
Extended and corrected version of paper in: APLAS 2005, LNCS 3780, pp. 52-68. Revised: 2 Nov 2005 1

Symbolic Execution with Separation Logic

Josh Berdine1, Cristiano Calcagno2, and Peter W. O’Hearn1

1 Queen Mary, University of London
2 Imperial College, London

Abstract. We describe a sound method for automatically proving Hoare
triples for loop-free code in Separation Logic, for certain preconditions
and postconditions (symbolic heaps). The method uses a form of sym-
bolic execution, a decidable proof theory for symbolic heaps, and extrac-
tion of frame axioms from incomplete proofs. This is a precursor to the
use of the logic in automatic specification checking, program analysis,
and model checking.

1 Introduction

Separation Logic has provided an approach to reasoning about programs with
pointers that often leads to simpler specifications and program proofs than pre-
vious formalisms [12]. This paper is part of a project attempting to transfer the
simplicity of the by-hand proofs to a fully automatic setting.

We describe a method for proving Hoare triples for loop-free code, by a form
of symbolic execution, for certain (restricted) preconditions and postconditions.
It is not our intention here to try to show that the method is useful, just to say
what it is, and establish its soundness. This is a necessary precursor to further
possible developments on using Separation Logic in:

– Automatic Specification Checking , where one takes an annotated program
(with preconditions, postconditions and loop invariants) and chops it into
triples for loop-free code in the usual way;

– Program Analysis, where one uses fixed-point calculations to remove or re-
duce the need for annotations; and

– Software Model Checking .

The algorithms described here are, in fact, part an experimental tool of the first
variety, Smallfoot. Smallfoot itself is described separately in a companion paper
[2]; here we confine ourselves to the technical problems lying at its core. Of
course, program analysis and model checking raise further problems – especially,
the structure of our “abstract” domain and the right choice of widening operators
[3] – and further work is under way on these.

There are three main issues that we consider.
1. How to construe application of Separation Logic proof rules as symbolic

execution. The basic idea can be seen in the axiom

{A ∗ x7→[f : y]} x�fB z {A ∗ x7→[f : z]}

where the precondition is updated in-place, in a way that mirrors the imperative
update of the actual heap that occurs during program execution. The separating
conjunction, ∗, short-circuits the need for a global alias check in this axiom.
A ∗ x7→[f : y] says that the heap can be partitioned into a single cell x, that
points to (has contents) a record with y in its f field, and the rest of the heap,
where A holds. We know that A will continue to hold in the rest of the heap if
we update x, because x is not in A’s part of the heap.

There are two restrictions on assertions which make the symbolic execution
view tenable. First, we restrict to a format of the form B ∧ S where B is a pure
boolean formula and S is a ∗-combination of heap predicates. We think of these
assertions as “symbolic heaps”; the format makes the analogy with the in-place
aspect of concrete heaps apparent. Second, the preconditions and postconditions
do not describe the detailed contents of data structures, but rather describe
shapes (in roughly the sense of the term used in shape analysis). Beyond the
basic primitives of Separation Logic, Smallfoot at this point includes several
hardwired shape predicates for: singly- and doubly-linked lists, xor-linked lists,
and trees. Here we describe our results for singly-linked lists and trees only.

2. How to discharge entailments A ` B between symbolic heaps. We give a
decidable proof theory for the assertions in our language.

One key issue is how to account for entailments that would normally require
induction. To see the issue, consider a program for appending two lists. When
you get to the end of the first list you link it up to the second. At this point to
prove the program requires showing an entailment

ls(x, t) ∗ t 7→[n: y] ∗ ls(y, nil) ` ls(x, nil)

where we have a list segment from x to t, a single node t, and a further seg-
ment (the second list) from y up to nil. The entailment itself does not follow
at once from simple unwinding of an inductive definition of list segments. In
the metatheory it is proven by induction, and in our proof theory it will be
handled using rules that are consequences of induction but that are themselves
non-inductive in character.

In [1] we showed decidability of a fragment of the assertion language of this
paper, concentrating on list segments. Here we give a new proof procedure, which
appears to be less fragile in the face of extension than the model-theoretic pro-
cedure of [1], since if the fragment is extended with additional formulæ, then the
decision procedure of [1] remains complete but potentially becomes unsound,
while the present proof theory remains sound but potentially becomes incom-
plete. Additionally, and crucially, it supports inference of frame axioms.

3. Inference of Frame Axioms. Separation Logic allows specifications to be
kept small because it avoids the need to state frame axioms, which describe the
portions of the heap not altered by a command [10]. To see the issue, consider a
specification

{tree(p)} disp tree(p) {emp}

for disposing a tree, which just says that if you have a tree (and nothing else) and
you dispose it, then there is nothing left. When verifying a recursive procedure

2

for disposing a tree there will be recursive calls for disposing subtrees. The
problem is that, generally, a precondition at a call site will not match that
for the procedure due to extra heap around. For example, at the site of a call
disp tree(i) to dispose the left subtree we might have a root pointer p and the
right subtree j as well as the left subtree – p 7→[l: i, r: j] ∗ tree(i) ∗ tree(j)} – while
the precondition for the overall procedure specification expects only a single tree.

Separation Logic has a proof rule, the Frame Rule, which allows us to resolve
this mismatch. It allows us the first step in the inference:

{tree(i)} disp tree(i) {emp}
{p 7→[l: i, r: j] ∗ tree(i) ∗ tree(j)} disp tree(i) {p 7→[l: i, r: j] ∗ emp ∗ tree(j)}

{p 7→[l: i, r: j] ∗ tree(i) ∗ tree(j)} disp tree(i) {p 7→[l: i, r: j] ∗ tree(j)}

To automatically generate proof steps like this we need some way to infer frame
axioms, the leftover parts (in this case p 7→[l: i, r: j] ∗ tree(j)). Sometimes, this
leftover part can be found by simple pattern matching, but often not. In this
paper we describe a novel method of extracting frame axioms from incomplete
proofs in our proof theory for entailments. A failed proof can identify the “left-
over” part which, were you to add it in, would complete the proof, and we show
how this can furnish us with a sound choice of frame axiom.

The notion of symbolic execution presented in this paper is, in a general
sense, similar in spirit to what one obtains in Shape Analysis or PALE [14, 7].
However, there are nontrivial differences in the specifics. In particular, we have
been unsuccessful in attempts to compositionally translate Separation Logic into
either PALE’s assertion language or into a shape analysis; the difficulty lies in
treating the separating conjunction connective. And this is the key to employing
the frame rule, which is responsible for Separation Logic’s small specifications of
procedures. So it seems sensible to attempt to describe symbolic execution for
Separation Logic directly, in its own terms.

2 Symbolic Heaps

The concrete heap models assume a fixed finite collection Fields, and disjoint
sets Loc of locations, Val of non-addressable values, with nil ∈ Val. We then set:

Heaps def= Loc fin
⇀ (Fields → Val ∪ Loc)

Stacks def= Var → Val ∪ Loc

As a language for reasoning about these models we consider certain pure
(heap independent) and spatial (heap dependent) assertions.

x, y, . . . ∈ Var variables

E F nil | x expressions

P F E=E | ¬P simple pure formulæ

3

Π F true | P | Π ∧Π pure formulæ

f, fi, . . . ∈ Fields fields
ρF f1:E1, . . . , fk:Ek record expressions

S F E 7→[ρ] simple spatial formulæ
Σ F emp | S | Σ ∗Σ spatial formulæ

Π | Σ symbolic heaps

Symbolic heaps are pairs Π | Σ where Π is essentially an ∧-separated sequence
of pure formulæ, and Σ a ∗-separated sequence of simple spatial formulæ.3 The
pure part here is oriented to stating facts about pointer programs, where we
will use equality with nil to indicate a situation where we do not have a pointer.
Other subsets of boolean logic could be considered in other situations.

In this heap model a location maps to a record of values. The formula E 7→[ρ]
can mention any number of fields in ρ, and the values of the remaining fields are
implicitly existentially quantified. This allows us to write specifications which
do not mention fields whose values we do not care about.

The semantics is given by a forcing relation s, h � A where s ∈ Stacks, h ∈
Heaps, and A is a pure assertion, spatial assertion, or symbolic heap. h = h0 ∗h1

indicates that the domains of h0 and h1 are disjoint, and h is their graph union.

JxKs def= s(x) JnilKs def= nil

s, h � E1=E2

def

iff JE1Ks = JE2Ks

s, h � ¬P
def

iff s, h 2 P

s, h � true always
s, h � Π0 ∧Π1

def

iff s, h � Π0 and s, h � Π1

s, h � E0 7→[f1:E1, . . . , fk:Ek]
def

iff h = [JE0Ks�r] where r(fi) = JEiKs for i ∈ 1..k

s, h � emp
def

iff h = ∅
s, h � Σ0 ∗Σ1

def

iff ∃h0h1. h = h0∗h1 and s, h0 � Σ0 and s, h1 � Σ1

s, h � Π | Σ
def

iff s, h � Π and s, h � Σ

To reason about pointer programs one typically needs predicates that de-
scribe inductive properties of the heap. We describe two of the predicates (adding
to the simple spatial formulæ) that we have experimented with in Smallfoot.

2.1 Trees

We describe a model of binary trees where each internal node has fields l, r for
the left and right subtrees. The empty tree is given by nil. What we require is
3 Note that we abbreviate ¬(E1=E2) as E1 6=E2 and true | Σ as Σ, and use ≡ to

denote “syntactic” equality of formulæ, which are considered up to symmetry of =,
permutations across ∧ and ∗, e.g., Π ∧P ∧P ′ ≡ Π ∧P ′∧P , involutivity of negation,
and unit laws for true and emp. We use notation treating formulæ as sets of simple
formulæ, e.g., writing P ∈ Π for Π ≡ P ∧Π ′ for some Π ′.

4

that tree(E) is the least (logically strongest) predicate satisfying:

tree(E) ⇐⇒ (E = nil ∧ emp)
∨ (∃x, y. E 7→[l:x, r: y] ∗ tree(x) ∗ tree(y))

where x and y are fresh. The use of the ∗ between E 7→[l:x, r: y] and the two
subtrees ensures that there are no cycles, and the ∗ between the subtrees ensures
that there is no sharing; it is not a DAG.

The way that the record notation works allows this definition to apply to any
heap model that contains at least l and r fields. In case there are further fields,
say a field d for the data component of a node, the definition is independent of
what the specific values are in those fields.

Our description of this predicate is not entirely formal, because we do not
have existential quantification, disjunction, or recursive definitions in our frag-
ment. However, what we are doing is defining a new simple spatial formula (ex-
tending syntactic category S above), and we are free to do that in the metatheory.
A longer-winded way to view this, as a semantic definition, is to say that it is
the least predicate such that

s, h � tree(E) holds if and only if
1. s, h � E = nil ∧ emp, or
2. `x, `y exist where (s | x�`x, y�`y), h � E 7→[l:x, r: y] ∗ tree(x) ∗ tree(y)

Of course, we would have to prove (in the metatheory) that the least definition
exists, but that is not difficult.

2.2 List Segments

We will work with linked lists that use field n for the next element. The predicate
for linked list segments is the least satisfying the following specification:

ls(E,F) ⇐⇒ (E=F ∧ emp)
∨ (E 6=F ∧ ∃y.E 7→[n: y] ∗ ls(y, F))

Once again, this definition allows for additional fields, such as a head field, but
the ls predicate is insensitive to the values of these other fields.

With this definition a complete linked list is one that satisfies ls(E, nil). Com-
plete linked lists, or trees for that matter, are much simpler than segments. But
the segments are sometimes needed when reasoning in the middle of a list, par-
ticularly for iterative programs. (Similar remarks would apply to iterative tree
programs.)

2.3 Examples

For some context and a feel for the sorts of properties expressible, we present
a few example procedures with specifications in the fragment in Table 1. We
do not discuss loops and procedures in the technical part of the paper, but the

5

Table 1 Example Programs

disp tree(;p)
[tree(p)] {
local i,j;
if (p=nil) {}
else {

i B p�l;
j B p�r;
disp tree(;i);
disp tree(;j);
dispose p; }

} [emp]

copy tree(q;p)
[tree(p)] {
local i,j,i’,j’;
if (p=nil) {}
else {

i B p�l;
j B p�r;
copy tree(i’;i);
copy tree(j’;j);
q B cons();
q�l B i’;
q�r B j’; }

} [tree(q) ∗ tree(p)]

append list(x;y)
[ls(x, nil) ∗ ls(y, nil)] {
local t,u;
if (x=nil) {

x B y; }
else {

t B x; u B t�n;
while (u6=nil)
[ls(x, t) ∗ t7→[n: u] ∗ ls(u, nil)]
{ t B u;

u B t�n; }
t�n B y; }

} [ls(x, nil)]

Note that in these examples, assertions are enclosed in square brackets, and
procedure parameter lists consist first of the reference parameters, followed by
a semicolon, and finally the value parameters.

techniques we present are strong enough to verify these programs and are used
in Smalllfoot to do so.

The disp tree(p) example accepts any heap in which the argument points to
a tree and deallocates the tree, returning the empty heap. As discussed earlier,
proving this requires inferring frame axioms at the recursive call sites. Also, this
example demonstrates the ability to specify absence of memory leaks, since, if
the dispose p; command was omitted, then the specification would not hold.

While ∗ is required in the proof of disp tree, it does not appear in the spec-
ification. The second example illustrates the use of ∗ in specifications, where
copy tree guarantees that after copying a tree, the input tree and the new copy
occupy disjoint memory cells.

The third example is the source of the entailment requiring induction dis-
cussed in the introduction. This procedure also illustrates how list segments are
sometimes needed in loop invariants of code whose specifications only involve
complete lists ending in nil.

3 Symbolic Execution

In this section we give rules for triples of the form

{Π | Σ} C {Π ′ | Σ′}

where C is a loop-free program. The commands C are given by the grammar:

C F empty empty command

6

| xBE ; C variable assignment
| xBE�f ; C heap lookup
| E�fBF ; C heap mutation
| new(x) ; C allocation
| dispose(E) ; C deallocation
| ifP thenC elseC fi ; C conditional

The rules in this section appeal to entailments Π | Σ ` Π ′ | Σ′ between
symbolic heaps. Semantically, entailment is defined by:

Π | Σ ` Π ′ | Σ′ is true iff ∀s, h. s, h � Π | Σ implies s, h � Π ′ | Σ′

For the presentation of rules in this section we will regard semantic entailment
as an oracle. Soundness of symbolic execution just requires an approximation.

3.1 Operational Rules

The operational rules use the following notation for record expressions:

mutate(ρ, f, F) =

{
f :F, ρ′ if ρ = f :E, ρ′

f :F, ρ if f /∈ ρ

lookup(ρ, f) =

{
ρ,E if ρ = f :E, ρ′

(ρ, f :x), x if f /∈ ρ with x fresh

The fresh variable returned in the lookup case corresponds to the idea that if
a record expression does not give a value for a particular field then we do not
care what it is. These definitions do not result in conditionals being inserted into
record expressions; they do not depend on the values of variables or the heap.

The operational rules are shown in Table 2. One way to understand these
rules is by appeal to operational intuition. For instance, reading bottom-up, from
conclusion to premise, the Mutate rule says:

To determine if {Π | Σ ∗ E 7→[ρ]} E�fBF ; C {Π ′ | Σ′} holds, execute
E�fBF on the symbolic pre-state Π | Σ ∗E 7→[ρ], updating E in place,
and then continue with C.

Likewise, the Dispose rule says to dispose a symbolic cell (a 7→ fact), the New

rule says to allocate, and the Lookup rule to read. The substitutions of fresh
variables are used to keep track of (facts about) previous values of variables.

The role of fresh variables can be understood in terms of standard consider-
ations on Floyd-Hoare logic. Recall that in Floyd’s assignment axiom

{A} xBE {∃x′. x=E[x′/x] ∧A[x′/x]}

the fresh variable x′ is used to record (at least the existence of) a previous value
for x. Our fragment here is quantifier-free, but we can still use the same general

7

Table 2 Operational Symbolic Execution Rules

Empty
Π | Σ ` Π ′ | Σ′

{Π | Σ} empty {Π ′ | Σ′}

Assign
{x=E[x′/x] ∧ (Π | Σ)[x′/x]} C {Π ′ | Σ′}

{Π | Σ} xBE ; C {Π ′ | Σ′}
x′ fresh

Lookup
{x=F [x′/x] ∧ (Π | Σ ∗ E 7→[ρ′])[x′/x]} C {Π ′ | Σ′}

{Π | Σ ∗ E 7→[ρ]} xBE�f ; C {Π ′ | Σ′}
x′ fresh, lookup(ρ, f) = (ρ′, F)

Mutate
{Π | Σ ∗ E 7→[ρ′]} C {Π ′ | Σ′}

{Π | Σ ∗ E 7→[ρ]} E�fBF ; C {Π ′ | Σ′}
mutate(ρ, f, F) = ρ′

New
{(Π | Σ)[x′/x] ∗ x7→[]} C {Π ′ | Σ′}
{Π | Σ} new(x) ; C {Π ′ | Σ′}

x′ fresh

Dispose
{Π | Σ} C {Π ′ | Σ′}

{Π | Σ ∗ E 7→[ρ]} dispose(E) ; C {Π ′ | Σ′}

Conditional
{Π ∧ P | Σ} C1 ; C {Π ′ | Σ′} {Π ∧ ¬P | Σ} C2 ; C {Π ′ | Σ′}

{Π | Σ} ifP thenC1 elseC2 fi ; C {Π ′ | Σ′}

idea as in the Floyd axiom, as long as we have an overall postcondition and a
continuation of the assignment command.

{x=E[x′/x] ∧A[x′/x]} C {B}
{A} xBE ; C {B}

x′ fresh

This rule works in standard Hoare logic: the fact that the Floyd axiom expresses
the strongest postcondition translates into its soundness and completeness. All
of the rules mentioning fresh variables are obtained in this way from axioms of
Separation Logic. This (standard) trick allows use of a quantifier-free language.

We will not explicitly give the semantics of commands, but assume Separation
Logic’s “fault-avoiding” semantics of triples (as in, e.g., [12]) in:

Theorem 1. All of the operational rules are sound (preserving validity), and
all except for Dispose are complete (preserving invalidity).

To see the incompleteness of the Dispose rule consider:

{x7→[] ∗ y 7→[]} dispose(x) ; empty {x6=y | y 7→[]}

This is a true triple, but if we apply the Dispose and Empty rules upwards
we will be left with an entailment y 7→[] ` x6=y | y 7→[] that is false. The rule

8

loses the implied information that x and y are unequal from the precondition.
Although we can construct artificial examples like this that fool the rule, none of
the naturally-occurring examples that we have tried in Smallfoot have suffered
from it. The reason, so it seems, is that required inequalities tend to be indicated
in boolean conditions in programs, in either while loops or conditionals. We have
considered hack solutions to this problem but nothing elegant has arisen; so in
lieu of practical problems with the incompleteness, we have opted for the simple
solution presented here.

This incompleteness could be dealt with if we instead used the backwards-
running weakest preconditions of Separation Logic [4]. Unfortunately, there is
no existing automatic theorem prover which can deal with the form of these
assertions (which use quantification and the separating implication −−∗). If there
were such a prover, we would be eager consumers of it.

3.2 Rearrangement Rules

The operational rules are not sufficient on their own, because some of them
expect their preconditions to be in particular forms. For instance, in

{x=y | z 7→[f :w] ∗ y 7→[f : z]} x�fB y ; C {Π ′ | Σ′}

the Mutate rule cannot fire (be applied upwards), because the precondition has
to explicitly have x7→[ρ] for some ρ.

Symbolic execution has a separate rearrangement phase, which attempts to
put the precondition in the proper form for an operational rule to fire. For
instance, in the example just given we can observe that the precondition x=y |
z 7→[f :w] ∗ y 7→[f : z] is equivalent to x=y | z 7→[f :w] ∗x7→[f : z], which is in a form
that allows the Mutate rule to fire.

We use notation for atomic commands that access heap cell E:

A(E)F E�fBF | xBE�f | dispose(E)

The basic rearrangement rule simply makes use of equalities to recognize that
a dereferencing step is possible.

Switch(E)

{Π | Σ ∗ E 7→[ρ]} A(E) ; C {Π ′ | Σ′}
{Π | Σ ∗ F 7→[ρ]} A(E) ; C {Π ′ | Σ′}

Π | Σ ∗ F 7→[ρ] ` E=F

For trees and list segments we have rules that expose 7→ facts by unrolling
their inductive definitions, when we have enough information to conclude that
the tree or the list is nonempty.4 A nonempty tree is one that is not nil.

Unroll Tree(E)

{Π | Σ ∗ E 7→[l:x′, r: y′] ∗ tree(x′) ∗ tree(y′)} A(E) ; C {Π ′ | Σ′}
{Π | Σ ∗ tree(F)} A(E) ; C {Π ′ | Σ′}

†when Π | Σ ∗ tree(F) ` F 6=nil ∧ F=E and x′, y′ fresh

†

4 This is somewhat akin to the “focus” step in shape analysis [14].

9

Here, we have placed the “side condition”, which is necessary for the rule to
apply, below it, for space reasons. Besides unrolling the tree definition some
matching is included using the equality F=E.

To unroll a list segment we need to know that the beginning and ending
points are different, which implies that it is nonempty.

Unroll List Segment(E)

{Π | Σ ∗ E 7→[n:x′] ∗ ls(x′, F ′)} A(E) ; C {Π ′ | Σ′}
{Π | Σ ∗ ls(F, F ′)} A(E) ; C {Π ′ | Σ′}

†when Π | Σ ∗ ls(F, F ′) ` F 6=F ′ ∧ E=F and x′ fresh

†

These rearrangement rules are very deterministic, and are not complete on
their own. The reason is that it is possible for an assertion to imply that a cell is
allocated, without knowing which ∗-conjunct it necessarily lies in. For example,
the assertion y 6=z | ls(x, y) ∗ ls(x, z) contains a “spooky disjunction”: it implies
that one of the two list segments is nonempty, so that x6=y ∨ x6=z, but we do
not know which. To deal with this in the rearrangement phase we rely on a
procedure for exorcising these spooky disjunctions. In essence, exor(Π | Σ, E)
is a collection of assertions obtained by doing enough case analysis (adding
equalities and inequalities to Π) so that the location of E within a ∗-conjunct
is determined. This makes the rearrangement rules complete.

We omit a formal definition of exor for space reasons. It is mentioned in the
symbolic execution algorithm below, where exor(g,E) is obtained from triple g
by applying exor to the precondition.

3.3 Symbolic Execution Algorithm

The symbolic execution algorithm works by proof-search using the operational
and rearrangement rules. Rearrangement is controlled to ensure termination.

To describe symbolic execution we presume an oracle oracle(Π | Σ ` Π ′ |
Σ′) for deciding entailments. We also use that we can express consistency of a
symbolic heap, and allocatedness of an expression, using entailments:

incon(Π | Σ) def= oracle(Π | Σ ` nil 6=nil | emp)
allocd(Π | Σ, E) def= incon(Π | Σ ∗ E 7→[]) and incon(E=nil ∧Π | Σ)

We also use pre(g) to denote the precondition in a Hoare triple g. incon and
pre are used to check the precondition for inconsistency in the first step of the
symbolic execution algorithm and allocd is used in the second-last line.

Definition 2. E is active in g if g is of the form

{Π | Σ} A(E) ; C {Π ′ | Σ′}

Algorithm 3 (Symbolic Execution) Given a triple g, determines whether or
not it is provable.

10

check(g) =
if incon(pre(g)) return “true”
if g matches the conclusion of an operational rule

let p be the premise, or p1, p2 the two premises in
if rule Empty return oracle(p)
if rule Assign, Mutate, New, Dispose, or Lookup return check(p)
if rule Conditional return check(p1) ∧ check(p2)

elseif g begins with A(E)
if Switch(E), Unroll List Segment(E), or Unroll Tree(E) applies

let p be the premise in return check(p)
elseif allocd(pre(g), E) return

∧
{check(g′) | g′ ∈ exor(g,E)}

else return “false”

Theorem 4. The Symbolic Execution algorithm terminates, and returns “true”
iff there is a proof of the input judgment using the operational and rearrangement
rules, where we view each use of an entailment in the symbolic execution rules
as a call to the oracle.

4 Proof Rules for Entailments

The entailment Π | Σ ` Π ′ | Σ′ was treated as an oracle in the description of
symbolic execution. We now describe a proof theory for entailment.

The rules come in two groups. The first, the normalization rules, get rid of
equalities as soon as possible so that the forthcoming rules can be formulated
using simple pattern matching (i.e., we can use E 7→F rather than E′ 7→F plus
E′=E derivable), make derivable inequalities explicit, perform case analysis us-
ing a form of excluded middle, and recognize inconsistency. The second group of
rules, the subtraction rules, work by explicating and then removing facts from
the right-hand side of an entailment, with the eventual aim of reducing to the
axiom Π | emp ` true | emp.

Before giving the rules, we introduce some notation. We write op(E) as an
abbreviation for E 7→[ρ], ls(E,E′), or tree(E). The guard G(op(E)) is defined by:

G(E 7→[ρ]) def= true G(ls(E,E′)) def= E 6=E′ G(tree(E)) def= E 6=nil

The proof rules are given in Table 3 and Table 4. Except for G(op1(E1)),
G(op2(E2)) ∈ Π, the side-conditions are not needed for soundness, but ensure
termination.

Theorem 5 (Soundness and Completeness). Any provable entailment is
valid, and any valid entailment is provable.

(The proof of completeness appears in Section A.3.)
The side-conditions are sufficient to ensure that progress is made when ap-

plying rules upwards. (The measure appears in Section A.1.) Decidability then
follows using the naive proof procedure which tries all possibilities, backtracking
when necessary.

11

Table 3 Proof System for Entailment: Normalization Rules

Inconsistency

Π ∧ E 6=E | Σ ` Π ′ | Σ′

Substitution
Π[E/x] | Σ[E/x] ` Π ′[E/x] | Σ′[E/x]

Π ∧ x=E | Σ ` Π ′ | Σ′

=-L
Π | Σ ` Π ′ | Σ′

Π ∧ E=E | Σ ` Π ′ | Σ′

NilNotLVal
Π ∧G(op(E)) ∧ E 6=nil | op(E) ∗Σ ` Π ′ | Σ′

Π ∧G(op(E)) | op(E) ∗Σ ` Π ′ | Σ′ E 6=nil /∈ Π ∧G(op(E))

∗-Partial
Π ∧ E1 6=E2 | op1(E1) ∗ op2(E2) ∗Σ ` Π ′ | Σ′

Π | op1(E1) ∗ op2(E2) ∗Σ ` Π ′ | Σ′
G(op1(E1)),G(op2(E2)) ∈ Π

E1 6=E2 /∈ Π

ExcludedMiddle
Π ∧ E1=E2 | Σ ` Π ′ | Σ′

Π ∧ E1 6=E2 | Σ ` Π ′ | Σ′

Π | Σ ` Π ′ | Σ′

E1 6≡ E2

E1=E2, E1 6=E2 /∈ Π

fv(E1, E2) ⊆ fv(Π,Σ,Π ′, Σ′)

EmpTreeL
Π | Σ ` Π ′ | Σ′

Π | Σ ∗ tree(nil) ` Π ′ | Σ′

EmpLsL
Π | Σ ` Π ′ | Σ′

Π | Σ ∗ ls(E,E) ` Π ′ | Σ′

Theorem 6 (Decidability). Entailment is decidable.

It is possible, however, to do much better than the naive procedure. For
example, one narrowing of the search space is a phase distinction between nor-
malization and subtraction rules: Any subtraction rule can be commuted above
any normalization rule. Further commutations are possible for special classes of
assertion, and these are used in Smallfoot.

This system’s proof rules can be viewed as coming from certain implications,
and are arranged as rules just to avoid the explicit use of the cut rule in proof
search. For instance, the fourth normalization rule comes from the implications:

E 7→[] → E 6=nil E1 6=E2 ∧ ls(E1, E2) → E1 6=nil

12

Table 4 Proof System for Entailment: Subtraction Rules

Axiom

Π | emp ` true | emp

=-R
Π | Σ ` Π ′ | Σ′

Π | Σ ` Π ′ ∧ E=E | Σ′

Hypothesis
Π ∧ P | Σ ` Π ′ | Σ′

Π ∧ P | Σ ` Π ′ ∧ P | Σ′

∗-Introduction
S ` S′ Π | Σ ` Π ′ | Σ′

Π | S ∗Σ ` Π ′ | S′ ∗Σ′

Identity

S ` S

Existential

E 7→[ρ, ρ′] ` E 7→[ρ]

EmpTreeR
Π | Σ ` Π ′ | Σ′

Π | Σ ` Π ′ | tree(nil) ∗Σ′

EmpLsR
Π | Σ ` Π ′ | Σ′

Π | Σ ` Π ′ | ls(E,E) ∗Σ′

RollTree
Π | E 7→[l:E1, r:E2, ρ] ∗Σ ` Π ′ | E 7→[l:E1, r:E2, ρ] ∗ tree(E1) ∗ tree(E2) ∗Σ′

Π | E 7→[l:E1, r:E2, ρ] ∗Σ ` Π ′ | tree(E) ∗Σ′

†E 7→[l:E1, r:E2, ρ] /∈ Σ′

†

RollLs
Π ∧ E1 6=E3 | E1 7→[n:E2, ρ] ∗Σ ` Π ′ | E1 7→[n:E2, ρ] ∗ ls(E2, E3) ∗Σ′

Π ∧ E1 6=E3 | E1 7→[n:E2, ρ] ∗Σ ` Π ′ | ls(E1, E3) ∗Σ′

†E1 7→[n:E2, ρ] /∈ Σ′

†

AppendLsNil
Π | ls(E1, E2) ∗Σ ` Π ′ | ls(E1, E2) ∗ ls(E2, nil) ∗Σ′

Π | ls(E1, E2) ∗Σ ` Π ′ | ls(E1, nil) ∗Σ′ ls(E1, E2) /∈ Σ′

AppendLsGuard
Π ∧G(op(E3)) | ls(E1, E2) ∗ op(E3) ∗Σ ` Π ′ | ls(E1, E2) ∗ ls(E2, E3) ∗Σ′

Π ∧G(op(E3)) | ls(E1, E2) ∗ op(E3) ∗Σ ` Π ′ | ls(E1, E3) ∗Σ′

†ls(E1, E2) /∈ Σ′

†

the fifth from the implications:

E1 7→[ρ1] ∗ E2 7→[ρ2] → E1 6=E2 E2 6=nil ∧ E1 7→[ρ] ∗ tree(E2) → E1 6=E2

E2 6=E3 ∧ E1 7→[ρ] ∗ ls(E2, E3) → E1 6=E2

E1 6=nil ∧ E2 6=nil ∧ tree(E1) ∗ tree(E2) → E1 6=E2

E1 6=nil ∧ E2 6=E3 ∧ tree(E1) ∗ ls(E2, E3) → E1 6=E2

E1 6=E3 ∧ E2 6=E4 ∧ ls(E1, E3) ∗ ls(E2, E4) → E1 6=E2

and the last two from the implications:

tree(nil) → emp ls(E,E) → emp

13

For the inductive predicates, these implications are consequences of unrolling the
inductive definition in the metatheory. But note that we do not unroll predicates,
instead case analysis via excluded middle takes one judgment to several.

Likewise, the subtraction rules for the inductive predicates are obtained from
the implications:

emp → tree(nil) E 7→[l:E1, r:E2, ρ] ∗ tree(E1) ∗ tree(E2) → tree(E)

emp → ls(E,E) E1 6=E3 ∧ E1 7→[n:E2, ρ] ∗ ls(E2, E3) → ls(E1, E3)

ls(E1, E2) ∗ ls(E2, nil) → ls(E1, nil)

ls(E1, E2) ∗ ls(E2, E3) ∗ E3 7→[ρ] → ls(E1, E3) ∗ E3 7→[ρ]

E3 6=nil ∧ ls(E1, E2) ∗ ls(E2, E3) ∗ tree(E3) → ls(E1, E3) ∗ tree(E3)

E3 6=E4 ∧ ls(E1, E2) ∗ ls(E2, E3) ∗ ls(E3, E4) → ls(E1, E3) ∗ ls(E3, E4)

The first four are straightforward, while the last four express properties whose
verification of soundness would use inductive proofs in the metatheory. The re-
sulting rules do not, however, require a search for inductive premises. In essence,
what we generally do is, for each considered inductive predicate, add a collection
of rules that are consequences of induction, but that can be formulated in a way
that preserves the proof theory’s terminating nature.

In the last subtraction rule, the G(op(E3)) ∧ op(E3) part of the left-hand
side ensures that E3 does not occur within the segments from E1 to E2 or from
E2 to E3. This is necessary for appending list segments, since they are required
to be acyclic.

Here is an example proof, of the entailment mentioned in the Introduction:

t 6=nil | emp ` emp

t 6=nil | ls(y, nil) ` ls(y, nil)

t 6=nil | t 7→[n: y] ∗ ls(y, nil) ` t 7→[n: y] ∗ ls(y, nil)

t 6=nil | t 7→[n: y] ∗ ls(y, nil) ` ls(t, nil)

t 6=nil | ls(x, t) ∗ t 7→[n: y] ∗ ls(y, nil) ` ls(x, nil)

ls(x, t) ∗ t 7→[n: y] ∗ ls(y, nil) ` ls(x, nil)

Going upwards, this applies the normalization rule which introduces t 6=nil, then
the subtraction rule for nil-terminated list segments, the subtraction rule for
nonempty list segments, and finally ∗-Introduction (the basic subtraction rule
for ∗, which appears fourth) twice.

5 Incomplete Proofs and Frame Axioms

Typically, at a call site to a procedure the symbolic heap will be larger than
that required by the procedure’s precondition. This is the case in the disp tree

14

example where, for example, the symbolic heap at one of the recursive call sites is
p 7→[l: i, r: j]∗ tree(i)∗ tree(j), where that expected by the procedure specification
of disp tree(i) is just tree(i). We show how to use the proof theory from the
previous section to infer frame axioms.

In more detail the (spatial) part of the problem is,

Given: two symbolic heaps, Π | Σ (the heap at the call site), and Π1 | Σ1

(the procedure precondition)
To Find: a spatial predicate ΣF , the “spatial frame axiom”, satisfying the
entailment Π | Σ ` Π1 | Σ1 ∗ΣF .

Our strategy is to search for a proof of the judgment Π | Σ ` Π1 | Σ1, and if this
search, going upwards, halts at Π ′ | ΣF ` true | emp then ΣF is a sound choice
as a frame axiom. We give a few examples to show how this mechanism works.

First, and most trivially, let us consider the disp tree example:

Assertion at Call Site : p 7→[l: i, r: j] ∗ tree(i) ∗ tree(j)
Procedure Precondition : tree(i)

Then an instance of ∗-Introduction

p 7→[l: i, r: j] ∗ tree(j) ` emp

p 7→[l: i, r: j] ∗ tree(i) ∗ tree(j) ` tree(i)

immediately furnishes the correct frame axiom: p 7→[l: i, r: j] ∗ tree(j).
For an example that requires a little bit more logic, consider:

Assertion at Call Site : x7→[] ∗ y 7→[]
Procedure Precondition : x6=y | x7→[]

x6=y | y 7→[] ` emp

x6=y | y 7→[] ` x6=y | emp

x6=y | x7→[] ∗ y 7→[] ` x6=y | x7→[]
x7→[] ∗ y 7→[] ` x6=y | x7→[]

Here, the inequality x6=y is added to the left-hand side in the normalization
phase, and then it is removed from the right-hand side in the subtraction phase.

On the other hand, consider what happens in a wrong example:

Assertion at Call Site : x7→[] ∗ y 7→[]
Procedure Precondition : x=y | x7→[]

??
x6=y | y 7→[] ` x=y | emp

x6=y | x7→[] ∗ y 7→[] ` x=y | x7→[]
x7→[] ∗ y 7→[] ` x=y | x7→[]

In this case we get stuck at an earlier point because we cannot remove the
equality x=y from the right-hand side in the subtraction phase. To correctly get
a frame axiom we have to obtain true in the pure part of the right-hand side; we
do not do so in this case, and we rightly do not find a frame axiom.

The proof-theoretic justification for this method is the following.

15

Theorem 7. Suppose that we have an incomplete proof (a proof that doesn’t use
axioms):

[Π ′ | ΣF ` true | emp]
···

Π | Σ ` Π1 | Σ1

Then there is a complete proof (without premises, using an axiomatic rule at the
top) of:

Π | Σ ` Π1 | Σ1 ∗ΣF .

(A proof sketch appears in Section A.2.)
This justifies an extension to the symbolic execution algorithm. In brief, we

extend the syntax of loop-free triples with a jsr instruction

C F · · · | [Π | Σ] jsr [Π ′ | Σ′] ; C jump to subroutine

annotated with a precondition and a postcondition. In Smallfoot this is gener-
ated when an annotated program is chopped into straightline Hoare triples. The
appropriate operational rule is:

Π | Σ ` Π1 ∧Π | Σ1 ∗ΣF {Π2 ∧Π | Σ2 ∗ΣF } C {Π ′ | Σ′}
{Π | Σ} [Π1 | Σ1] jsr [Π2 | Σ2] ; C {Π ′ | Σ′}

When we encounter a jsr command during symbolic execution we run the proof
theory from the previous section upwards with goal Π | Σ ` Π1 | Σ1. If it
terminates with Π ′ | ΣF ` true | emp then we tack ΣF onto the postcondition
Σ2, and we continue execution with C. Else we report an error.

The description here is simplified. Theorem 7 only considers incomplete
proofs with single assumptions, but it is possible to generalize the treatment
of frame inference to proofs with multiple assumptions (which leads to several
frames being checked in symbolic execution). Also, we have only discussed the
spatial part of the frame, neglecting modifies clauses for stack variables. A pure
frame must also be discovered, but that is comparatively easy.

Finally, this way of inferring frame axioms works, but is incomplete. To see
why, for [x7→−] jsr [emp] we run into a variant of the same problem discussed
before in incompleteness of the dispose instruction: it we added a frame y 7→−
then the postcondition would lose the information that x6=y. Similar incom-
pleteness arises for larger-scale operations as well, such as disp tree. Now, the
incompleteness is not completely disastrous. When reasoning about recursive
calls to disp tree, never do we need to conclude an inequality between, say, a
just-disposed cell in the left subtree and a cell in the right; ∗ gives us the infor-
mation we need, at the right time, for the proof to go through.

It is an incompleteness, still.

6 Conclusion

The heap poses great problems for modular verification and analysis. For exam-
ple, PALE is (purposely) unsound in its treatment of frame axioms for procedures

16

[7], the “modular soundness” of ESC is subtle but probably not definitive [6],
interprocedural Shape Analysis is just beginning to become modular [13].

We believe that symbolic execution with Separation Logic has some promise
in this area. An initial indication is the local way that heap update is treated in
symbolic execution: there is no need to traverse an entire heap structure when
an update to a single cell is done, as is the case with Shape Analysis [14]. Going
beyond this initial point, it will be essential to have a good way of inferring frame
axioms. We have sketched one method here, but there are likely to be others,
and what we have done is only a start.

There are similarities between this work and the line of work started by Alias
Types [16], however there are crucial differences. One of the most significant
points is that here we (completely) axiomatize the consequences of induction for
our inductive predicates, while the ‘coercions’ of [16] include only rolling and un-
rolling of inductive definitions. Relatedly, here we capture semantic entailment
between formulæ exactly, as opposed to providing a coarse approximation. Addi-
tionally, this enables commands to branch on possibly inductive consequences of
heap shape. Another crucial difference is that here we rely on Separation Logic’s
Frame Rule for a very strong form of modularity, and infer frame axioms us-
ing incomplete proofs, while Alias Types uses second-order quantification (store
polymorphism) with manual instantiation. These differences aside, one wonders
whether the lines of work stemming from Alias Types and Separation Logic
will someday merge; an interesting step along these lines is in [8], and we are
investigating uses of bunched typing [11, 9] for similar purposes.

A different way of automating Separation Logic has recently been put for-
ward by Jia and Walker [5]. An interesting part of their system is how classical
arithmetic and substructural logic work together. They also provide a decidable
fragment based on Linear Logic. There is a gap between the entailment of their
proof theory and that of the heap model, because Linear Logic’s proof theory is
purposely incomplete for the standard additives supported by the model.

To build on this paper’s formulation of symbolic heaps, we would particularly
like to have a general scheme of inductive definitions rather than using hardwired
predicates. (We are not just asking for semantically well-defined recursive pred-
icates, e.g., as developed in [15], but would want a, hopefully terminating, proof
theory.) Soundly extending the techniques here to a class of inductive predicates
which generalizes those presented is largely straightforward, since the operational
symbolic execution rules would be unaffected, the necessary rearrangement rule
for unrolling a more general inductive predicate depends on a certain shape of the
inductive definitions where unrolling is triggered by inequalities, and the proof
system for entailment would remain sound. Maintaining the present degree of
completeness, on the other hand, is nontrivial, since the proof system for en-
tailment becomes incomplete, and exorcising spooky disjunctions may become
incomplete (that is, modifying exor such that the ‘if’ direction of Theorem 4
holds is (very) hard).

We would like to relax the restriction to quantifier-free assertions. For exam-
ple, with ∃y. x7→[n: y] ∗ ls(y, x) we can describe a circular linked list that has at

17

least one element. It may be that a restricted amount of existential quantification
is compatible with having a complete and terminating proof theory.

We should admit that consideration of completeness has greatly slowed us
down in this work. The main ideas in this paper were present, and implemented
in an early version of Smallfoot, over two years ago. But, the third author (per-
haps foolishly) then asked the first two: Is your proof theory complete? And if
not, please give an undecidability result, thus rendering completeness impossi-
ble. Now, we know that completeness is an ideal that will not always be possible
to achieve, but the first two authors were eventually able to answer in the affir-
mative. Although an ideal, we stress that we would not be satisfied with a sound
proof theory based (just) on rolling and unrolling definitions. Having a mecha-
nism to provide axioms for consequences of induction when defining inductive
predicates is essential. Without such axioms, it is not possible to verify programs
that work at the end of a singly-linked list, or at both ends of a doubly-linked
list (we have given similar proof rules for both conventional doubly-linked and
xor-linked lists).

That being said, our symbolic execution mechanism is incomplete in two
other areas, the treatment of disposal and inference of frame axioms. The former
is perhaps reparable by hacks, but the latter is more fundamental.

The ideas in this paper would seem to provide a basis for investigating pro-
gram analysis. The first crucial question is the exact nature of the abstract
domain of formulae, which would enable the calculation of invariants by fixed-
point approximation. After that, we would like to attack the problem of mod-
ular, interprocedural heap analysis, leveraging the strong modularity properties
of Separation Logic.

Acknowledgements. We are grateful to the anonymous referees for helpful
comments. During Berdine’s stay at Carnegie Mellon University during 2003,
this research was sponsored in part by National Science Foundation Grant CCR-
0204242. All three authors were supported by the EPSRC.

References

[1] J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of separation
logic. In FSTTCS 2004, volume 3328 of LNCS, pages 97–109. Springer, Dec. 2004.

[2] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: A tool for checking
Separation Logic footprint specifications. In preparation, 2005.

[3] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
POPL ’77, pages 238–252, 1977.

[4] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In POPL ’01, pages 14–26, 2001.

[5] L. Jia and D. Walker. ILC: A foundation for automated reasoning about pointer
programs. Draft., Apr. 2005.

[6] K. R. M. Leino and G. Nelson. Data abstraction and information hiding. ACM
Transactions on Programming Languages and Systems, 24(5):491–553, 2002.

18

[7] A. Möller and M. I. Schwartzbach. The pointer assertion logic engine. In PLDI
’01, pages 221–231, 2001.

[8] G. Morrisett, A. J. Ahmed, and M. Fluet. L3: A linear language with locations.
In P. Urzyczyn, editor, TLCA, volume 3461 of LNCS, pages 293–307, 2005.

[9] P. W. O’Hearn. On bunched typing. Journal of Functional Programming,
13(4):747–796, 2003.

[10] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In CSL, volume 2142 of LNCS, pages 1–19, 2001.

[11] D. J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications,
volume 26 of Applied Logic Series. Kluwer Academic Publishers, 2002.

[12] J. C. Reynolds. Separation Logic: A logic for shared mutable data structures. In
LICS 2002, pages 55–74. IEEE Computer Society, 2002.

[13] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for
procedure local heaps and its abstractions. In POPL ’05, pages 296–309, 2005.

[14] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM TOPLAS, 24(3):217–298, 2002.

[15] É.-J. Sims. Extending separation logic with fixpoints and postponed substitution.
In AMAST, volume 3116 of LNCS, pages 475–490. Springer, 2004.

[16] D. Walker and J. G. Morrisett. Alias types for recursive data structures. In Types
in Compilation, volume 2071 of LNCS, pages 177–206, 2001.

A Selected Proofs

A.1 Progress measure for Theorem 6

Applying any rule makes progress since the size of each premiss of any rule
application is lexicographically less than the size of the conclusion, where size is
defined by:

Definition 8 (Size). The size of an entailment Π | Σ ` Π ′ | Σ′ is a triple of:

1. the number of 7→’s and ls’s missing from Σ′, that is, the cardinality of:(
{E 7→E′ | E,E′ ∈ fv(Π | Σ, Π ′ | Σ′) ∪ {nil}}

∪ {ls(E,E′) | E,E′ ∈ fv(Π | Σ, Π ′ | Σ′) ∪ {nil}}

)
rΣ′

2. the number of inequalities or nontrivial equalities missing from Π, that is,
the cardinality of:(

{E0 6=E1 | E0, E1 ∈ fv(Π | Σ, Π ′ | Σ′) ∪ {nil}}
∪ {E0=E1 | E0, E1 ∈ fv(Π | Σ, Π ′ | Σ′) ∪ {nil} and E0 6≡ E1}

)
rΠ

3. the length of Π | Σ ` Π ′ | Σ′, where length is defined in the obvious way
taking all simple formulæ to have length 1.

19

A.2 Proof of Theorem 7

Proof We can transform the incomplete proof into the desired complete one
by adding ∗ΣF to every proof step on the right, and adding an additional step
to the top of the proof using an instance of ∗-Introduction

Π ′ | emp ` true | emp

Π ′ | ΣF ` true | ΣF

after which the axiomatic rule

Π ′ | emp ` true | emp

applies. The only case requiring care is the substitution rule for equality. Suppose
that the bottom step of the incomplete proof is:

Π[E/x] | Σ[E/x] ` Π1[E/x] | Σ1[E/x]
Π ∧ x=E | Σ ` Π1 | Σ1

Now either x occurs in E, that is E is x, or, since upwards application of the
rules only introduces fresh variables, we can assume without loss of generality
that x does not occur in ΣF . In either case, ΣF ≡ ΣF [E/x], and the last step
in the complete proof is then:

Π[E/x] | Σ[E/x] ` Π1[E/x] | Σ1[E/x] ∗ΣF

Π ∧ x=E | Σ ` Π1 | Σ1 ∗ΣF

�

A.3 Proof of Completeness for Theorem 5

Applying the normalization rules eventually produces a judgment whose left-
hand side is in normal form:

Definition 9 (Normal Form). Π | Σ is in (subtraction) normal form if:

1. op(E) ∈ Σ implies G(op(E)) ∈ Π.
2. op(E) ∈ Σ implies E 6=nil ∈ Π.
3. op1(E1) ∗ op2(E2) ∈ Σ implies E1 6=E2 ∈ Π.
4. E1=E2 /∈ Π.
5. E 6=E /∈ Π.

Lemma 10. If Π | Σ is in normal form and x6=E /∈ Π, then Π[E/x] | Σ[E/x]
is in normal form.
Proof All but the last clause of the definition of normal form are invariant
under substitution, and the antecedent precludes a substitution from violating
the last clause. �

20

Definition 11. Given Σ, define Σ as follows:

ls(E1, E2)
def= E1 7→[n:E2] tree(E) def= E 7→[l: nil, r: nil] E 7→[ρ] def= E 7→[ρ]

emp
def= emp Σ1 ∗Σ2

def= Σ1 ∗Σ2

Lemma 12. If Π | Σ is in NF then Π | Σ is in NF, and Π | Σ ` Σ is valid.

Observe that invalidity of Π | Σ ` Σ′ implies invalidity of Π | Σ ` Σ′.
Normal forms are semantically consistent:

Definition 13 (Bad Model). The bad model for Π | Σ in NF is obtained by
assigning a distinct non-nil value to each variable, and, for each ρ, by mapping
to nil all the fields which are not mentioned.

Proposition 14 (Completeness for the Pure Part). If Π | Σ is in normal
form and Π | Σ ` P | Σ is not derivable, then there is a model of Π | Σ where
¬P holds.

Proof If P ≡ E1=E2, then the bad model validates E1 6=E2. If P ≡ E1 6=E2,
then E1 6=E2 /∈ Π and, say, E1 is a variable, therefore by Lemma 10 we have that
Π[E2/E1] | Σ[E2/E1] is in normal form and its bad model validates E1=E2. �

We write Π | Σ ` Σ′ in NF as an abbreviation to indicate the entailment
Π | Σ ` Σ′ assuming that Π | Σ is in normal form.

Lemma 15. If Π | Σ ` Σ′
1 ∗ Σ′

2 in NF is derivable, then Σ ≡ Σ1 ∗ Σ2 and
Π | Σi ` Σ′

i is derivable for i = 1, 2.

Lemma 16. If Π | Σ1 ∗Σ2 is in NF and Π | Σ1 ` Σ′
1 is valid, then

Π | Σ1 ∗Σ2 ` Σ′
1 ∗Σ′

2 valid ⇐⇒ Π | Σ2 ` Σ′
2 valid

Lemma 17. All the subtraction rules except ∗-Introduction are iff. ∗-Introduction

is also iff when the conclusion is of the form Π | Σ ` Σ′ in NF.

Lemma 18. If Π | Σ1 ` Σ′
1 and Π | Σ2 ` Σ′

2 are derivable and Π | Σ1 ∗ Σ2 is
in NF, then Π | Σ1 ∗Σ2 ` Σ′

1 ∗Σ′
2 is derivable.

Lemma 19. If Π | E1 7→[n:E2, ρ] ∗ Σ ` ls(E1, E3) in NF is stuck, then it is
invalid.

Proof Clearly E1 6=E3 /∈ Π by stuckness. Therefore Lemma 10 implies that
Π[E3/E1] | E3 7→([n:E2, ρ])[E3/E1] ∗ Σ[E3/E1] ` ls(E3, E3) is in NF and obvi-
ously it is invalid. Then also Π | E1 7→[n:E2, ρ] ∗ Σ ` ls(E1, E3) is invalid since
the substitution is equivalent to strengthening Π to Π ∧ E1=E3. �

21

Proposition 20. If Π | Σ ` Σ′ in NF is stuck, then it is invalid.

Proof By induction on the number of inequalities (using fv(Π,Σ,Σ′)) missing
from Π.

If Σ′ ≡ ls(E1, E3) ∗Σ′′ we proceed by cases:

– Case Σ ≡ E1 7→[n:E2, ρ] ∗Σ0 and E1 6=E3 /∈ Π.
If Π ∧ E1 6=E3 | E1 7→[n:E2, ρ] ∗Σ0 ` ls(E1, E3) ∗Σ′′ gets stuck, then by in-
duction and Lemma 17 we conclude. If instead it is derivable then Lemma 15
implies Σ0 ≡ Σ1 ∗Σ2 such that Π ∧E1 6=E3 | E1 7→[n:E2, ρ] ∗Σ1 ` ls(E1, E3)
and Π ∧ E1 6=E3 | Σ2 ` Σ′′ are derivable. Now there are two cases:

1. Π | Σ2 ` Σ′′ is not derivable.
Then derivability depends on E1 6=E3, so it is easy to see that either
op(E1) ∈ Σ2 or op(E3) ∈ Σ2. The former would imply E1 6=E1 ∈ Π, and
the latter would imply E1 6=E3 ∈ Π. Since both contradict the assump-
tions, this case is not possible.

2. Π | Σ2 ` Σ′′ is derivable.
Observe that Π | E1 7→[n:E2, ρ] ∗ Σ1 ` ls(E1, E3) is not derivable, oth-
erwise Π | E1 7→[n:E2, ρ] ∗Σ1 ∗Σ2 ` ls(E1, E3) ∗Σ′′ would be derivable
by Lemma 18. Then Lemma 19 implies that Π | E1 7→[n:E2, ρ] ∗ Σ1 `
ls(E1, E3) is invalid. Now, by soundness Π | Σ2 ` Σ′′ is valid, therefore
Lemma 16 implies that Π | E1 7→[n:E2, ρ] ∗ Σ1 ∗ Σ2 ` ls(E1, E3) ∗ Σ′′ is
invalid.

– Case Σ ≡ E1 7→[ρ] ∗Σ0 with label n not occurring in ρ.
Then the bad model of Π | E1 7→[n:E1, ρ] ∗ Σ′′ witnesses the fact that Π |
E1 7→[n:E1, ρ] ∗ Σ′′ ` ls(E1, E3) ∗ Σ′′ is invalid. Since Π | E1 7→[n:E1, ρ] `
E1 7→[ρ] is valid, we conclude that Π | E1 7→[ρ]∗Σ′′ ` ls(E1, E3)∗Σ′′ is invalid.

– Case op(E1) /∈ Σ.
Then the bad model of Π | Σ shows the invalidity of Π | Σ ` ls(E1, E3)∗Σ′′.

If Σ′ ≡ tree(E) ∗Σ′′ we proceed by cases:

– Σ ≡ E 7→[ρ] ∗Σ0 and either label l or r does not occur in ρ.
Say l does not occur, then the bad model of Π | E 7→[ρ, l:E]∗Σ0 exhibits the
invalidity. Symmetrically for r.

– op(E) /∈ Σ.
Then the bad model shows the invalidity.

The cases Σ′ ≡ E 7→[ρ] ∗Σ′′ and Σ′ ≡ emp require simple case analysis. �

Proposition 21. If Π | Σ ` Σ′ in NF is not derivable, then it is invalid.

Proof Immediate from Proposition 20 and Lemma 17. �

22

Lemma 22. If Π | Σ ` ls(E1, E3)∗Σ′ in NF is stuck for all the subtraction rules
except at most ∗-Introduction, and ls(E1, E3) /∈ Σ, then Π | Σ ` ls(E1, E3)∗Σ′

is invalid.
Proof Assume that Π | Σ ` ls(E1, E3) ∗ Σ′ is derivable, otherwise the con-
clusion follows immediately from Proposition 21. Then Σ ≡ op(E1) ∗ Σ0 and
op(E1) ≡ E1 7→[n:E2, ρ] and E1 6=E3 ∈ Π. Since Π | Σ ` ls(E1, E3) ∗ Σ′ is
stuck (except ∗-Introduction), it must be that op(E1) ≡ ls(E1, E2) and E3 is a
variable and op′(E3) /∈ Σ0.

Now since Π | ls(E1, E2)∗Σ0 ` ls(E1, E3)∗Σ′ is derivable, Lemma 15 implies
Σ0 ≡ Σ1 ∗Σ2 with Π | ls(E1, E2) ∗Σ1 ` ls(E1, E3) and Π | Σ2 ` Σ′ derivable.

Clearly Π ∧ Π1 | E1 7→[n:E3] ∗ E3 7→[n:E2] ∗ Σ1 ` ls(E1, E3) is invalid (the
bad model is a counter-model) where Π1 contains enough inequalities to make
Π∧Π1 | E1 7→[n:E3]∗E3 7→[n:E2]∗Σ1 ∗Σ2 a NF (this is possible since op′(E3) 6∈
Σ1 ∗Σ2).

By soundness Π | Σ2 ` Σ′ is valid, therefore Lemma 16 implies that Π ∧Π1 |
E1 7→[n:E3] ∗ E3 7→[n:E2] ∗ Σ1 ∗ Σ2 ` ls(E1, E3) ∗ Σ′ is invalid. Since Π ∧ Π1 |
E1 7→[n:E3] ∗ E3 7→[n:E2] ∗ Σ1 ∗ Σ2 ` ls(E1, E2) ∗ Σ1 ∗ Σ2 is valid we conclude
that Π | ls(E1, E2) ∗Σ1 ∗Σ2 ` ls(E1, E3) ∗Σ′ is invalid. �

Theorem 23. If Π | Σ ` Σ′ in NF is stuck for all the subtraction rules except
at most ∗-Introduction, and ∗-Introduction does not prove Σ ` Σ′, then Π |
Σ ` Σ′ is invalid.
Proof Assume that Π | Σ ` Σ′ is derivable, otherwise the conclusion follows
immediately from Proposition 21. Then Σ′ ≡ op(E) ∗ Σ′′ and ∗-Introduction

cannot eliminate op(E). We proceed by case analysis on op(E).

– Σ′ ≡ ls(E1, E3) ∗Σ′′.
Then ls(E1, E3) /∈ Σ and Lemma 22 concludes.

– Σ′ ≡ tree(E) ∗Σ′′.
Then E 7→[l:E1, r:E2, ρ] /∈ Σ. Since tree(E) /∈ Σ, we also have that
E 7→[l:E1, r:E2, ρ] /∈ Σ, therefore Π | Σ ` tree(E) ∗ Σ′′ cannot be deriv-
able, and this case is impossible.

– Σ′ ≡ E 7→[ρ] ∗Σ′′.
Then op′(E) ∈ Σ and op′(E) ` E 7→[ρ] is derivable using ∗-Introduction.
Since op′(E) ` E 7→[ρ] is not derivable using ∗-Introduction, there are two
cases:
• Σ ≡ ls(E,E′) ∗Σ0 and E 7→[n:E′] ∈ Σ′.

Then Π ∧ x6=E′ ∧Π1 | E 7→[n:x] ∗ x7→[n:E′] ∗Σ0 ` Σ′ is invalid, where
x is fresh and Π1 contains enough inequalities to make Π ∧ x6=E′ ∧Π1 |
E 7→[n:x] ∗ x7→[n:E′] ∗Σ0 a NF.

• Σ ≡ tree(E) ∗Σ0 and E 7→[l: nil, r: nil] ∈ Σ′.
Then Π ∧Π1 | E 7→[l:x, r: y] ∗ x7→[l: nil, r: nil] ∗ y 7→[l: nil, r: nil] ∗ Σ0 ` Σ′

is invalid, where x, y are fresh and Π1 contains enough inequalities to
make Π ∧Π1 | E 7→[l:x, r: y] ∗ x7→[l: nil, r: nil] ∗ y 7→[l: nil, r: nil] ∗Σ0 a NF.

�

23

The following theorem shows that a proof procedure which applies subtrac-
tion rules, in any order provided that ∗-Introduction is applied last, and without
backtracking, is complete.

Theorem 24. If there is an incomplete proof in NF

[Π | Σ2 ` Σ′′]
···

Π | Σ1 ` Σ′

without using ∗-Introduction, and Π | Σ2 ` Σ′′ is stuck for any subtraction rule
except at most ∗-Introduction, and ∗-Introduction does not prove Σ2 ` Σ′′,
then Π | Σ1 ` Σ′ is invalid.
Proof Since Π | Σ2 ` Σ′′ is invalid by Theorem 23, the conclusion follows
directly from Lemma 17. �

Corollary 25. The proof theory is complete.

24

