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Mechanically Proving Hoare Formulae
(Joint work with Hélène Collavizza)

◮ Hoare’s Axiomatic Basis was originally both
◮ an axiomatic language definition method and
◮ a proof theory for program verification

◮ Will focus on the verification role today
◮ after 40 years it is still a key idea in program correctness

◮ However, instead of
“... accepting the axioms and rules of inference as
the ultimately definitive specification of the
meaning of the language.”

can derive axioms and rules from language semantics
◮ parametrizes verification technology on semantics
◮ semantic approach effective with current theorem provers
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Range of methods for proving {P}C{Q}

◮ Bounded model checking (BMC)
◮ unwind loops a finite number of times
◮ then symbolically execute
◮ check states reached satisfy properties

◮ Full verification
◮ handle unbounded loops and recursion
◮ invariants, induction etc.
◮ needs undecidable logics and user guided proof

◮ Goal: unifying framework for a spectrum of methods

decidable checking proof of correctness

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

4 / 31



Standard backwards method of proving {P}C{Q}
◮ A common approach is to use weakest preconditions

◮ precondition WP C Q ensures Q holds after C terminates

◮ WP C Q is Dijkstra’s ‘weakest liberal precondition’
(i.e. partial correctness: wlp.C.Q from Dijkstra & Scholten)

◮ easy to compute WP C Q . . . . . . . . . . . . . . . if C has no loops

◮ Precondition calculation works backwards from Q
◮ nice Hoare assignment calculation rule for WP

WP (V := E) Q = Q[V←E ]

◮ pulls postcondition Q back through program
WP (C1;C2) Q = WP C1 (WP C2 Q)

◮ can’t dynamically prune unreachable conditional branches
WP (IF B THEN C1 ELSE C2) Q =
(B ∧WP C1 Q) ∨ (¬B ∧WP C2 Q)

◮ {P}C{Q} ≡ P ⇒WP C Q

◮ wlp.C.Q is weakest solution of P : ({P} C {Q})
(Predicate Calculus & Program Semantics, Dijkstra & Scholten, 1990)
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Proving {P}C{Q} forwards
◮ Less used alternative is strongest postconditions

◮ SP P C holds after C terminates if started when P holds
◮ SP Q C is ‘strongest postcondition’

(sp.C.Q in Dijkstra & Scholten, Ch.12 – not stp.C.Q)
◮ Postcondition calculation works forwards from P

◮ nasty Floyd assignment rule introduces ∃-quantification
SP P (V := E) = ∃v . V = E [V←v ] ∧ P[V←v ]

“The problem with this rule is the accumulation of
quantifiers.” [Reynolds] “... a semantic theory based
on weakest preconditions turned out to be simpler than
one based on strongest postconditions.” [Dijkstra]

◮ compute by symbolic execution + building up constraints
SP P (C1;C2) = SP (SP P C1) C2

◮ can prune branches with symbolic state and constraints
SP P (IF B THEN C1 ELSE C2) =

SP (P ∧ B) C1 ∨ SP (P ∧ ¬B) C2

◮ {P}C{Q} ≡ SP P C ⇒ Q
◮ sp.C.P is strongest solution of Q : ({P} C {Q})
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Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t prune case splits ‘on-the-fly’

◮ Calculating SP P C generates ∃ at assignments
◮ at branches state+constraint can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}
◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Forwards methods meshes better with BMC
◮ Example

{J ≤ I}

K := 0;
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = I − J}
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Can’t compute finite WP or SP for loops

◮ Loop-free: symbolic evaluation is just calculating SP

◮ Loops: no finite formula for WP or SP in general

◮ WP (WHILE B DO C) Q =
(B ∧WP C (WP (WHILE B DO C) Q)) ∨ (¬B ∧Q)

◮ SP P (WHILE B DO C) =
(SP (SP (P ∧ B) C) (WHILE B DO C)) ∨ (P ∧ ¬B)

◮ Solution: Hoare logic rule with an invariant R

⊢ P ⇒ R ⊢ {R ∧ B}C{R} ⊢ R ∧ ¬B ⇒ Q
⊢ {P}WHILE B DO C{Q}

◮ Use approximate WP or SP plus verification conditions
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Method of verification conditions (VCs)

◮ Define AWP and ASP (“A” for “approximate”)
◮ like WP, SP for skip, assignment, sequencing, conditional

◮ for while-loops assume invariant R magically supplied

AWP (WHILE B DO {R} C) Q = R

ASP P (WHILE B DO {R} C) = R ∧ ¬B

◮ Define WVC C Q and SVC P C to generate VCs
(more details on next slide)

◮ Prove {P}C{Q} using theorems

WVC C Q ⇒ {AWP C Q}C{Q}

SVC P C ⇒ {P}C{ASP P C}
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Calculating verification conditions (VCs)

◮ VCs to augment approximate weakest preconditions
WVC (SKIP) Q = T

WVC (V := E) Q = T

WVC (C1;C2) Q = WVC C1 (AWP C2 Q) ∧ WVC C2 Q

WVC (IF B THEN C1 ELSE C2) Q =
WVC C1 Q ∧ WVC C2 Q

WVC (WHILE B DO {R} C) Q =
(R ∧ B ⇒ AWP C R) ∧ (R ∧ ¬B ⇒ Q) ∧ WVC C R

◮ VCs to augment approximate strongest postconditions
SVC P (SKIP) = T

SVC P (V := E) = T

SVC P (C1;C2) = SVC P C1 ∧ SVC (ASP P C1) C2

SVC P (IF B THEN C1 ELSE C2) =
SVC (P ∧ B) C1 ∧ SVC (P ∧ ¬B) C2

SVC P (WHILE B DO {R} C) =
(P ⇒ R) ∧ (ASP (R ∧ B) C ⇒ R) ∧ SVC (R ∧ B) C
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Symbolic execution as postcondition calculation
◮ Recall SP P (V := E) = ∃v . V = E [V←v ] ∧ P[V←v ]

◮ Suppose P has form
∃x1 · · · xn. S ∧ X1 = e1 ∧ . . . ∧ Xn = en

︸ ︷︷ ︸

constraint symbolic state

where
◮ X1, . . . , Xn are program variables (e.g. string constants)
◮ x1, . . . , xn are logic variables (i.e. symbolic values)
◮ S, e1, . . . , en only contain variables x1, . . . , xn and constants

◮ Abbreviating notation: [X←e ] for [X1←e1, . . . , Xn←en]

◮ It follows that SP P (Xi := Ei) is then

∃x1 · · · xn. S ∧ X1 = e1 ∧ . . . ∧ Xi = Ei [X←e ] ∧ . . . ∧ Xn = en

◮ Computing SP is now symbolic execution
◮ no new existential quantifiers generated by assignments!
◮ SP P (SKIP) = P
◮ SP P (C1;C2) = SP (SP P C1) C2
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Symbolic execution of conditional branches

◮ Recall

SP P (IF B THEN C1 ELSE C2) =
SP (P ∧ B) C1 ∨ SP (P ∧ ¬B) C2

◮ Hence

SP (∃x1 · · · xn. S ∧ X1=e1 ∧ . . . ∧ Xn=en)
(IF B THEN C1 ELSE C2)

= SP (∃x1 · · · xn. (S ∧ B[X←e ]) ∧ X1=e1 ∧ . . . ∧ Xn=en) C1

∨

SP (∃x1 · · · xn. (S ∧ ¬B[X←e ]) ∧ X1=e1 ∧ . . . ∧ Xn=en) C2

◮ Prune paths by checking S ∧ B[X←e ] with a solver
◮ F ∨ P = P ∨ F = P
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Approximate symbolic execution of while-loops

◮ Symbolically execute straight line code as before

◮ For while-loops, recall from previous slide
ASP P (WHILE B DO {R} C) = R ∧ ¬B

◮ Hence execute while-loops as follows
ASP (∃x1 · · · xn. S ∧ X1=e1 ∧ . . . ∧ Xn=en)

(WHILE B DO {R} C)

= (∃x1 · · · xn. (R ∧ ¬B[X←x ]) ∧ X1=x1 ∧ . . . ∧ Xn=xn)

◮ constraint S computed up to loop is discarded
◮ create new state satisfying invariant and loop exit condition
◮ link between pre and post loop states provided by VCs

((∃x1 · · · xn. S ∧ X1=e1 ∧ . . . ∧ Xn=en)⇒ R)
∧

(ASP (∃x1 · · · xn. (R ∧ B[X←x ]) ∧ X1=x1 ∧ . . . ∧ Xn=xn)C ⇒ R)
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Combining BMC and full verification

◮ BMC unrolls programs and symbolically executes them
◮ paths dynamically pruned via accumulated properties

◮ Traditional full verification generates WP + VCs for loops
◮ working backwards precludes BMC-style forwards pruning

◮ Computing postconditions unifies BMC and full verification
◮ symbolic execution is SP calculation
◮ add forward VCs for verification of loops
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Overview of the implementation

◮ Everything is programmed deduction in a theorem prover
◮ semantic embedding plus custom theorem proving tools
◮ for efficiency external oracles used to prune paths
◮ oracle provenance tracking via theorem tags

◮ HOL4 used for implementation of theorem proving
◮ provides higher order logic for representing semantics
◮ LCF-style proof tools (deriving Hoare logic, solving VCs)
◮ ML for proof scripting and general programming

◮ YICES used as oracle
◮ SMT solver from SRI International
◮ used to quickly check conditional branch feasibility
◮ ‘blow away’ easy VCs (hard ones by HOL4 interactive proof)
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Semantic embedding

◮ Semantics of commands C given by SEM C s s′

◮ SEM C s s′ is an inductively defined relation

◮ if C run in state s then it will terminate in state s′

◮ commands assumed deterministic – at most one final state
(“Formalizing Dijkstra” by J. Harrison for non-determinism)

◮ Notation: abbreviate SEM C s s′ to [[C]](s, s′)

◮ {P}C{Q} =def ∀s s′. P s ∧ [[C]](s, s′)⇒ Q s′

◮ WP C Q =def λs. ∀s′. [[C ]](s, s′)⇒ Q s′

◮ ⊢ {P}C{Q} = ∀s. P s ⇒WP C Q s

◮ SP P C =def λs′. ∃s. P s ∧ [[C]](s, s′)

◮ ⊢ {P}C{Q} = ∀s. SP P C s ⇒ Q s
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Details and notations
◮ {P}C{Q} =def ∀s s′. P s ∧ [[C]](s, s′)⇒ Q s′

◮ P, Q : state→ bool
◮ state = string 7→ value (finite map)
◮ s[x→v ] is the state mapping x to v and like s elsewhere
◮ [x1→v1; · · · , xn→vn] has domain {x1, · · · , xn}; maps xi to vi
◮ [[C]] : state × state→ bool
◮ [[B]] : state→ bool ([[B]] short for BVAL B)
◮ [[E ]] : state→ value ([[E ]] short for NVAL B)
◮ WP C Q : state→ bool
◮ SP P C : state→ bool

◮ Overload ∧, ∨,⇒, ¬ to pointwise operations on predicates
◮ (P1 ∧ P2) s = P1 s ∧ P2 s
◮ (P1 ∨ P2) s = P1 s ∨ P2 s
◮ (P1 ⇒ P2) s = P1 s ⇒ P2 s
◮ (¬P) s = ¬(P s)

◮ Define: |= P =def ∀s. P s
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Proving {P}C{Q} by calculating WP C Q

◮ Easy consequences of definition of WP
◮ WP (SKIP) Q = Q
◮ WP (V := E) Q = λs. Q(s[V→[[E ]]s])

◮ WP (C1;C2) Q = WP C1 (WP C2 Q)

◮ WP (IF B THEN C1 ELSE C2) Q =
([[B]]⇒WP C1 Q) ∧ (¬[[B]]⇒WP C2 Q)

◮ WP (WHILE B DO C) Q =
([[B]]⇒WP C (WP (WHILE B DO C) Q)) ∧ (¬[[B]]⇒ Q)

◮ To prove {P}C{Q} for straight line code
◮ calculate WP C Q . . . . . . . . . . back substitution + case splits
◮ prove |= P ⇒WP C Q . . . . . . . . . . . . . . .use a theorem prover
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Proving {P}C{Q} by calculating SP P C

◮ Easy consequences of definition of SP
◮ SP P (SKIP) = P
◮ SP P (V := E) = λs′. ∃s. P s ∧ (s′ = s[V→[[E ]]s])

◮ SP P (C1;C2) = SP (SP P C1) C2

◮ SP P (IF B THEN C1 ELSE C2) =
SP (P ∧ [[B]]) C1 ∨ SP (P ∧ ¬[[B]]) C2

◮ SP P (WHILE B DO C) =
SP (SP (P ∧ [[B]]) C) (WHILE B DO C) ∨ (P ∧ ¬[[B]])

◮ To prove {P}C{Q} for straight line code
◮ calculate SP P C . . . . . . . . . . . . . calculating with ∃ a problem
◮ prove |= WP P C ⇒ Q . . . . . . . . . . . . . . .use a theorem prover
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Computing assignment postconditions
◮ ⊢ SP P (V := E) = λs′. ∃s. P s ∧ (s′ = s[V→[[E ]]s])

◮ Consider P of form
λs. ∃x1 · · · xn. S ∧ (s = [X→e ])

where
◮ X1, . . . , Xn are distinct program variables (string constants)
◮ x1, . . . , xn are logic variables (i.e. symbolic values)
◮ S, e1, . . . , en only contain variables x1, . . . , xn and constants
◮ [X→e ] abbreviates [X1→e1, . . . , Xn→en]

◮ It follows that

⊢ SP (λs. ∃x1 · · · xn. S ∧ (s = [X→e ] ))
(Xi := Ei)

= λs.∃x1 · · · xn.S ∧ (s = [X→e ][Xi → ([[Ei ]] [X→e ])] )

where
◮ [X→e ][Xi → ([[Ei ]] [X→e ])]

= [X1→e1, . . . , Xi → ([[Ei ]] [X→e ]), . . . , Xn→en]
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Symbolic state notation for predicates

◮ Abbreviate
λs. ∃x1 · · · xn. S s ∧ (s = [X→e ])

as

〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

then it follows that
SP 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 (Xi := Ei)

= 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xi=[[Ei ]] [X→e ] ∧ . . . ∧ Xn=en〉

◮ Computing SP is now symbolic execution
◮ symbolic state term: 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

◮ no new existential quantifiers generated by assignments!
◮ SP P (SKIP) = P
◮ SP P (C1;C2) = SP (SP P C1) C2

◮ Simplersymbolicstate representionOKfor loop-freecode
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Symbolic execution of conditional branches
◮ Recall

SP P (IF B THEN C1 ELSE C2)
= SP (P ∧ [[B]]) C1 ∨ SP (P ∧ ¬[[B]]) C2

◮ Now
〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 ∧ [[B]]

= (λs. ∃x1 · · · xn. S s ∧ (s = [X→e ])) ∧ BVAL B
= λs. (∃x1 · · · xn. S s ∧ (s = [X→e ])) ∧ BVAL B s
= λs. ∃x1 · · · xn. S s ∧ (s = [X→e ]) ∧ BVAL B s
= λs. ∃x1 · · · xn. (S s ∧ BVAL B s) ∧ (s = [X→e ])

= λs. ∃x1 · · · xn. (S ∧ BVAL B [X→e ]) s ∧ (s = [X→e ])

= 〈∃x . (S ∧ [[B]] [X→e ]) ∧ X1=e1 ∧ . . . ∧ Xn=en〉

◮ Hence
SP 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 (IF B THEN C1 ELSE C2)

= SP 〈∃x . (S ∧ [[B]] [X→e ]) ∧ X1=e1 ∧ . . . ∧ Xn=en〉 C1
∨
SP 〈∃x . (S ∧ ¬[[B]] [X→e ]) ∧ X1=e1 ∧ . . . ∧ Xn=en〉 C2

◮ Prune paths by checking S ∧ [[B]] [X→e ] and S ∧ ¬[[B]] [X→e ]
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Summary so far

◮ All one needs
◮ semantics of commands ([[C]])
◮ suitable theorem prover

◮ Define {P}C{Q} and SP P C from semantics

◮ Prove rules for calculating SP P C (one-off proof)

◮ For particular P, C, Q prove {P}C{Q} by
◮ calculating SP P C using rules and a theorem prover
◮ prove |= SP P C ⇒ Q using theorem prover

◮ Next: what about loops?
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Method of verification conditions (VCs)

◮ Define AWP and ASP (“A” for “approximate”)
◮ like WP, SP for skip, assignment, sequencing, conditional

◮ for while-loops assume invariant R magically supplied

AWP (WHILE B DO {R} C) Q = R

ASP P (WHILE B DO {R} C) = R ∧ ¬[[B]]

◮ Define WVC C Q and SVC P C to generate VCs
(more details on next slide)

◮ Prove {P}C{Q} using theorems

WVC C Q ⇒ {AWP C Q}C{Q}

SVC P C ⇒ {P}C{ASP P C}
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Calculating verification conditions
◮ WVC C Q is a standard ‘backwards’ calculation

WVC (SKIP) Q = T

WVC (V := E) Q = T

WVC (C1;C2) Q = WVC C1 (AWP C2 Q) ∧WVC C2 Q

WVC (IF B THEN C1 ELSE C2) Q = WVC C1 Q ∧WVC C2 Q

WVC (WHILE B DO {R} C) Q =
(|= R ∧ [[B]]⇒ AWP C R) ∧ (|= R ∧ ¬[[B]]⇒ Q) ∧ WVC C R

◮ SVC P C is a ‘forwards’ calculation
SVC P (SKIP) = T

SVC P (V := E) = T

SVC P (C1;C2) = SVC P C1 ∧ SVC (ASP P C1) C2

SVC P (IF B THEN C1 ELSE C2) =
SVC (P ∧ [[B]]) C1 ∧ SVC (P ∧ ¬[[B]]) C2

SVC P (WHILE B DO {R} C) =
(|= P ⇒ R) ∧ (|= ASP (R ∧ [[B]]) C ⇒ R) ∧ SVC (R ∧ [[B]]) C
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Approximate symbolic execution of while-loops

◮ Symbolically execute straight line code as before

◮ For while-loops, recall from previous slide

ASP P (WHILE B DO {R} C) = R ∧ ¬[[B]]

◮ Hence execute while-loops as follows

ASP 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 (WHILE B DO {R} C)

= 〈∃x. (R ∧ ¬[[B]] [X→x ]) ∧ X1=x1 ∧ . . . ∧ Xn=xn〉

◮ constraint S computed up to loop is discarded
◮ create new state satisfying invariant and loop exit condition
◮ link between pre and post loop states provided by VCs
|= 〈S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 ⇒ R
∧
|= ASP 〈(R ∧ [[B]]) ∧ X1=x1 ∧ . . . ∧ Xn=xn〉 C ⇒ R
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Pretty slides hide messy HOL details!
◮ Term λs. ∃x1 · · · xn. S s ∧ (s = [X→e ]) is for a given X

◮ The rule
SP 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 (Xi := Ei)

= 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xi=[[Ei ]] [X→e ] ∧ . . . ∧ Xn=en〉

is also for a given X1,...,Xn

◮ HOL theorem generating specific assignment rule is:
|- ∀xl f P v e.

ALL_DISTINCT xl ⇒

(∀l. (MAP FST l = xl) ⇒ (MAP FST (f l) = xl)) ⇒

(LP
xl
(λs. ∃l. (MAP FST l = xl) ∧ P l ∧ (s = FEMPTY |++ f l))
(v ::= e) =

(λs.
∃l.

(MAP FST l = xl) ∧ P l ∧

(s = FEMPTY |++ (ASSIGN_FUN v e o f) l)))

◮ Won’t rexplain this here beyond:
◮ LP represents SP
◮ ∃l instantiated to ∃x1 . . . xn for a specific program
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THE END
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THE END
Really!
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