
Concurrent
Separation Logic

Mike Dodds

slides: Matthew J. Parkinson, Alexey Gotsman

Thursday, 24 February 2011

Concurrency

Concurrent:
“Running together in space, as parallel
lines; going on side by side, as
proceedings; occurring together, as events
or circumstances; existing or arising
together; conjoint”
 - Oxford English Dictionary

Thursday, 24 February 2011

Programming language

C ::= … | C || C | …

Thursday, 24 February 2011

Motivation

• Concurrency is hard:

“If you can get away with it, avoid using
threads. Threads can be difficult to use, and
they make programs harder to debug.”

Java Sun Tutorial “Threads and Swing”

• Multi-core means concurrency everywhere!

Thursday, 24 February 2011

Testing is hard

“Testing concurrent software is hard. Even simple
tests require invoking methods from multiple
threads and worrying about issues such as
timeouts and deadlock. Unlike in sequential
programs, many failures are rare, probabilistic
events and numerous factors can mask potential
errors.”

 JavaOne Technical session

Thursday, 24 February 2011

Testing is hard

“Testing concurrent software is hard. Even simple
tests require invoking methods from multiple
threads and worrying about issues such as
timeouts and deadlock. Unlike in sequential
programs, many failures are rare, probabilistic
events and numerous factors can mask potential
errors.”

 JavaOne Technical session

Verification to the rescue?

Thursday, 24 February 2011

Verifying concurrent programs
is hard

Have to consider all possible interleavings:

...

Thursday, 24 February 2011

• Considers every thread in isolation under some
assumption on its environment:

Thread-modular reasoning

......

Thursday, 24 February 2011

• Considers every thread in isolation under some
assumption on its environment:

Thread-modular reasoning

......

Captures possible interference
from the other threads

Thursday, 24 February 2011

• Considers every thread in isolation under some
assumption on its environment:

Thread-modular reasoning

......

Captures possible interference
from the other threads

• Avoids direct reasoning about all interleavings

Thursday, 24 February 2011

Disjoint Concurrency

Thursday, 24 February 2011

Disjoint concurrency

• Language with parallel composition: C1 || C2

• Every thread operates on its own part of
the heap:

T4

Thursday, 24 February 2011

Parallel proof rule

variables used in C1, P1 and Q1 not modified by C2;

variables used in C2, P2 and Q2 not modified by C1

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 � C2 {Q1 ∗Q2}

Thursday, 24 February 2011

Parallel proof rule

variables used in C1, P1 and Q1 not modified by C2;

variables used in C2, P2 and Q2 not modified by C1

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 � C2 {Q1 ∗Q2}

Thursday, 24 February 2011

Parallel proof rule

variables used in C1, P1 and Q1 not modified by C2;

variables used in C2, P2 and Q2 not modified by C1

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 � C2 {Q1 ∗Q2}

Thursday, 24 February 2011

Parallel proof rule

variables used in C1, P1 and Q1 not modified by C2;

variables used in C2, P2 and Q2 not modified by C1

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 � C2 {Q1 ∗Q2}

• Remember semantics of triples: C1 accesses only
the memory in P1 and the one it allocates itself

• No way to mess up the heap owned by C2!

Thursday, 24 February 2011

Example

{ x ↦ _ * y ↦ _ }
{ x ↦ _ } { y ↦ _ }

[x] := 3 || [y] := 4
{ x ↦ 3 } { y ↦ 4 }

{ x ↦ 3 * y ↦ 4 }

Thursday, 24 February 2011

Parallel Dispose tree
struct Tree {

 Tree *Left;

 Tree *Right; }

disposetree(Tree *x) {
 if (x != NULL) {
 i = x->Left;
 j = x->Right;
 (disposetree(i) || disposetree(j) || free(x));

 }
}

Thursday, 24 February 2011

Parallel Dispose tree
struct Tree {

 Tree *Left;

 Tree *Right; }

disposetree(Tree *x) {
 if (x != NULL) {
 i = x->Left;
 j = x->Right;
 (disposetree(i) || disposetree(j) || free(x));

 }
}

Tree(x) = (x = NULL ∧ emp) ∨
(∃i, j. x �→ i, j ∗ Tree(i) ∗ Tree(j))

{ tree(x) }

{ emp }

Thursday, 24 February 2011

 { tree(x) ∧ x != NULL}
 { ∃i,j. tree(i) * tree(j) * x ↦ i,j }
 i = x->Left;
 { ∃j. tree(i) * tree(j) * x ↦ i,j }
 j = x->Right;
 { tree(i) * tree(j) * x ↦ i,j }
 (disposetree(i) || disposetree(j) || free(x));
 { emp }

Tree(x) = (x = NULL ∧ emp) ∨
(∃i, j. x �→ i, j ∗ Tree(i) ∗ Tree(j))

Parallel Dispose tree

Thursday, 24 February 2011

Example

{ tree(i) * tree(j) * x ↦ i,j }
{ tree(i) } { tree(j) } { x ↦ i,j }

disposetree(i) || disposetree(j) || dispose x .
{ emp } { emp } { emp }

 { emp * emp * emp }
{ emp }

Thursday, 24 February 2011

Can we verify these?

{ emp }
x := new;
z := new;

[x]:=4 || [z]:=5;
{x⟼4 * z⟼5}

{ emp }
x := new;

[x]:=4 || [x]:=5;
{x⟼_}

{ emp }
x:=4 || x:=5;

{ emp }

{ y = x+1 }
x:=4 || y:=y+1;

{ y = x+2 }

Thursday, 24 February 2011

Merge sort

mergesort(x, n)
 if n >1 then
 local m in
 m := n/2;
 mergesort(x,m) || mergesort(x+m,n-m);
 merge(x,m,n-m)

Thursday, 24 February 2011

Merge sort

{ array(x,n) }
 mergesort(x, n)
{ sorted_array(x,n) }

{ sorted_array(x,m) * sorted_array(x+m,n) }
 merge(x,m,n)
{ sorted_array(x,m+n) }

Thursday, 24 February 2011

Merge sort

{ array(x,n) }
mergesort(x, n)
 if n >1 then
 local m in
 m := n/2;
 mergesort(x,m) || mergesort(x+m,n-m);
 merge(x,m,n-m)

{ sorted_array(x,n) }

Thursday, 24 February 2011

Concurrent
Separation Logic

Thursday, 24 February 2011

Multiple access

How do we verify a program where several threads
want access to the same memory? e.g.

[x] := 43 || [x] := 47

We protect shared values with locks

Thursday, 24 February 2011

Multiple access

How do we verify a program where several threads
want access to the same memory? e.g.

[x] := 43 || [x] := 47

We protect shared values with locks

Thursday, 24 February 2011

Reasoning principle

r1

r2

Separation property: at any time, the state of the
program can be partitioned into that owned by each
thread and each free lock

Thursday, 24 February 2011

Reasoning principle

r1

r2

I

Assign a resource invariant I to every lock r: describes
the part of the heap protected by the lock

Separation property: at any time, the state of the
program can be partitioned into that owned by each
thread and each free lock

Thursday, 24 February 2011

Programming language

C ::= … | resource r in C | with r when B in C | …

Thursday, 24 February 2011

Resource Rule

Δ, r : I ⊦ { P } C { Q } .
Δ ⊦ { P * I } resource r in C { Q * I }

Thursday, 24 February 2011

Lock Rule

Δ ⊦ { (P * I) ∧ B} C { Q * I } .
Δ, r : I ⊦ { P } with r when B in C { Q }

Thursday, 24 February 2011

Caveat: side-conditions

There are subtle variable side-conditions used to allow
locks to refer to global variables.

Each variable is either associate to

• a single thread; or
• a single lock.

It can then only be modified and used in assertions by
the thread, or while the thread holds the associate
lock.

Thursday, 24 February 2011

Binary Semaphore

We can encode a semaphore as a critical region

 P(s) = with rs when s=1 do s := 0
 V(s) = with rs when s=0 do s := 1

Resource invariant

(s=0 ∧ emp) ∨ (s=1 ∧ Q)

Initially,

s=0

Thursday, 24 February 2011

Example

{ emp }
P(s)
[x] := 43
V(s)
{ emp }

{ emp }
P(s)
[x] := 47
V(s)
{ emp }

Thursday, 24 February 2011

Example

{ emp }
P(s)
{ x ↦ _ }
[x] := 43
{ x ↦ _ }
V(s)
{ emp }

Thursday, 24 February 2011

Example

{ emp }
P(s)
{ x ↦ _ }
[x] := 43
{ x ↦ _ }
V(s)
{ emp }

. { emp * (Is ∧ s=1)} s := 0 { x ↦ _ * Is } .
{emp} with rs when s=1 do s:=0 { x ↦ _ }

Thursday, 24 February 2011

Example

{ emp }
P(s)
{ x ↦ _ }
[x] := 43
{ x ↦ _ }
V(s)
{ emp }

. { emp * (Is ∧ s=1)} s := 0 { x ↦ _ * Is } .
{emp} with rs when s=1 do s:=0 { x ↦ _ }

. { x ↦ _ * (Is ∧ s=0)} s := 1 { emp * Is } .
{x ↦ _} with rs when s=0 do s:=1 { emp }

Thursday, 24 February 2011

One place buffer

with buff when full do
 full := false
 y := c
dispose y

x := new
with buff when ¬full do
 full := true;
 c := x;

full := false

Thursday, 24 February 2011

One place buffer

with buff when full do
 full := false
 y := c
dispose y

x := new
with buff when ¬full do
 full := true;
 c := x;

full := false
{ (full ∧ c ↦ _) ∨ (¬full ∧ emp) }

Resource
Invariant

Thursday, 24 February 2011

One place buffer

with buff when full do
 { full ∧ c ↦ _ }
 full := false
 y := c
 { (¬full∧ emp)
 * y ↦ _ }
{ y ↦ _ }
dispose y

x := new
{ x ↦ _ }
with buff when ¬full do
 { (¬full∧ emp)
 * x ↦ _ }
 full := true;
 c := x;
 { full ∧ c ↦ _ }

{ (full ∧ c ↦ _) ∨ (¬full ∧ emp) }

Thursday, 24 February 2011

Ownership is in the eye of
the assertor

with buff when full do
 full := false
 y := c

x := new
with buff when ¬full do
 full := true;
 c := x;
dispose x

full := false

Can we verify the following?

Thursday, 24 February 2011

Ownership is in the eye of
the assertor

with buff when full do
 full := false
 y := c

x := new
with buff when ¬full do
 full := true;
 c := x;
dispose x

full := false

Can we verify the following?

{ emp }

Resource
Invariant

Thursday, 24 February 2011

next time:
Semantics

Thursday, 24 February 2011

