
A Local Shape Analysis based on Separation
Logic

Dino Distefano1, Peter W. O’Hearn1, and Hongseok Yang2

1 Queen Mary, University of London
2 Seoul National University

Abstract. We describe a program analysis for linked list programs where
the abstract domain uses formulae from separation logic.

1 Introduction

A shape analysis attempts to discover the shapes of data structures in the heap at
program points encountered during a program’s execution. It is a form of pointer
analysis which goes beyond the tabulation of shallow aliasing information (e.g.,
can these two variables be aliases?) to deeper properties of the heap (e.g., is this
an acyclic linked list?).

The leading current shape analysis is that of Sagiv, Reps and Wilhelm, which
uses very generic and powerful abstractions based on three-valued logic [16]. Al-
though powerful, a problem with this shape analysis is that it behaves in a global
way. For example, when one updates a single abstract heap cell this may require
also the updating of properties associated with all other cells. Furthermore, each
update of another cell might itself depend on the whole heap. This global na-
ture stems from the use of certain instrumentation predicates, such as ones for
reachability, to track properties of nodes in the heap: an update to a single cell
might alter the value of a host of instrumentation predicates.

In contrast, separation logic provides an approach to reasoning about the
heap that has a strong form of locality built in [13]. Typically, one reasons about
a collection of cells in isolation, and their update does not necessitate checking or
updating cells that are held in a different component of a separating conjunction.
It thus seems reasonable to try to use ideas from separation logic in program
analysis, with an eye towards the central problem of modularity in the analysis.

Our technical starting point is recent work of Berdine, Calcagno and O’Hearn
[5], who defined a method of symbolic execution of certain separation logic for-
mulae called symbolic heaps. Their method is not, by itself, suitable as an ab-
stract semantics because there are infinitely many symbolic heaps and there is
no immediate way to guarantee convergence of fixed-point calculations. Here,
we obtain a suitable abstract domain by working with (a variation on) their
method of symbolic execution, and adding to it an abstraction or widening op-
erator which converts any symbolic heap to one in a certain “canonical form”.
This abstraction method is an adaptation of work in [7, 8] to the symbolic heaps
of Berdine et. al. In contrast to unrestricted symbolic heaps we show that there

are only finitely many canonical forms, resulting in termination of the fixed-point
calculation used in the abstract semantics of while loops.

Our abstract domain uses linked lists only. Other abstractions based on sep-
aration logic might be considered as well.

After defining the analysis we turn to locality. We describe a sense in which
the abstract semantics obeys the Frame Rule of separation logic, and we iden-
tify a notion of footprint as an input-output relation that mentions only those
symbolic heap cells accessed by a program. The footprint provides a sound over-
approximation of a program’s entire (abstract) meaning, in many cases an exact
representation. The results on locality give a way to infer sound results on large
states from those explicitly obtained on small ones, suggesting further possible
developments on interprocedural and concurrency analyses.

1.1 Related Work

In work on heap analysis (see [14] for discussion) much use has been made of a
“storeless semantics” where the model is built from equivalence classes of paths
rather than locations. The storeless semantics has the pleasant property that
it is garbage collecting by its very nature, but it is also extremely complex.
This makes it highly nontrivial to see that a particular analysis based on it is
sound. In contrast, here we work directly with a store model, and soundness is
almost immediate. The abstraction we use is defined by rewrite rules which are
all sound implications in separation logic, and the symbolic execution rules are
derived from true Hoare triples.

Recent work on shape analysis [14, 15] might be regarded as taking some
steps towards separation logic. Early on in separation logic there was an em-
phasis on what was referred to as “local reasoning”: reasoning concentrates on
the cells accessed during computation [11]. In [14, 15] a version of the local
reasoning idea is employed in an interprocedural analysis, where a procedure
summary is constructed which involves only the (abstract) cells reachable from
input parameters or variables free in a procedure. The method of applying a
procedure does not, however, explicitly utilize a separating conjunction operator
∗; one might say that (the resourceful form of) local reasoning is adopted (or
altered), but the formal apparatus of separation logic is not.

In this paper we reciprocate by taking some steps towards shape analysis. Our
intention initially was full reciprocation: to build an interprocedural analysis.
But, after labouring for the better part of a year, we decided to aim lower: to
define an abstract domain and abstract post operator, together with an account
of its locality, for a language without procedures. In doing this we have been
influenced by shape analysis, but have not adopted the formal apparatus of shape
graphs or 3-valued logic. We hope that this paper can serve as a springboard for
further developments in local interprocedural and modular concurrency analysis.

We want to make clear that we do not claim that our analysis is superior,
in a practical sense, to existing shape analyses. Although it works on small
examples, we have not attempted detailed timing comparisons. Also, from a
methodological point of view, in the framework of [16] different abstractions are

2

obtained in a uniform way, where a notion of “canonical abstraction” results
once instrumentation predicates are nailed down. In contrast, here we have just
one particular set of rewrite rules that have been hand-built; how this might be
turned into a more general scheme is not obvious.

Nonetheless, we believe that research on how separation logic, or more partic-
ularly, the local reasoning idea, might be used in program analysis is of interest
because it suggests a genuinely different approach which has promise for the
central problem of obtaining modular analyses. A very good example of this is
the recent work of Amtoft et. al. [2, 1] which uses local reasoning in information
flow analysis (this is a more shallow form of analysis than shape analysis, but
they are successful in formulating a very modular analysis).

Finally, in work carried out independently of (and virtually in parallel to)
that here, Magill et. al. have defined a method of inferring invariants for linked
list programs in separation logic [9]. They also utilize a symbolic execution mech-
anism related to [5], and give rewrite rules to attempt to find fixed points. There
are many detailed differences: (i) they use a different basic list predicate than
we do and, as they point out, have difficulty dealing with acyclic lists, where
that is a strong point of our analysis; (ii) they do a predicate abstraction of
arithmetic operations, where we do not; (iii) and they use an embedding into
Presburger arithmetic to help decide implications and Hoare triples, where we
do not provide a method for deciding implications (or Hoare triples); (iv) their
algorithm does not always terminate, where ours does. But, there is remarkable
similarity.

2 Semantic Setting

We first describe the general semantic setting for this work. Following the frame-
work of abstract interpretation [6], we will work with complete lattices D: The
semantics of a command c will be given by a continuous function [[c]]:D → D.

If we are given a programming language with certain primitive operations
p, together with conditionals, sequencing and while loops, then to define the
semantics we must specify the meaning [[p]] of each primitive operation as well
as a continuous function

filter(b):D → D

for each boolean. Typically, D is built from subsets of a set of states, and the
filter function removes those elements that are not consistent with b’s truth. The
semantics extends to the rest of the language in the usual way.

[[c ; c′]] = [[c]] ; [[c′]]
[[if b then c else c′]] = (filter(b) ; [[c]]) t (filter(¬b) ; [[c′]])

[[while bdo c]] = λd. filter(¬b)
(
fix λd′. d t ([[c]] ◦ filter(b))(d′)

)
One way to understand the semantics of while is to view d′ as a loop invariant.
The d in the lhs of t means that the loop invariant d′ should be implied by the
precondition, and the rhs of t means that d′ is preserved by the body. (Here, the

3

fixed-point operator has been moved inward from its usual position in semantics,
so that it applies to predicates instead of two command denotations.)

Our domains D will be constructed using a powerset operation. If S is a set
we denote by P(S) the “topped” powerset of S, that is, the set of subsets of
S ∪ {>}. Here, > 6∈ S is a special element that corresponds to memory fault
(accessing a dangling pointer). If we were to take logical implications between
elements of P(S) into account then we would make {>} the top element and
equate all sets containing >. For simplicity in this paper we just use the subset
order.

Given a relation p =⇒:S ↔ S ∪ {>}, with membership notated σ, p =⇒ σ′,
we can lift it to a function p†:P(S) → P(S) by

p†X = {σ′ | ∃σ ∈ X. (σ, p =⇒ σ′) or (σ = σ′ = >)}.

The semantics of primitive commands will be given by first specifying an execu-
tion semantics =⇒ and then lifting it to P(S) .

Every semantics we work with will have two additional properties: that {>}
is mapped to {>} and that it preserves unions. Because of this we could in fact
work with a corresponding map [[c]]†:S → P(S) instead of [[c]]:P(S) → P(S).

3 Concrete and Symbolic Heaps

Throughout this paper we assume a fixed finite set Vars of program variables
(ranged over by x, y, . . .), and an infinite set Vars′ of primed variables (ranged
over by x′, y′, . . .). The primed variables will not be used within programs, only
within logical formulae (where they will be implicitly existentially quantified).

Definition 1. A symbolic heap Π | Σ consists of a set Π of equalities and a
set Σ of heap predicates. The equalities E=F involve variables x, y, . . ., primed
variables x′, y′, . . ., and nil. The elements of Σ are of the form

E 7→F ls(E,F) junk.

We use SH to denote the set of consistent symbolic heaps. (For the definition of
consistency, see below.)

The first two heap predicates are “precise” in the sense of [12]; each cuts out a
unique piece of (concrete) heap. The points-to assertion E 7→F can hold only in
a singleton heap, where E is the only active cell. Similarly, when a list segment
holds of a given heap, the path it traces out is unique, and goes through all the
cells in the heap. This precise nature of the predicates is helpful when accounting
for deallocation.

The junk predicate is used in the canonicalization phase of our analysis to
swallow up garbage. It is crucial for termination of our analysis, and it has the
useful property to reveal memory leaks.

Besides the heap formulae, symbolic heaps also keep track of equalities in-
volving pointer variables and nil.

4

Table 1 Semantics of Symbolic Heaps

C[[x]] = s(x) C[[x′]] = s(x′) C[[nil]]s = nil

s, h � {E 7→F} iff h = [C[[E]]s7→C[[F]]s]

s, h � {ls(E, F)} iff there is a nonempty acyclic path from C[[E]]s to C[[F]]s in h

and this path contains all heap cells in h

s, h � {junk} iff h 6= ∅
s, h � Σ0 ∗Σ1 iff ∃h0, h1. h = h0 ∗ h1 and s, h0 � Σ0 and s, h1 � Σ1

s � {E=F} iff C[[E]]s = C[[F]]s

s � Π0 ∪Π1 iff s � Π0 and s � Π1

s, h � Π | Σ iff ∃v′. (s(x′ 7→ v′) � Π) and (s(x′ 7→ v′), h � Σ)

where x′ is the collection of primed variables in Π | Σ

We often use the notation Σ ∗P for the (disjoint) union of a formula P onto
the spatial part of a symbolic heap, and we similarly use Π ∧P in the pure part.

The meaning of a symbolic heap corresponds to a formula

∃x′1x′2 . . . x′n.
(∧

P∈Π

P
)
∧
(
F

Q∈Σ
Q
)
,

in separation logic, where {x′1, . . . , x′n} is the set of all the primed variables in
Σ and Π. More formally, the meaning of a symbolic heap is given by a forcing
relation s, h � Π | Σ, where s is a stack and h a (concrete) heap.

Values = Locations ∪ {nil} Heaps = Locations ⇀f Values

Stacks = (Vars ∪ Vars′) → Values States = Stacks× Heaps

The semantics is given in Table 1. The operation h0 ∗h1 there is the union of
heaps with disjoint domains. We give the semantics for the singleton sets in the
pure and spatial parts, and then for unions. There, the clause for list segments
is given informally, but corresponds to the least predicate satisfying

ls(E,F) ⇐⇒ E 6= F ∧
(
E 7→F ∨ (∃x′.E 7→x′ ∗ ls(x′, F))

)
.

Our analysis will require us to be able to answer some questions about sym-
bolic heaps algorithmically: whether two expressions are equal, whether they are
unequal, whether the heap is inconsistent, and whether a cell is allocated.

Π ` E=F Π | Σ ` E 6=F (when Vars′(E,F) = ∅)
Π | Σ ` false Π | Σ ` Allocated(E) (when Vars′(E) = ∅)

Π ` E=F is easy to check. It just considers whether E and F are in the
same equivalence class induced by the equalities in Π.

5

The other operators use subroutine allocated, which takes Σ and an expres-
sion E, and decides whether Σ implies that E points to an allocated cell, by
a “nontrivial reason”: allocated ignores the case where Σ is not satisfiable and
implies all formulae.

allocated(Σ,E) = ∃E′. (E 7→ E′ ∈ Σ) or (ls(E,E′) ∈ Σ).

We then define the other querying operators as follows:

Π | Σ ` false ⇐⇒ (∃E. Π ` E=nil and allocated(Σ, E)), or
(∃E,F. Π ` E=F and ls(E,F) ∈ Σ), or(
∃E,F. Π ` E=F and Σ contains two distinct

predicates whose lhs’s are, respectively, E and F

)
Π | Σ ` E 6=F ⇐⇒ (E=F ∧Π | Σ) ` false

Π | Σ ` Allocated(E) ⇐⇒ Π | Σ ` false, or
∃E′. Π ` E=E′ and allocated(Σ, E′)

These definitions agree with what one would obtain from a definition in terms of
the forcing relation �, but they are simple syntactic checks that do not require
calling a theorem prover.

The rules that define our analysis will preserve consistency of symbolic heaps
(that Π | Σ 6` false). In particular, inconsistent heaps introduced in branches of
if statements or as a result of tests in a while loop will be filtered out.

4 Concrete and Symbolic Execution Semantics

The grammar of commands for the programming language used in this paper is
given by

b F E=E | E 6=E

pF xBE | xB [E] | [E]BF | new(x) | dispose(E) Primitive Commands
c F p | c ; c | while b do c | if b then c else c Commands

We do not consider commands that contain any primed variables amongst their
expressions. We include only a single heap dereferencing operator [·] which refers
to the “next” field. In the usual way, our experimental implementation ignores
commands that access fields other than “next” (say, a data field), and treats any
boolean conditions other than those given as nondeterministic.

4.1 Concrete Semantics

The execution rules for the primitive commands are as follows, where in the
faulting rule (the last rule) we use notation for atomic commands that access
heap cell E:

A(E)F [E]BF | xB [E] | dispose(E)

6

Concrete Execution Rules

C[[E]]s = n

s, h, xBE =⇒ (s | x 7→ n), h
C[[E]]s = ` h(`) = n

s, h, xB [E] =⇒ (s | x 7→ n), h

C[[E]]s = ` C[[F]]s = n ` ∈ dom(h)
s, h, [E]BF =⇒ s, (h | ` 7→ n)

` 6∈ dom(h)
s, h, new(x) =⇒ s, (h | ` 7→ n)

C[[E]]s = `

s, h ∗ [` 7→ n], dispose(E) =⇒ s, h

C[[E]]s 6∈ dom(h)
s, h, A(E) =⇒ >

Notice the tremendous amount of nondeterminism in new: it picks out any
location not in the domain of the heap, and any value n for its contents.

The concrete semantics is given in the topped powerset P(States), where the
filter map is

filter(b)X = {(s, h) ∈ X | C[[b]]s = true} ∪ {> | > ∈ X}

where C[[b]]s ∈ {true,false} just checks equalities by looking up in the stack s.
With these definitions we may then set C[[p]] = p† and by the recipe of

Section 2 we obtain the concrete semantics

C[[c]] : P(States) → P(States)

of every command c.

4.2 Symbolic Semantics

The symbolic execution semantics σ,A =⇒ σ′ takes a symbolic heap σ and an
atomic command, and transforms it into an output symbolic heap or >. In these
rules we require that the primed variables x′, y′ be fresh.

Symbolic Execution Rules

Π | Σ, xBE =⇒ x=E[x′/x] ∧ (Π | Σ)[x′/x]

Π | Σ ∗ E 7→F , xB [E] =⇒ x=F [x′/x] ∧ (Π | Σ ∗ E 7→F)[x′/x]

Π | Σ ∗ E 7→F , [E]BG =⇒ Π | Σ ∗ E 7→G

Π | Σ, new(x) =⇒ (Π | Σ)[x′/x] ∗ x7→y′

Π | Σ ∗ E 7→F , dispose(E) =⇒ Π | Σ

Π | Σ 6` Allocated(E)
Π | Σ, A(E) =⇒ >

7

Rearrangement Rules

P (E,F) F E 7→F | ls(E,F)

Π0 | Σ0 ∗ P (E,G), A(E) =⇒ Π1 | Σ1

Π0 | Σ0 ∗ P (F,G), A(E) =⇒ Π1 | Σ1

Π0 ` E=F

Π0 | Σ0 ∗ E 7→x′ ∗ ls(x′, G), A(E) =⇒ Π1 | Σ1

Π0 | Σ0 ∗ ls(E,G), A(E) =⇒ Π1 | Σ1

Π | Σ ∗ E 7→F, A(E) =⇒ Π ′ | Σ′

Π | Σ ∗ ls(E,F), A(E) =⇒ Π ′ | Σ′

The execution rules that access heap cell E are stated in a way that re-
quires their pre-states to explicitly have E 7→F . Sometimes the knowledge that
E is allocated is less explicit, such as in E=x | x7→y or ls(E,F), and we use
rearrangement rules to put the pre-state in the proper form. The first rearrange-
ment rule simply makes use of equalities to recognize that a dereferencing step
is possible, and the other two correspond to unrolling a list segment.

In contrast to the concrete semantics, the treatment of allocation is com-
pletely deterministic3. However, a different kind of nondeterminism results in
rearrangement rules that unroll list segments.

All that is left to define the symbolic (intermediate) semantics I[[c]]:P(SH) →
P(SH) by the recipe before is to define the filter map. It tosses in the equality
for the E=F case, but does not do so for the E 6=F case because we do not have
inequalities in our symbolic domain.

filter(E=F)X = {> | >∈X} ∪ {(E=F ∧Π | Σ) | Π | Σ ∈ X and Π | Σ 6` E 6=F}

filter(E 6=F)X = {> | >∈X} ∪ {(Π | Σ) ∈ X | Π 6` E=F and Π | Σ 6` false}

To state the sense in which the symbolic semantics is sound we define the
“meaning function” γ:P(SH) → P(States):

γ(X) =

{
States ∪ {>} if > ∈ X

{(s, h) | ∃Π | Σ ∈ X. (s, h) |= Π | Σ} otherwise

Theorem 2. The symbolic semantics is a sound overapproximation of the con-
crete semantics.

∀X ∈ P(SH). C[[c]](γ(X)) ⊆ γ(I[[c]]X).

5 The Analysis

The domain SH of symbolic heaps is infinite. Even though there are finitely
many program variables, primed variables can be introduced during symbolic
3 Provided we fix a deterministic way to choose fresh primed variables.

8

Table 2 Abstraction Rules

E=x′ ∧Π | Σ ; (Π | Σ)[E/x′]
(St1)

x′=E ∧Π | Σ ; (Π | Σ)[E/x′]
(St2)

x′ 6∈ Vars′(Π, Σ)

Π | Σ ∗ P (x′, E) ; Π | Σ ∪ junk
(Garbage1)

x′, y′ 6∈ Vars′(Π, Σ)

Π | Σ ∗ P1(x
′, y′) ∗ P2(y

′, x′) ; Π | Σ ∪ junk
(Garbage2)

x′ /∈ Vars′(Π, Σ, E, F) Π ` F=nil

Π | Σ ∗ P1(E, x′) ∗ P2(x
′, F) ; Π | Σ ∗ ls(E, nil)

(Abs1)

x′ /∈ Vars′(Π, Σ, E, F, G, H) Π ` F=G

Π | Σ ∗ P1(E, x′) ∗ P2(x
′, F) ∗ P3(G, H) ; Π | Σ ∗ ls(E, F) ∗ P3(G, H)

(Abs2)

execution. For example, in a loop that includes allocation we can generate for-
mulae x7→x′ ∗ x′ 7→x′′ · · · of arbitrary length.

In order to ensure fixed-point convergence we perform abstraction. The ab-
straction we consider is specified by a collection of rewrite rules which perform
abstraction by gobbling up primed variables. This is done by merging lists, swal-
lowing single cells into lists, and abstracting two cells by a list. We also remove
primed variables from the pure parts of formulae, and we collect all garbage into
the predicate junk.

5.1 Canonicalization Rules

The canonicalization rules are reported in Table 2. We again use the notation
P (E,F) to stand for an atomic formula either of the form E 7→F or ls(E,F).

The most important rules are the last two. The sense of abstraction that
these rules implement is that we ignore any facts that depend on a midpoint in
a list segment, unless it is named by a program variable. There is a subtlety in
interpreting this statement, however. One might perhaps have expected the last
rule to leave out the P3(G, H) ∗-conjunct, but this would result in unsoundness;
as Berdine and Calcagno pointed out [4, 5], we must know that the end of a sec-
ond list segment does not point back into the first if we are to concatenate them.
We are forced, by considerations of soundness, to keep some primed midpoints,
such as in the formula ls(x, x′) ∗ ls(x′, y), to which no rewrite rule applies.

Notice the use of a ∪ rather than a ∗ on the rhs of the (Garbage1) and
(Garbage2) rules. This has the effect that when more than one unreachable node
named by a primed variable is present, all of them get put into the unique junk
node. Having the junk node helps in obtaining a finite abstract semantics.

9

5.2 The Algorithm

We say that Π | Σ is a canonical symbolic heap if it is consistent (i.e., Π | Σ 6`
false) and no canonicalization rule applies to it, and we denote by CSH the set
of all such. We can immediately observe:

Lemma 3 (Strong Normalization). ; has no infinite reduction sequences.

This, together with the results in the next section, would be enough to define
a terminating analysis. But, there are many distinct reduction sequences and
to try all of them in an analysis would lead to a massive increase in nonde-
terminism. We have not proven a result to the effect that choosing different
reduction sequences matters in the final result (after applying the meaning func-
tion γ, but neither have we found examples where the difference can be detected.
So, in our implementation we have chosen a specific strategy which applies the
equality rules, followed by (Garbage1), followed by abstraction rules, followed by
(Garbage2). In the theory, we just presume that we have a function (rather than
relation)

can:SH → CSH

which takes a symbolic heap Π | Σ and returns a canonical symbolic heap Π ′ | Σ′

where Π | Σ ;∗ Π ′ | Σ′.
[We remark that can(Π | Σ) is not the best (logically strongest) canonical

heap implied by Π | Σ. A counterexample is {} | {x7→x′, x′ 7→y, y 7→nil}. This
symbolic heap is reduced to {} | {ls(x, y), y 7→nil} by the canonicalization, but
implies another symbolic heap {} | {x7→x′, x′ 7→z′, y 7→nil}, which is not (logically)
weaker than {} | {ls(x, y), y 7→nil}. We believe that this “problem” is fixable; we
conjecture that there is a preorder v on SH such that (i) v is a sub preorder
of the logical implication and (ii) can(Π | Σ) is the smallest canonical heap
greater than or equal to Π | Σ with respect to v. As of this writing we have not
succeeded in proving this conjecture. If true, it would perhaps open the way to a
study pinpointing where precision is and is not lost (as in, e.g., [3]) using Galois
connections. Although valuable, such questions are secondary to our more basic
aim of existence (soundness and termination) of the analysis.]

Let in:P(CSH) → P(SH) denote the inclusion function. We define the ab-
stract semantics for each primitive command p by the equation

A[[p]] = in ; I[[p]] ; (can†).

The filtering map in the abstract semantics is just the restriction of the symbolic
one to CSH. Then, by the recipe from Section 2 we obtain a semantics

A[[c]] : P(CSH) → P(CSH)

for every command.
The soundness of the abstract semantics relies on the soundness of the rewrit-

ing rules.

Lemma 4 (Soundness of ;). If Σ | Π ; Σ′ | Π ′ then Σ | Π ` Σ′ | Π ′.

10

The statement of soundness of the abstract semantics is then the same as for the
symbolic semantics, except that we quantify over P(CSH) instead of P(SH).

Theorem 5. The abstract semantics is a sound overapproximation of the con-
crete semantics.

∀X ∈ P(CSH). C[[c]](γ(X)) ⊆ γ(A[[c]]X).

Here are some examples of running the analysis on particular pre-states,
taken from an implementation of it in OCaml.

Example 1 . This is the usual program to reverse a list. Here 0 is used to denote
nil and x�tl is used instead of [x].

Program: while (c!=0) {n=c->tl; c->tl=p; p=c; c=n; };
Precondition: {true}|{ls(c,0)}
Invariant: {p=0}|{ls(c,0)} OR {c=n AND n=0}|{p|->0} OR

{c=n}|{p|->0 * ls(n,0)} OR {c=n AND n=0}|{ls(p,0)} OR
{c=n}|{ls(p,0) * ls(n,0)}

Postcondition: {c=0 AND c=n AND n=0}|{ls(p,0)} OR
{c=0 AND c=n AND n=0}|{p|->0}

Given a linked list as a precondition, the analysis calculates that the postcon-
dition might be a linked list or a single points-to fact. The postcondition has
some redundancy, in that we could remove the second disjunct without affecting
the meaning; this is because we have used the subset ordering on sets of states,
rather than one based on implication. The analysis also calculates the pictured
loop invariant along the way.

When we apply the analysis to the same program but give a circular linked
list as input, we get the following (we omit the calculated invariant, which has
11 disjuncts).

Precondition: {true}|{ls(c,c_) * ls(c_,c)}
Postcondition: {c=0 AND c=n AND n=0}|{p|->p_ * ls(p_,p)} OR

{c=0 AND c=n AND n=0}|{p|->p_ * p_|->p}

Example 2 . This is the program to dispose a list.

Program: while (c!=0) {t=c; c=c->tl; dispose(t); };
Precondition: {true}|{ls(c,0)}
Invariant: {c=0}|{emp} OR {true}|{ls(c,0)}
Postcondition: {c=0}|{emp}

We properly get emp on termination. If we leave out the dispose instruction, it
returns postcondition c = nil | t 7→nil ∗ junk (showing memory leak). When we
run the analysis on this program on a circular list or ls(c, d) it reports a memory
fault.

In addition to these examples we have run the analysis on a range of other
small programs, such as list append, list copy, and programs to insert and delete
from the middle of a list. For what it’s worth, all of them completed in millisec-
onds running on a PowerBook G4.

11

6 Termination

Although the abstract semantics exists, we have not yet established that the
“algorithm” it determines always terminates. We do that by showing that the
abstract domain CSH, consisting of the normal forms of the rewriting rules, is
finite.

To gain some insight into the nature of the canonical symbolic heaps here
are some examples, where the pure part Π is empty (and left out).

Irreducible Reducible

ls(x, x′) ∗ ls(y, x′) ∗ ls(x′, nil) ls(x, x′) ∗ ls(x′, y′) ∗ ls(y′, nil)
ls(x, x′) ∗ ls(x′, x) ls(x, y′) ∗ ls(y′, x′) ∗ ls(x′, x)

ls(x, x′) ls(x′, x)
ls(x, x′) ∗ ls(x′, y) ls(x, x′) ∗ ls(x′, y) ∗ ls(y, z)

In the first element of the first row, variable x′ is shared (pointed to by x and y),
and this blocks the application of rule (Abs1) because of its variable condition.
On the other hand, the second element can be reduced, in fact twice, to end
up with ls(x, nil). The second row contains two cycles, one of (syntactic) length
two and the other of length three. The first of these cannot be reduced. We
would need to know that x=nil to apply (Abs1) and we cannot, because x in
ls(x, x′) cannot be nil or else we would have an inconsistent formula. The second
in this row can, however, be reduced, to the first. In the third row x′ is reachable
variable that possibly denotes a dangling pointer and there is no way to eliminate
it. In the second it is not reachable, and can be removed using the (Garbage1)
rule. In the final row, first x′ points to a possibly dangling variable y. We cannot
gobble x′ up because to do so would result in unsoundness, and the rule (Abs2)
is arranged to prevent this. If we tack on another heap formula to ensure that y
is not dangling then (Abs2) can apply.

Based on these ideas we can characterize the normal forms of ;∗ using
“graphical” ideas of path and reachability, as well as conditions about sharing,
cycles, and dangling pointers.

Definition 6. 1. A path in Π | Σ is a sequence of expressions E0, E1, . . . , En

such that

∀i ∈ {1, . . . , n}. ∃E,E′. Π ` Ei−1=E and Π ` Ei=E′ and P (E,E′) ∈ Σ.

Reachability between expressions is defined in the usual way: E is reachable
from E′ in Π | Σ if and only if there is a path in Π | Σ that starts from E
and ends in E′.

2. An expression E in Π | Σ is shared if and only if
Σ contains two distinct elements P0(E0, E

′
0) and P1(E1, E

′
1) such

that Π ` E=E′
0 and Π ` E=E′

1.
3. A primed variable x′ in a cycle (a path from E to itself) is an internal node

if and only if it is not shared.

12

4. E is called possibly dangling in Π | Σ if and only if
(a) Π 6` E=nil,
(b) there exists some E′ such that Π ` E=E′ and E′ has right occurrences

in Σ, and
(c) there are no expressions F ′ such that Π ` E=F ′ and F ′ has left occur-

rences in Σ.
5. E points to a possibly dangling expression if and only if there are E′, F such

that Π ` E=E′, P (E′, F) ∈ Σ, and F possibly dangles.

Definition 7 (Reduced Symbolic Heap). A symbolic heap Π | Σ is reduced
if and only if

1. Π does not contain primed variables;
2. every primed variable x′ in Σ is reachable from some unprimed variable; and
3. for every reachable variable x′, either

(a) x′ is shared, or
(b) x′ is the internal node of a cycle of length precisely two, or
(c) x′ points to a possibly dangling variable, or
(d) x′ is possibly dangling.

In (b) of this definition the length refers to the syntactic length of a path, not
the length of a denoted cycle. For example, ls(x, x′)∗ ls(x′, x) has syntactic length
two, even though it denotes cycles of length two or greater.

This definition of reduced heaps is not particularly pretty; its main point is
to give us a way to prove termination of our analysis.

Proposition 8 (Canonical Characterization). When a symbolic heap Π | Σ
is consistent, Π | Σ is reduced if and only if Π | Σ / .

We consider the formulae in CSH as being equivalent up to α-renaming, that
is, renaming of primed variables. With this convention, we can show CSH finite.

Proposition 9. CSH is finite.

The proof of this proposition proceeds by first showing a lemma that bounds
the number of primed variables in any reduced form (this bound is very coarse).
In essence, the no sharing part of the definition of “reduced” stops there be-
ing infinitely many possible primed variables (starting from a fixed finite set
of program variables). We have obtained a coarse bound of 7n. This bound
then limits the number of atomic predicates that can appear in such formulae,
giving us finiteness. The overall bound one obtains is exponential. Again, our
argument (in the appendix) produces only a coarse4, extremely large, bound of
2(129n2+18n+2).

This the leads us to

Theorem 10. The algorithm specified by A[[·]] always terminates.

4 E.g., in this bound we do not exclude inconsistent states which would be a very large
part of them.

13

7 Locality

We now describe locality properties of the semantics, beginning with an example.
Suppose that we have a queue, represented in memory as a list segment from c
to d. An operation for getting an element is

x = c; c = c->tl; /* get from left of queue, put in x */

The list segment might not be the whole storage, of course. In particular, we
might have an additional element pointed to by d which is (perhaps) used to
place an element into the queue. When we run our tool on an input reflecting
this state of affairs we obtain

Precondition: {true}|{ls(c,d) * d|->d_}
Postcondition: {c=d}|{x|->d * d|->d_} OR

{true}|{x|->c * ls(c,d) * d|->d_}

However, it is clear that the d 7→ d information is irrelevant, that a run of the
tool on the smaller input gives us all the information we need.

Precondition: {true}|{ls(c,d)}
Postcondition: {c=d}|{x|->d} OR {true}|{x|->c * ls(c,d)}

In fact, the behaviour of the tool in the first case follows from that in the second,
using the Frame Rule of separation logic.

This example is motivated by the treatment of a concurrent queue in [10].
The fact that we do not have to consider the cell d when inserting is crucial
for a verification which shows that the two ends of a nonempty queue can be
manipulated concurrently. To produce such results from an analysis, rather than
a by-hand proof, we would similarly like to avoid the need to analyze the entire
state including the cell d.

We can give a theoretical account of the locality of our analysis using the
following notions. First, we define a notion of ∗ on entire symbolic heaps.

(Π1 | Σ1) ∗ (Π2 | Σ2) = (Π1 ∪Π2 | Σ1 ∗Σ2).

This is a partial operation, which is undefined when Σ1 ∗ Σ2 is undefined, or
when (Π1 ∪Π2 | Σ1 ∗Σ2) is inconsistent, or when some primed variable appears
both in Π1 | Σ1 and in Π2 | Σ2. We extend this to SH ∪ {>} by stipulating
(Π | Σ) ∗ > = > = > ∗ (Π | Σ). It then lifts to a total binary operation on
P(SH) by

X ∗ Y = {σ1 ∗ σ2 | σ1 ∈ X, σ2 ∈ Y }.

To formulate the locality property we suppose a fixed set Mod of modified
variables, that appear to the left of B or in new(x) in a given command c.

Theorem 11 (Frame Rule). ∀X, Y ∈ P(CSH), if Vars(Y) ∩Mod = ∅ then

γ(A[[c]](X ∗ Y)) ⊆ γ((A[[c]]X) ∗ Y).

14

There are two reasons why we get an overapproximation ⊆ rather than exact
match here. First, and trivially, there might be states in X where c faults, returns
>, while it never does for states in X ∗Y . The second reason is best understood
by example. When the program

new(x) ; (if x=y then zB a else zB b) ; dispose(x)

is run in the empty heap, it returns a pair of post-states, one where z=a and the
other where z=b. But when run in y 7→y′ the if branch is ruled out and we only
get z=b | y 7→y′ as a possible conclusion. However, we get the state z=a | y 7→y′

as an additional possibility starting from y 7→y′, when we put the small output
together with y 7→y′ using ∗. Although precision can be lost when passing to
smaller states, it is often an acceptable loss.

For a given command c and symbolic heap σ we define

1. safe(c, σ) iff > 6∈ A[[c]]{σ}
2. σ1 � σ3 iff ∃σ2. σ3 = σ1 ∗ σ2

3. σ ≺ σ′ iff σ � σ′ and σ 6= σ′

4. onlyaccesses(c, σ) iff safe(c, σ) and ¬∃σ′ ≺ σ. safe(c, σ′).

The notion of accesses is coarse. For example, onlyaccesses([x]B y, ls(x, nil)) holds,
even though a single cell can be picked out of the list segment. A stronger
notion of accesses, and hence footprint, might be formulated taking implications
between symbolic heaps into account as well as �.

The footprint is partial function foot(c): CSH ⇀ P(CSH),

foot(c)σ = if (onlyaccesses(c, σ)) then (A[[c]]{σ}) else (undefined).

The point of the footprint is that, as a set of pairs, it can be compact compared to
the entire meaning. For the disposelist program the footprint has three entries,
with preconditions {} | {ls(c, nil)}, {} | {c7→nil} and {c=nil} | {}. The entire
meaning has 16 entries, corresponding to the number of canonical symbolic heaps
over a single input variable c.

To express the sense in which the footprint is a sound representation of
the semantics of c we show how any potential footprint can be “fleshed out”
by applying the idea behind the Frame Rule. Again, let Mod be the set of
modified variables in a given command c, and for each symbolic heap Π | Σ, let
unaffectedEqs(Π | Σ) be the set of equalities E=F in Π such that Vars(E=F)∩
Mod = ∅. If f : CSH ⇀ P(CSH), then flesh(f): CSH → P(CSH) is defined as
follows:

validSplit(σ0, σ1, σ) ⇐⇒ σ0 ∗ σ1 = σ and Vars(σ1) ∩Mod = ∅ and
σ0 ∈ dom(f) and unaffectedEqs(σ1) = unaffectedEqs(σ)

flesh(f)σ = if (¬∃σ0, σ1. validSplit(σ0, σ1, σ)) then {>}
else let σ′

0, σ
′
1 be symbolic heaps s.t. validSplit(σ′

0, σ
′
1, σ)

in P(can)
(
f(σ′

0) ∗ {σ′
1})

The fleshing out picks one access point, and adds as many ∗-separated invariants
as possible to the access point.

15

Theorem 12. The footprint is a sound overapproximation of the abstract se-
mantics:

∀X ∈ P(CSH). γ(A[[c]]X) ⊆ γ(foot(c)†X).

Although theoretically incomplete, the footprint very often does give an accurate
representation of a program’s abstract meaning.

The calculation of whole footprints is, of course, not realistic. A more prac-
tical way to employ the footprint idea would be, given an input state σ, to
look at substates on which a procedure or command does not produce a fault.
In interprocedural analysis, we might record the input-output behaviour on as
small states as possible when tabulating a procedure summary. This would be
similar to [15], but would not involve entire reachable substates. In concurrency,
we would look for disjoint substates of an input state on which to run parallel
commands: if these input states were safe for the commands in question, then we
could soundly avoid (many) interleavings during symbolic execution. We hope
to report on these matters at a later time.

References

[1] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow analysis
of pointer programs. 33rd POPL, to appear, 2006.

[2] T. Amtoft and A. Banerjee. Information flow analysis in logical form. 11th Static
Analysis Symposium, LNCS3184, pp100-115, 2004.

[3] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and Cartesian
abstraction for model checking C programs. 7th TACAS, LNCS, 2031:268–283,
2001.

[4] J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of separation
logic. Proceedings of FSTTCS, LNCS 3328, Chennai, December, 2004.

[5] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution
with separation logic. In K. Yi, editor, APLAS 2005, volume 3780 of LNCS,
2005.

[6] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. 4th
ACM Symposium on Principles of Programming Languages. pages 238–252, 1977.

[7] D. Distefano. On model checking the dynamics of object-based software: a foun-
dational approach. PhD thesis, University of Twente, 2003.

[8] D. Distefano, A. Rensink, and J.-P. Katoen. Who is pointing when to whom:
on model-checking pointer structures. CTIT Technical Report TR-CTIT-03-12,
Faculty of Informatics, University of Twente, March 2003.

[9] S. Magill, A. Nanevski, E. Clarke, and P. Lee. Inferring invariants in Separation
Logic for imperative list-processing programs. Draft, July 2005, 2005.

[10] P. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 2006. to appear. Preliminary version appeared in CONCUR’04, LNCS
3170, 49–67.

[11] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter
data structures. In Proceedings of 15th Annual Conference of the European Asso-
ciation for Computer Science Logic, LNCS, pages 1–19. Springer-Verlag, 2001.

16

[12] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In 31st POPL, pages 268–280, 2004.

[13] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th LICS, pp 55-74, 2002.

[14] N. Rinetzky, J. Bauer, T. Reps, S. Sagiv, and R. Wilhelm. A semantics for
procedure local heaps and its abstractions. 32nd POPL, pp296–309, 2005.

[15] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-
free programs. In 12th International Static Analysis Symposium (SAS), 2005.

[16] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3valued logic.
ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

Appendix

This appendix gives the proofs of the key elements that ensure termination.

Proof of Proposition 8

Proposition 8
When a symbolic heap Π | Σ is consistent, Π | Σ is reduced if and only
if Π | Σ / .

Proof
[Only if Part]. Suppose that Π | Σ is reduced; we need to show that no rule
applies. By condition 1 of Definition 7 neither (St1) nor (St2) can apply, and
none of (Garbage1) and (Garbage2) can apply by condition 2.

For (Abs1) to apply, note that x′ in the rule is not shared because of the
assumption x′ /∈ Vars′(Σ,Π,E, F) in the rule. It neither dangles nor points to
a dangler because ls(x′, F) and Π � F=nil. It is not in a cycle because ls(x′, F)
and Π � F=nil together preclude any cycle in consistent symbolic heaps. Thus,
if Π | Σ is reduced (Abs1) cannot apply.

For (Abs2) to apply, we similarly must have that x′ is not shared, doesn’t
dangle, and doesn’t point to a dangler. It can’t be in a cycle of length two
either, because the only way to get a cycle through x′ in the rule is to go from
E through x′ to F=G and on to H. We know that G and E cannot be equal
because they are lhs’s that are ∗-separated and Π | Σ is consistent. That rules
out one way of getting a cycle of length two. The only other is to start from x′,
go through F=G, and come back to x′ if H=x′. But H=x′ is ruled out by the
variable condition in the rule. Thus, (Abs2) cannot apply.

[If Part]. If Π | Σ is not reduced, we want to show that a rule applies. If condition
1 of Definition 7 fails then we can apply one of (St1) or (St2). If condition 2 does
not hold, we have a primed variable x′ in Σ that is not reachable from unprimed
variables. Suppose that the (Garbage1) rule cannot fire on this Π | Σ. Since the
(Garbage1) rule cannot fire, x′ should be in a cycle. We make three observations
about this cycle. First, all the variables in the cycle as well as all the variables
from which we can reach x′ should be primed, because x′ is not reachable from
unprimed variables. Second, the length of the cycle of x′ is at least 2. For,

17

if the length is one, then there would be some primed variable y′ such that
x′ is reachable from y′ and y′ occurs in only one predicate P (y′, E) of Σ; so,
(Garbage1) can be applied to y′, contradicting to our assumption that (Garbage1)
is not applicable. Third, x′ is reachable only from some cells in the cycle. If y′

is not in the cycle but it can reach to x′, then (Garbage1) can be applied to
some primed variable z′, which contradicts to our assumption. Because of these
observations, it is sufficient to consider two subcases: when the length of the
cycle is greater than 2, and when the length of the cycle is 2. In the first subcase,
we can apply (Abs2), because the third observation ensures that every primed
variables in the cycle occurs twice, one in the lhs and the other in the rhs. The
same property about the primed variable in the cycle also ensures that in the
second subcase, we can apply (Garbage2).

Because of what we have just shown, we suppose that condition 1 and 2 do
hold, but condition 3 does not. We need to argue that either (Abs1) or (Abs2)
applies. In more detail,

if x′ is not shared, not the internal node of a cycle of length two, not a
dangler, and not pointing to a dangler,
then we can apply one of the two rules.

Since x′ is reachable from unprimed variables and it is not in Π, we must
have P1(E, x′) ∈ Σ for some E 6≡ x′. Since x′ is not a dangler, we must have
P2(x′, F) ∈ Σ. Now, P1(E, x′) and P2(x′, F) must be distinct elements of Σ, be-
cause E and x′ are syntactically different. So we have at least the ∗-combination
P1(E, x′) ∗ P2(x′, F) as part of Σ.

Since x′ is not shared, it cannot appear as an rhs other than in P1(E, x′).
And it cannot appear as any lhs other than in P2(x′, F) because that would
imply that Σ is inconsistent. So, x′ is not in Σ, other than in P1(E, x′) and
P2(x′, F). Next, there are two subcases.

The first subcase is that Π ` F=nil. Then, since we have shown that x′ is
not in Σ, other than in P1(E, x′) and P2(x′, F), and x′ is syntactically different
from E,F , the variable condition in rule (Abs1) holds and it can fire.

The second subcase is that Π 6` F=nil. This, combined with the assumption
that x′ does not point to a dangler, implies that there is P3(G, H) ∈ Σ with Π `
F=G. Predicate P3(G, H) is distinct from P2(x′, F). If P3(G, H) and P2(x′, F)
were identical, then both G and F would be x′. But, x′ appears as an rhs only
in P1(E, x′), so it is different from F and G. The requirement that x′ is not the
internal node of a cycle of length two implies that P3(G, H) cannot be the same
as P1(E, x′), because otherwise we would have a cycle from x′ to E and back to
x′. So, P1(E, x′), P2(x′, F) and P3(G, H) are all distinct elements of Σ, and we
have a ∗-combination P1(E, x′) ∗ P2(x′, F) ∗ P3(G, H). Here x′ is different from
H, because x′ appears as an rhs only in P1(E, x′). Then, since we have shown
earlier that x′ is not in Σ, other than in P1(E, x′) and P2(x′, F), and that x′ is
different from E,F,G,H, the variable condition in rule (Abs2) holds and it can
fire. �

18

Proposition 9 CSH is finite.
Proof The proof uses a lemma which bounds the number of primed variables
in any reduced form (this bound is very coarse).

Lemma: If Π | Σ ∈ CSH then the number of primed variables in Σ is
bounded by 7n, where n is the number of program variables.

Let Xs, Xc, Xp, Xd be sets of primed variables in Π | Σ, such that

– x′ ∈ Xs iff x′ is shared,
– x′ ∈ Xc iff x′ is the internal node of a cycle of length 2,
– x′ ∈ Xp iff x′ points to a possibly dangling variable,
– x′ ∈ Xd iff x′ is possibly dangling.

Then, {Xs, Xc−Xs, Xp−Xs, Xd−Xs} is the partitioning of the set of primed
variables in Π | Σ. We denote the cardinality of each partition by ms=|Xs|,
mc=|Xc−Xs|, mp=|Xp−Xs|, and md=|Xp−Xs|. Since Π | Σ is consistent, the
lhs’s of the predicates in Σ are all different primed or unprimed variables, so the
number of those predicates is bounded above by n + ms + mc + mp + md. On
the other hand, since every primed variable x′ is reachable, it should occur on
the lhs of some predicate in Σ, and if x′ is shared, it should occur at least twice
on the lhs’s. Therefore, the number of the predicates in Σ is bounded below by
2ms + mc + mp + md. By combining the obtained lower and upper bounds of
|Σ|, we get 2ms + mc + mp + md ≤ n + ms + mc + mp + md, and this inequality
gives the upper bound n on ms:

ms ≤ n.

We will now compute the upper bound for the other primed variables. For the
upper bound of mc + mp, we use the fact that if x′ is in Xc−Xs or Xp−Xs,
then Σ should contain P (E, x′) where E is a unprimed variable or a shared
primed variable. Thus, the number of such x′ is bounded by ms + n, because by
consistency of Π | Σ, the lhs’s of the predicates in Σ are never the same. The
upper bound of mc + mp is:

mc + mp ≤ ms + n ≤ 2n.

Finally, we compute the upper bound of md. For this, we use the fact that if x′

is in Xd−Xs, then Σ should have P (E, x′) where E is a shared primed variable,
or unprimed variable, or a unshared primed variable that possibly points to a
dangling variable. Thus, the number of such x′ is bounded by ms + n + mp. So,
the upper bound of md is:

md ≤ ms + n + mp ≤ n + n + 2n = 4n.

Combining the obtained upper bounds together, we get 7n as the upper bound
on the number of primed variables. This completes the proof of the lemma.

For the proof of the proposition first note that if Π | Σ ∈ CSH then Π can
contain at most as (n+1)× (n+1) formulas, where n is the number of program

19

variables, because there are (n + 1)-many expressions. There are therefore at
most 2(n2+2n+1) different Π’s.

By the lemma, the number of variables (primed and unprimed) appearing in
Σ is then bounded by 8n. Thus, for each predicate P , there are 8n × (8n + 1)
different atomic formulae of the form P (E,E′). Since each atomic formula is
junk, or ls(E,E′), or E 7→E′, there are 1 + 2× 8n× (8n + 1) atomic formulae in
total. There are then at most 2(128n2+16n+1) Σ’s.

Putting these observations together, we have 2(n2+2n+1) + 2(128n2+16n+1) as
a bound on the number of symbolic heaps in CSH. (We have argued a coarse
bound for simplicity.) �

20

