Abstract Predicates

Matthew Parkinson
Microsoft Research
(joint work with Gavin Bierman)

Hypothetical Frame Rule

Hides single instance of data for a module
Not enough for ADT/Objects/...

This lecture is about fixing that.

Abstract Data Types

Data type with a hidden representation
Inside scope representation is known
Outside scope representation is not known

Example:

public class Counter

{
private int x = 0;
public int increment() { return x++; }

}

Abstract Data Types

Signature:

module sig Counter =
type t
val new : t
val increment : t->int * t

Implementation:

module Counter =
type t = int
let new =0
let increment x = x+1, x+1

Types as Predicates

Types describe shape of data structure
type list =
Cons of int * list
Nil
In SL, formula describe shape of data structures

list(x) = (Jy.x+— Ly * list(y))
V (x=NULL A empty)

Abstract Predicates

Predicate with a hidden definition
Inside scope definition is known
Outside scope definition is not known

Example: Counter

Client view
{ empty } r := Counter() { Counter(r, 0) }
{ Counter(x, n) }
r :=inc(x)
{ Counter(x, n+1) * r=n}

Module implementation
Counter(x, n) = x+—=n

Rules for Abstract Predicates

Add context to deal with predicate definitions:

Procedure context

/
A TH{P}C{Q}
/
Predicate context
(a second-order
separation
logic formula)

Rules for Abstract Predicates

A TH{P}C{Q} A'=>A
ASTH{PICLQ]

ATH{PIC{Q}
Ja.A\; TH{P}C{0O}
wherea €T, P, (0

Consequence

ATH{P }C{Q }
AP =P
AFQ = Q0

ATH{PICLQ}]

Derived Rule

AT P flQf -{PIC{Q}
AT H{Plletf =CrinC{Q }

wherea & AT, P, Q
and R mentions a positively

Exercise: Derive this rule.

Exercise: Counter

Client view
{ empty } r := Counter { Counter(r, 0) }
{ Counter(x, n) }
r :=inc(x)
{ Counter(x, n+1) * r=n}

Module implementation
Vx n. Counter(x,n) ©® x - n
Exercise: Verify this example.

Exercises

* Lightswitch
— Four operations: newSwitch, on, off and toggle.
— Give example specifications
— Give an implementation that meets the spec

* Connection pool

— Assume function
{emp} newConnection(s) { Conn(ret,s) }

— Give three functions
* newPool

* getConn
* freeConn

Example: Malloc/Free

{empty}
r:=malloc(n)
fr>_*x-x(r+n—1+)}

fro>_*x-x(r+n—1v)}
free(r)
{empty}
What should n be?

Example: Malloc/Free

tempty}
r:=malloc(n)
{r>_x-x(r+n—1w_)*MBlock(r,n)}

{r»_x*x-x(r+n—-—1w_)* MBlock(r,n)}
free(r)
tempty}

Exercise: What could Mblock be?

Exercises

Specify a file library
— New file handle : creates a new closed file handle

— Open file : Takes a closed file handle, a filename
string, and a mode (READ/WRITE); and returns an
open file

— Close file : Takes an open file handle, and closes it
— Read : Reads from an open file handle
— Write : Writes to an open file handle

Semantics of AP

A; F — { P } C { Q } For all interpretations

& / of the predicates

V] € [[A]] For all contexts that
- — satisfy I' with
77 S [F]]I‘r interpretation |

neE{P}C{0O}
\ The code C satisfies it

specification.

Soundness

Definition
A'=>A = VILIE[A]>1E€I]A]

Prove soundness of
A TH{P}IC{QO} A=A
ATH{P}IC{Q}

Soundness Il

Lemma

VI. I € [Qa.A] = Illa » _] € [A]
Lemma
a&¢l'= (me|l]; ©nc¢e [[F]]I[CZI—)_])
a &P,Q=>

neE{P}C{O}enEqe-1{P}IC{Q}

Prove soundness of
A TH{P}IC{Q}
Ja.A; TH{P}C{0Q}
wherea &€ I', P, Q

Objects

Objects

class Cell {
int val;
void set(int x) { val = x; }
int get() { return val; }

}

class Recell : Cell {
int bak;
void set(int x) { bak = get(); super.set(x); }

Behavioural Subtyping s, wing 94

Requirement:

If D subtype of C, and {Pc}C::m{Q}, and
{Pp}D::m{Qp}, then Pc = Pp and Qp = Q.

Specification of set()

{this.val = _} Cell::set(x) { this.val = x}

{this.val = O * this.bak + _}
Recell::set(x)
{this.val = x * this.bak — 0}

Abstraction Predicate Families

Mirror dynamic dispatch
X.m()
definition of m that is used depends on type of x.

Give definition that depends on type
x:Cell = (Val(x,v) & x.val » v)
x: Recell =
(Val(x,v) © x.val » v * x.bak » _)

Specification of set()

{ Val(this,_)} Cell::set(x) {Val(this, x)}
{Val(this,_)} Recell::set(x) {Val(this, x)}

Exercise: verify this example.
Exercise: what is specification of get().

Exercise

Consider the class

class TCell : Cell {
int val2;
void set(int x) { this.val2 = x; super.set(x);}

}
Is this a subtype of Cell?

Explain why it isn’t, or prove that it is.

Exercise

Consider the class

class DCell : Cell {
void set(int x) { this.val =x * 2; }
}
Is this a subtype of Cell? Explain why it isn’t, or
prove that it is.

Higher-order Separation Logic

e Abstract Types have Existential Type [mitchelrss]
* Abstract Predicates are Existential Predicates
* Higher-order Separation Logic

— A is a formula in higher-order separation logic
— See Birkedal et al. for more information.

Concurrency

Abstract lock spec:
{isLock(x, P)}
acquire(x)
{isLock(x, P) * P x Locked(x, P)}

{Locked(x, P) * P}
free(r)
{empty}
How could we do this? My next few lectures will
build up to this.

References

e Separation Logic and Abstractions, Parkinson
and Bierman (POPL05)

* Separation Logic, Abstraction and Inheritance,
Parkinson and Bierman (POPL08)

* Local Reasoning for Java, Parkinson (Thesis)

* Higher-Order Separation Logic and
Abstraction, Birkedal et al. TOPLAS.

