
Mechanically Proving Hoare Formulae

Hoare 75 talk (revised)

Additional material

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

1 / 31

P{Q}R ****** Happy 40th Birthday Hoare Logic! ****** {P}C{Q}

An Axiomatic Basis for
Computer Programming

C. A. R. Hoare, 1969

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

2 / 31

Mechanically Proving Hoare Formulae
(Joint work with Hélène Collavizza)

◮ Hoare’s Axiomatic Basis was originally both
◮ an axiomatic language definition method and
◮ a proof theory for program verification

◮ Will focus on the verification role today
◮ after 40 years it is still a key idea in program correctness

◮ However, instead of
“... accepting the axioms and rules of inference as
the ultimately definitive specification of the
meaning of the language.”

can derive axioms and rules from language semantics
◮ parametrizes verification technology on semantics
◮ semantic approach effective with current theorem provers

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

3 / 31

Range of methods for proving {P}C{Q}

◮ Bounded model checking (BMC)
◮ unwind loops a finite number of times
◮ then symbolically execute
◮ check states reached satisfy properties

◮ Full verification
◮ handle unbounded loops and recursion
◮ invariants, induction etc.
◮ needs undecidable logics and user guided proof

◮ Goal: unifying framework for a spectrum of methods

decidable checking proof of correctness

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

4 / 31

Standard backwards method of proving {P}C{Q}
◮ A common approach is to use weakest preconditions

◮ precondition WP C Q ensures Q holds after C terminates

◮ WP C Q is Dijkstra’s ‘weakest liberal precondition’
(i.e. partial correctness: wlp.C.Q from Dijkstra & Scholten)

◮ easy to compute WP C Q if C has no loops

◮ Precondition calculation works backwards from Q
◮ nice Hoare assignment calculation rule for WP

WP (V := E) Q = Q[V←E]

◮ pulls postcondition Q back through program
WP (C1;C2) Q = WP C1 (WP C2 Q)

◮ can’t dynamically prune unreachable conditional branches
WP (IF B THEN C1 ELSE C2) Q =
(B ∧WP C1 Q) ∨ (¬B ∧WP C2 Q)

◮ {P}C{Q} ≡ P ⇒WP C Q

◮ wlp.C.Q is weakest solution of P : ({P} C {Q})
(Predicate Calculus & Program Semantics, Dijkstra & Scholten, 1990)

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

5 / 31

Standard backwards method of proving {P}C{Q}
◮ A common approach is to use weakest preconditions

◮ precondition WP C Q ensures Q holds after C terminates

◮ WP C Q is Dijkstra’s ‘weakest liberal precondition’
(i.e. partial correctness: wlp.C.Q from Dijkstra & Scholten)

◮ easy to compute WP C Q if C has no loops

◮ Precondition calculation works backwards from Q
◮ nice Hoare assignment calculation rule for WP

WP (V := E) Q = Q[V←E]

◮ pulls postcondition Q back through program
WP (C1;C2) Q = WP C1 (WP C2 Q)

◮ can’t dynamically prune unreachable conditional branches
WP (IF B THEN C1 ELSE C2) Q =
(B ∧WP C1 Q) ∨ (¬B ∧WP C2 Q)

◮ {P}C{Q} ≡ P ⇒WP C Q

◮ wlp.C.Q is weakest solution of P : ({P} C {Q})
(Predicate Calculus & Program Semantics, Dijkstra & Scholten, 1990)

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

5 / 31

Proving {P}C{Q} forwards
◮ Less used alternative is strongest postconditions

◮ SP P C holds after C terminates if started when P holds
◮ SP Q C is ‘strongest postcondition’

(sp.C.Q in Dijkstra & Scholten, Ch.12 – not stp.C.Q)
◮ Postcondition calculation works forwards from P

◮ nasty Floyd assignment rule introduces ∃-quantification
SP P (V := E) = ∃v . V = E [V←v] ∧ P[V←v]

“The problem with this rule is the accumulation of
quantifiers.” [Reynolds] “... a semantic theory based
on weakest preconditions turned out to be simpler than
one based on strongest postconditions.” [Dijkstra]

◮ compute by symbolic execution + building up constraints
SP P (C1;C2) = SP (SP P C1) C2

◮ can prune branches with symbolic state and constraints
SP P (IF B THEN C1 ELSE C2) =

SP (P ∧ B) C1 ∨ SP (P ∧ ¬B) C2

◮ {P}C{Q} ≡ SP P C ⇒ Q
◮ sp.C.P is strongest solution of Q : ({P} C {Q})

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

6 / 31

Proving {P}C{Q} forwards
◮ Less used alternative is strongest postconditions

◮ SP P C holds after C terminates if started when P holds
◮ SP Q C is ‘strongest postcondition’

(sp.C.Q in Dijkstra & Scholten, Ch.12 – not stp.C.Q)
◮ Postcondition calculation works forwards from P

◮ nasty Floyd assignment rule introduces ∃-quantification
SP P (V := E) = ∃v . V = E [V←v] ∧ P[V←v]

“The problem with this rule is the accumulation of
quantifiers.” [Reynolds] “... a semantic theory based
on weakest preconditions turned out to be simpler than
one based on strongest postconditions.” [Dijkstra]

◮ compute by symbolic execution + building up constraints
SP P (C1;C2) = SP (SP P C1) C2

◮ can prune branches with symbolic state and constraints
SP P (IF B THEN C1 ELSE C2) =

SP (P ∧ B) C1 ∨ SP (P ∧ ¬B) C2

◮ {P}C{Q} ≡ SP P C ⇒ Q
◮ sp.C.P is strongest solution of Q : ({P} C {Q})

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

6 / 31

Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t prune case splits ‘on-the-fly’

◮ Calculating SP P C generates ∃ at assignments
◮ at branches state+constraint can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}
◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Forwards methods meshes better with BMC
◮ Example

{J ≤ I}

K := 0;
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = I − J}

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

7 / 31

Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t prune case splits ‘on-the-fly’

◮ Calculating SP P C generates ∃ at assignments
◮ at branches state+constraint can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}
◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Forwards methods meshes better with BMC
◮ Example

{J ≤ I}

K := 0;
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = I − J}

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

7 / 31

Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t prune case splits ‘on-the-fly’

◮ Calculating SP P C generates ∃ at assignments
◮ at branches state+constraint can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}
◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Forwards methods meshes better with BMC
◮ Example

{J ≤ I}

K := 0; {J ≤ I ∧ K = 0}
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = I − J}

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

7 / 31

Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t prune case splits ‘on-the-fly’

◮ Calculating SP P C generates ∃ at assignments
◮ at branches state+constraint can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}
◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Forwards methods meshes better with BMC
◮ Example

{J ≤ I}

K := 0; {J ≤ I ∧ K = 0}
IF I < J THEN K := K + 1 ELSE SKIP; {J ≤ I ∧ K = 0}
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = I − J}

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

7 / 31

Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t prune case splits ‘on-the-fly’

◮ Calculating SP P C generates ∃ at assignments
◮ at branches state+constraint can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}
◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Forwards methods meshes better with BMC
◮ Example

{J ≤ I}

K := 0; {J ≤ I ∧ K = 0}
IF I < J THEN K := K + 1 ELSE SKIP; {J ≤ I ∧ K = 0}
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = I − J}

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

7 / 31

Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t prune case splits ‘on-the-fly’

◮ Calculating SP P C generates ∃ at assignments
◮ at branches state+constraint can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}
◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Forwards methods meshes better with BMC
◮ Example

{I < J}

K := 0;
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = J − I}

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

7 / 31

Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t prune case splits ‘on-the-fly’

◮ Calculating SP P C generates ∃ at assignments
◮ at branches state+constraint can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}
◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Forwards methods meshes better with BMC
◮ Example

{I < J}

K := 0;
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = J − I}

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

7 / 31

Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t prune case splits ‘on-the-fly’

◮ Calculating SP P C generates ∃ at assignments
◮ at branches state+constraint can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}
◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Forwards methods meshes better with BMC
◮ Example

{I < J}

K := 0; {I < J ∧ K = 0}
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = J − I}

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

7 / 31

Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t prune case splits ‘on-the-fly’

◮ Calculating SP P C generates ∃ at assignments
◮ at branches state+constraint can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}
◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Forwards methods meshes better with BMC
◮ Example

{I < J}

K := 0; {I < J ∧ K = 0}
IF I < J THEN K := K + 1 ELSE SKIP; {I < J ∧ K = 1}
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = J − I}

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

7 / 31

Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t prune case splits ‘on-the-fly’

◮ Calculating SP P C generates ∃ at assignments
◮ at branches state+constraint can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}
◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Forwards methods meshes better with BMC
◮ Example

{I < J}

K := 0; {I < J ∧ K = 0}
IF I < J THEN K := K + 1 ELSE SKIP; {I < J ∧ K = 1}
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = J − I}

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

7 / 31

Can’t compute finite WP or SP for loops

◮ Loop-free: symbolic evaluation is just calculating SP

◮ Loops: no finite formula for WP or SP in general

◮ WP (WHILE B DO C) Q =
(B ∧WP C (WP (WHILE B DO C) Q)) ∨ (¬B ∧Q)

◮ SP P (WHILE B DO C) =
(SP (SP (P ∧ B) C) (WHILE B DO C)) ∨ (P ∧ ¬B)

◮ Solution: Hoare logic rule with an invariant R

⊢ P ⇒ R ⊢ {R ∧ B}C{R} ⊢ R ∧ ¬B ⇒ Q
⊢ {P}WHILE B DO C{Q}

◮ Use approximate WP or SP plus verification conditions

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

8 / 31

Method of verification conditions (VCs)

◮ Define AWP and ASP (“A” for “approximate”)
◮ like WP, SP for skip, assignment, sequencing, conditional

◮ for while-loops assume invariant R magically supplied

AWP (WHILE B DO {R} C) Q = R

ASP P (WHILE B DO {R} C) = R ∧ ¬B

◮ Define WVC C Q and SVC P C to generate VCs
(more details on next slide)

◮ Prove {P}C{Q} using theorems

WVC C Q ⇒ {AWP C Q}C{Q}

SVC P C ⇒ {P}C{ASP P C}

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

9 / 31

Calculating verification conditions (VCs)

◮ VCs to augment approximate weakest preconditions
WVC (SKIP) Q = T

WVC (V := E) Q = T

WVC (C1;C2) Q = WVC C1 (AWP C2 Q) ∧ WVC C2 Q

WVC (IF B THEN C1 ELSE C2) Q =
WVC C1 Q ∧ WVC C2 Q

WVC (WHILE B DO {R} C) Q =
(R ∧ B ⇒ AWP C R) ∧ (R ∧ ¬B ⇒ Q) ∧ WVC C R

◮ VCs to augment approximate strongest postconditions
SVC P (SKIP) = T

SVC P (V := E) = T

SVC P (C1;C2) = SVC P C1 ∧ SVC (ASP P C1) C2

SVC P (IF B THEN C1 ELSE C2) =
SVC (P ∧ B) C1 ∧ SVC (P ∧ ¬B) C2

SVC P (WHILE B DO {R} C) =
(P ⇒ R) ∧ (ASP (R ∧ B) C ⇒ R) ∧ SVC (R ∧ B) C

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

10 / 31

Calculating verification conditions (VCs)

◮ VCs to augment approximate weakest preconditions
WVC (SKIP) Q = T

WVC (V := E) Q = T

WVC (C1;C2) Q = WVC C1 (AWP C2 Q) ∧ WVC C2 Q

WVC (IF B THEN C1 ELSE C2) Q =
WVC C1 Q ∧ WVC C2 Q

WVC (WHILE B DO {R} C) Q =
(R ∧ B ⇒ AWP C R) ∧ (R ∧ ¬B ⇒ Q) ∧ WVC C R

◮ VCs to augment approximate strongest postconditions
SVC P (SKIP) = T

SVC P (V := E) = T

SVC P (C1;C2) = SVC P C1 ∧ SVC (ASP P C1) C2

SVC P (IF B THEN C1 ELSE C2) =
SVC (P ∧ B) C1 ∧ SVC (P ∧ ¬B) C2

SVC P (WHILE B DO {R} C) =
(P ⇒ R) ∧ (ASP (R ∧ B) C ⇒ R) ∧ SVC (R ∧ B) C

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

10 / 31

Calculating verification conditions (VCs)

◮ VCs to augment approximate weakest preconditions
WVC (SKIP) Q = T

WVC (V := E) Q = T

WVC (C1;C2) Q = WVC C1 (AWP C2 Q) ∧ WVC C2 Q

WVC (IF B THEN C1 ELSE C2) Q =
WVC C1 Q ∧ WVC C2 Q

WVC (WHILE B DO {R} C) Q =
(R ∧ B ⇒ AWP C R) ∧ (R ∧ ¬B ⇒ Q) ∧ WVC C R

◮ VCs to augment approximate strongest postconditions
SVC P (SKIP) = T

SVC P (V := E) = T

SVC P (C1;C2) = SVC P C1 ∧ SVC (ASP P C1) C2

SVC P (IF B THEN C1 ELSE C2) =
SVC (P ∧ B) C1 ∧ SVC (P ∧ ¬B) C2

SVC P (WHILE B DO {R} C) =
(P ⇒ R) ∧ (ASP (R ∧ B) C ⇒ R) ∧ SVC (R ∧ B) C

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

10 / 31

Symbolic execution as postcondition calculation
◮ Recall SP P (V := E) = ∃v . V = E [V←v] ∧ P[V←v]

◮ Suppose P has form
∃x1 · · · xn. S ∧ X1 = e1 ∧ . . . ∧ Xn = en

︸ ︷︷ ︸

constraint symbolic state

where
◮ X1, . . . , Xn are program variables (e.g. string constants)
◮ x1, . . . , xn are logic variables (i.e. symbolic values)
◮ S, e1, . . . , en only contain variables x1, . . . , xn and constants

◮ Abbreviating notation: [X←e] for [X1←e1, . . . , Xn←en]

◮ It follows that SP P (Xi := Ei) is then

∃x1 · · · xn. S ∧ X1 = e1 ∧ . . . ∧ Xi = Ei [X←e] ∧ . . . ∧ Xn = en

◮ Computing SP is now symbolic execution
◮ no new existential quantifiers generated by assignments!
◮ SP P (SKIP) = P
◮ SP P (C1;C2) = SP (SP P C1) C2

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

11 / 31

Symbolic execution of conditional branches

◮ Recall

SP P (IF B THEN C1 ELSE C2) =
SP (P ∧ B) C1 ∨ SP (P ∧ ¬B) C2

◮ Hence

SP (∃x1 · · · xn. S ∧ X1=e1 ∧ . . . ∧ Xn=en)
(IF B THEN C1 ELSE C2)

= SP (∃x1 · · · xn. (S ∧ B[X←e]) ∧ X1=e1 ∧ . . . ∧ Xn=en) C1

∨

SP (∃x1 · · · xn. (S ∧ ¬B[X←e]) ∧ X1=e1 ∧ . . . ∧ Xn=en) C2

◮ Prune paths by checking S ∧ B[X←e] with a solver
◮ F ∨ P = P ∨ F = P

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

12 / 31

Approximate symbolic execution of while-loops

◮ Symbolically execute straight line code as before

◮ For while-loops, recall from previous slide
ASP P (WHILE B DO {R} C) = R ∧ ¬B

◮ Hence execute while-loops as follows
ASP (∃x1 · · · xn. S ∧ X1=e1 ∧ . . . ∧ Xn=en)

(WHILE B DO {R} C)

= (∃x1 · · · xn. (R ∧ ¬B[X←x]) ∧ X1=x1 ∧ . . . ∧ Xn=xn)

◮ constraint S computed up to loop is discarded
◮ create new state satisfying invariant and loop exit condition
◮ link between pre and post loop states provided by VCs

((∃x1 · · · xn. S ∧ X1=e1 ∧ . . . ∧ Xn=en)⇒ R)
∧

(ASP (∃x1 · · · xn. (R ∧ B[X←x]) ∧ X1=x1 ∧ . . . ∧ Xn=xn)C ⇒ R)

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

13 / 31

Combining BMC and full verification

◮ BMC unrolls programs and symbolically executes them
◮ paths dynamically pruned via accumulated properties

◮ Traditional full verification generates WP + VCs for loops
◮ working backwards precludes BMC-style forwards pruning

◮ Computing postconditions unifies BMC and full verification
◮ symbolic execution is SP calculation
◮ add forward VCs for verification of loops

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

14 / 31

Overview of the implementation

◮ Everything is programmed deduction in a theorem prover
◮ semantic embedding plus custom theorem proving tools
◮ for efficiency external oracles used to prune paths
◮ oracle provenance tracking via theorem tags

◮ HOL4 used for implementation of theorem proving
◮ provides higher order logic for representing semantics
◮ LCF-style proof tools (deriving Hoare logic, solving VCs)
◮ ML for proof scripting and general programming

◮ YICES used as oracle
◮ SMT solver from SRI International
◮ used to quickly check conditional branch feasibility
◮ ‘blow away’ easy VCs (hard ones by HOL4 interactive proof)

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

15 / 31

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

16 / 31

Happy 75th for Hoare!

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

16 / 31

Happy 75th for Hoare! Happy 40th for Hoare Logic!

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

16 / 31

Happy 75th for Hoare! Happy 40th for Hoare Logic!

Tony has many years ahead

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

16 / 31

Happy 75th for Hoare! Happy 40th for Hoare Logic!

Tony has many years ahead and so does Hoare Logic!

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

16 / 31

Happy 75th for Hoare! Happy 40th for Hoare Logic!

Tony has many years ahead and so does Hoare Logic!

THE END

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

16 / 31

Happy 75th for Hoare! Happy 40th for Hoare Logic!

Tony has many years ahead and so does Hoare Logic!

THE END
only of the main talk

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

16 / 31

Happy 75th for Hoare! Happy 40th for Hoare Logic!

Tony has many years ahead and so does Hoare Logic!

THE END
only of the main talk ... actually there are lots more slides!

MJCG (MSR, April 16, 2009)
Happy 75 Tony!

16 / 31

Mechanically Proving Hoare Formulae

Hoare 75 talk (revised)

Additional material

MJCG 17 / 31

Semantic embedding

◮ Semantics of commands C given by SEM C s s′

◮ SEM C s s′ is an inductively defined relation

◮ if C run in state s then it will terminate in state s′

◮ commands assumed deterministic – at most one final state
(“Formalizing Dijkstra” by J. Harrison for non-determinism)

◮ Notation: abbreviate SEM C s s′ to [[C]](s, s′)

◮ {P}C{Q} =def ∀s s′. P s ∧ [[C]](s, s′)⇒ Q s′

◮ WP C Q =def λs. ∀s′. [[C]](s, s′)⇒ Q s′

◮ ⊢ {P}C{Q} = ∀s. P s ⇒WP C Q s

◮ SP P C =def λs′. ∃s. P s ∧ [[C]](s, s′)

◮ ⊢ {P}C{Q} = ∀s. SP P C s ⇒ Q s

MJCG 18 / 31

Details and notations
◮ {P}C{Q} =def ∀s s′. P s ∧ [[C]](s, s′)⇒ Q s′

◮ P, Q : state→ bool
◮ state = string 7→ value (finite map)
◮ s[x→v] is the state mapping x to v and like s elsewhere
◮ [x1→v1; · · · , xn→vn] has domain {x1, · · · , xn}; maps xi to vi
◮ [[C]] : state × state→ bool
◮ [[B]] : state→ bool ([[B]] short for BVAL B)
◮ [[E]] : state→ value ([[E]] short for NVAL B)
◮ WP C Q : state→ bool
◮ SP P C : state→ bool

◮ Overload ∧, ∨,⇒, ¬ to pointwise operations on predicates
◮ (P1 ∧ P2) s = P1 s ∧ P2 s
◮ (P1 ∨ P2) s = P1 s ∨ P2 s
◮ (P1 ⇒ P2) s = P1 s ⇒ P2 s
◮ (¬P) s = ¬(P s)

◮ Define: |= P =def ∀s. P s

MJCG 19 / 31

Proving {P}C{Q} by calculating WP C Q

◮ Easy consequences of definition of WP
◮ WP (SKIP) Q = Q
◮ WP (V := E) Q = λs. Q(s[V→[[E]]s])

◮ WP (C1;C2) Q = WP C1 (WP C2 Q)

◮ WP (IF B THEN C1 ELSE C2) Q =
([[B]]⇒WP C1 Q) ∧ (¬[[B]]⇒WP C2 Q)

◮ WP (WHILE B DO C) Q =
([[B]]⇒WP C (WP (WHILE B DO C) Q)) ∧ (¬[[B]]⇒ Q)

◮ To prove {P}C{Q} for straight line code
◮ calculate WP C Q back substitution + case splits
◮ prove |= P ⇒WP C Quse a theorem prover

MJCG 20 / 31

Proving {P}C{Q} by calculating SP P C

◮ Easy consequences of definition of SP
◮ SP P (SKIP) = P
◮ SP P (V := E) = λs′. ∃s. P s ∧ (s′ = s[V→[[E]]s])

◮ SP P (C1;C2) = SP (SP P C1) C2

◮ SP P (IF B THEN C1 ELSE C2) =
SP (P ∧ [[B]]) C1 ∨ SP (P ∧ ¬[[B]]) C2

◮ SP P (WHILE B DO C) =
SP (SP (P ∧ [[B]]) C) (WHILE B DO C) ∨ (P ∧ ¬[[B]])

◮ To prove {P}C{Q} for straight line code
◮ calculate SP P C calculating with ∃ a problem
◮ prove |= WP P C ⇒ Quse a theorem prover

MJCG 21 / 31

Computing assignment postconditions
◮ ⊢ SP P (V := E) = λs′. ∃s. P s ∧ (s′ = s[V→[[E]]s])

◮ Consider P of form
λs. ∃x1 · · · xn. S ∧ (s = [X→e])

where
◮ X1, . . . , Xn are distinct program variables (string constants)
◮ x1, . . . , xn are logic variables (i.e. symbolic values)
◮ S, e1, . . . , en only contain variables x1, . . . , xn and constants
◮ [X→e] abbreviates [X1→e1, . . . , Xn→en]

◮ It follows that

⊢ SP (λs. ∃x1 · · · xn. S ∧ (s = [X→e]))
(Xi := Ei)

= λs.∃x1 · · · xn.S ∧ (s = [X→e][Xi → ([[Ei]] [X→e])])

where
◮ [X→e][Xi → ([[Ei]] [X→e])]

= [X1→e1, . . . , Xi → ([[Ei]] [X→e]), . . . , Xn→en]

MJCG 22 / 31

Symbolic state notation for predicates

◮ Abbreviate
λs. ∃x1 · · · xn. S s ∧ (s = [X→e])

as

〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

then it follows that
SP 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 (Xi := Ei)

= 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xi=[[Ei]] [X→e] ∧ . . . ∧ Xn=en〉

◮ Computing SP is now symbolic execution
◮ symbolic state term: 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

◮ no new existential quantifiers generated by assignments!
◮ SP P (SKIP) = P
◮ SP P (C1;C2) = SP (SP P C1) C2

◮ Simplersymbolicstate representionOKfor loop-freecode

MJCG 23 / 31

Symbolic state notation for predicates

◮ Abbreviate
λs. ∃x1 · · · xn. S s ∧ (s = [X→e])

as

〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

then it follows that
SP 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 (Xi := Ei)

= 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xi=[[Ei]] [X→e] ∧ . . . ∧ Xn=en〉

◮ Computing SP is now symbolic execution
◮ symbolic state term: 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

◮ no new existential quantifiers generated by assignments!
◮ SP P (SKIP) = P
◮ SP P (C1;C2) = SP (SP P C1) C2

◮ Simplersymbolicstate representionOKfor loop-freecode

MJCG 23 / 31

Symbolic execution of conditional branches
◮ Recall

SP P (IF B THEN C1 ELSE C2)
= SP (P ∧ [[B]]) C1 ∨ SP (P ∧ ¬[[B]]) C2

◮ Now
〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 ∧ [[B]]

= (λs. ∃x1 · · · xn. S s ∧ (s = [X→e])) ∧ BVAL B
= λs. (∃x1 · · · xn. S s ∧ (s = [X→e])) ∧ BVAL B s
= λs. ∃x1 · · · xn. S s ∧ (s = [X→e]) ∧ BVAL B s
= λs. ∃x1 · · · xn. (S s ∧ BVAL B s) ∧ (s = [X→e])

= λs. ∃x1 · · · xn. (S ∧ BVAL B [X→e]) s ∧ (s = [X→e])

= 〈∃x . (S ∧ [[B]] [X→e]) ∧ X1=e1 ∧ . . . ∧ Xn=en〉

◮ Hence
SP 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 (IF B THEN C1 ELSE C2)

= SP 〈∃x . (S ∧ [[B]] [X→e]) ∧ X1=e1 ∧ . . . ∧ Xn=en〉 C1
∨
SP 〈∃x . (S ∧ ¬[[B]] [X→e]) ∧ X1=e1 ∧ . . . ∧ Xn=en〉 C2

◮ Prune paths by checking S ∧ [[B]] [X→e] and S ∧ ¬[[B]] [X→e]

MJCG 24 / 31

Summary so far

◮ All one needs
◮ semantics of commands ([[C]])
◮ suitable theorem prover

◮ Define {P}C{Q} and SP P C from semantics

◮ Prove rules for calculating SP P C (one-off proof)

◮ For particular P, C, Q prove {P}C{Q} by
◮ calculating SP P C using rules and a theorem prover
◮ prove |= SP P C ⇒ Q using theorem prover

◮ Next: what about loops?

MJCG 25 / 31

Method of verification conditions (VCs)

◮ Define AWP and ASP (“A” for “approximate”)
◮ like WP, SP for skip, assignment, sequencing, conditional

◮ for while-loops assume invariant R magically supplied

AWP (WHILE B DO {R} C) Q = R

ASP P (WHILE B DO {R} C) = R ∧ ¬[[B]]

◮ Define WVC C Q and SVC P C to generate VCs
(more details on next slide)

◮ Prove {P}C{Q} using theorems

WVC C Q ⇒ {AWP C Q}C{Q}

SVC P C ⇒ {P}C{ASP P C}

MJCG 26 / 31

Calculating verification conditions
◮ WVC C Q is a standard ‘backwards’ calculation

WVC (SKIP) Q = T

WVC (V := E) Q = T

WVC (C1;C2) Q = WVC C1 (AWP C2 Q) ∧WVC C2 Q

WVC (IF B THEN C1 ELSE C2) Q = WVC C1 Q ∧WVC C2 Q

WVC (WHILE B DO {R} C) Q =
(|= R ∧ [[B]]⇒ AWP C R) ∧ (|= R ∧ ¬[[B]]⇒ Q) ∧ WVC C R

◮ SVC P C is a ‘forwards’ calculation
SVC P (SKIP) = T

SVC P (V := E) = T

SVC P (C1;C2) = SVC P C1 ∧ SVC (ASP P C1) C2

SVC P (IF B THEN C1 ELSE C2) =
SVC (P ∧ [[B]]) C1 ∧ SVC (P ∧ ¬[[B]]) C2

SVC P (WHILE B DO {R} C) =
(|= P ⇒ R) ∧ (|= ASP (R ∧ [[B]]) C ⇒ R) ∧ SVC (R ∧ [[B]]) C

MJCG 27 / 31

Calculating verification conditions
◮ WVC C Q is a standard ‘backwards’ calculation

WVC (SKIP) Q = T

WVC (V := E) Q = T

WVC (C1;C2) Q = WVC C1 (AWP C2 Q) ∧WVC C2 Q

WVC (IF B THEN C1 ELSE C2) Q = WVC C1 Q ∧WVC C2 Q

WVC (WHILE B DO {R} C) Q =
(|= R ∧ [[B]]⇒ AWP C R) ∧ (|= R ∧ ¬[[B]]⇒ Q) ∧ WVC C R

◮ SVC P C is a ‘forwards’ calculation
SVC P (SKIP) = T

SVC P (V := E) = T

SVC P (C1;C2) = SVC P C1 ∧ SVC (ASP P C1) C2

SVC P (IF B THEN C1 ELSE C2) =
SVC (P ∧ [[B]]) C1 ∧ SVC (P ∧ ¬[[B]]) C2

SVC P (WHILE B DO {R} C) =
(|= P ⇒ R) ∧ (|= ASP (R ∧ [[B]]) C ⇒ R) ∧ SVC (R ∧ [[B]]) C

MJCG 27 / 31

Calculating verification conditions
◮ WVC C Q is a standard ‘backwards’ calculation

WVC (SKIP) Q = T

WVC (V := E) Q = T

WVC (C1;C2) Q = WVC C1 (AWP C2 Q) ∧WVC C2 Q

WVC (IF B THEN C1 ELSE C2) Q = WVC C1 Q ∧WVC C2 Q

WVC (WHILE B DO {R} C) Q =
(|= R ∧ [[B]]⇒ AWP C R) ∧ (|= R ∧ ¬[[B]]⇒ Q) ∧ WVC C R

◮ SVC P C is a ‘forwards’ calculation
SVC P (SKIP) = T

SVC P (V := E) = T

SVC P (C1;C2) = SVC P C1 ∧ SVC (ASP P C1) C2

SVC P (IF B THEN C1 ELSE C2) =
SVC (P ∧ [[B]]) C1 ∧ SVC (P ∧ ¬[[B]]) C2

SVC P (WHILE B DO {R} C) =
(|= P ⇒ R) ∧ (|= ASP (R ∧ [[B]]) C ⇒ R) ∧ SVC (R ∧ [[B]]) C

MJCG 27 / 31

Approximate symbolic execution of while-loops

◮ Symbolically execute straight line code as before

◮ For while-loops, recall from previous slide

ASP P (WHILE B DO {R} C) = R ∧ ¬[[B]]

◮ Hence execute while-loops as follows

ASP 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 (WHILE B DO {R} C)

= 〈∃x. (R ∧ ¬[[B]] [X→x]) ∧ X1=x1 ∧ . . . ∧ Xn=xn〉

◮ constraint S computed up to loop is discarded
◮ create new state satisfying invariant and loop exit condition
◮ link between pre and post loop states provided by VCs
|= 〈S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 ⇒ R
∧
|= ASP 〈(R ∧ [[B]]) ∧ X1=x1 ∧ . . . ∧ Xn=xn〉 C ⇒ R

MJCG 28 / 31

Pretty slides hide messy HOL details!
◮ Term λs. ∃x1 · · · xn. S s ∧ (s = [X→e]) is for a given X

◮ The rule
SP 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 (Xi := Ei)

= 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xi=[[Ei]] [X→e] ∧ . . . ∧ Xn=en〉

is also for a given X1,...,Xn

◮ HOL theorem generating specific assignment rule is:
|- ∀xl f P v e.

ALL_DISTINCT xl ⇒

(∀l. (MAP FST l = xl) ⇒ (MAP FST (f l) = xl)) ⇒

(LP
xl
(λs. ∃l. (MAP FST l = xl) ∧ P l ∧ (s = FEMPTY |++ f l))
(v ::= e) =

(λs.
∃l.

(MAP FST l = xl) ∧ P l ∧

(s = FEMPTY |++ (ASSIGN_FUN v e o f) l)))

◮ Won’t rexplain this here beyond:
◮ LP represents SP
◮ ∃l instantiated to ∃x1 . . . xn for a specific program

MJCG 30 / 31

THE END

MJCG 31 / 31

THE END
Really!

MJCG 31 / 31

	Hoare 75 talk (revised)
	Additional material

