even though $\vdash \{T\}$ WHILE F DO X:=0 $\{T\}$.

Exercise 31

Prove by induction on the structure of C that if no variable occurring in Pis assigned to in C, then $\vdash \{P\} C\{P\}$.

Exercise 32

Devise verification conditions for commands of the form REPEAT $\,C\,$ UNTIL $\,S\,$ (see Exercise 12).

Exercise 33

Consider the following alternative scheme for generating VCs from annotated WHILE-commands (due to Silas Brown).

WHILE-commands

Alternative verification conditions generated from

$$\{P\}$$
 WHILE S DO $\{R\}$ C $\{Q\}$

are

(i)
$$P \wedge S \Rightarrow R$$

(i)
$$P \wedge S \Rightarrow R$$

(ii) $P \wedge \neg S \Rightarrow Q$

(iii) the verification conditions generated by $\{R\}\ C\{(Q \land \neg S) \lor (R \land S)\}$

Either justify these VCs, or find a counterexample.