Mechanically Proving Hoare Formulae

Hoare 75 talk (revised)

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 1/31

P{Q}R #xxxx Happy 40th Birthday Hoare Logic! ++xx {P }C{Q}

An Axiomatic Basis for
Computer Programming

C. A. R. Hoare, 1969

Happy 75 Tony!
MJICG (MSR. April 16. 2009) appy 7> fony 2/31

Mechanically Proving Hoare Formulae
(Joint work with Héléne Collavizza)

» Hoare’s Axiomatic Basis was originally both

» an axiomatic language definition method and
» a proof theory for program verification

» Will focus on the verification role today
» after 40 years it is still a key idea in program correctness

» However, instead of

“... accepting the axioms and rules of inference as
the ultimately definitive specification of the
meaning of the language.”

can derive axioms and rules from language semantics

» parametrizes verification technology on semantics
» semantic approach effective with current theorem provers

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 3/31

Range of methods for proving {P}C{Q}

» Bounded model checking (BMC)

» unwind loops a finite number of times
» then symbolically execute
» check states reached satisfy properties

» Full verification

» handle unbounded loops and recursion
» invariants, induction etc.
» needs undecidable logics and user guided proof

» Goal: unifying framework for a spectrum of methods

decidable checking proof of correctness

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 4131

Standard backwards method of proving {P}C{Q}

» A common approach is to use weakest preconditions
» precondition WP C Q ensures Q holds after C terminates

» WP C Q is Dijkstra’s ‘weakest liberal precondition’
(i.e. partial correctness: Wl p. C. Qfrom Dijkstra & Scholten)

» easytocompute WP CQ if C has no loops

» Precondition calculation works backwards from Q
» nice Hoare assignment calculation rule for WP
WP (V:=E)Q = Q[V—E]
» pulls postcondition Q back through program
WP (Cy; C2) Q = WP C; (WP C,; Q)

» can’t dynamically prune unreachable conditional branches
WP (I FB THENC; ELSEC,)Q =
(BAWPC;Q)V (-BAWPC; Q)

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 5/31

Standard backwards method of proving {P}C{Q}

» A common approach is to use weakest preconditions
» precondition WP C Q ensures Q holds after C terminates

» WP C Q is Dijkstra’s ‘weakest liberal precondition’
(i.e. partial correctness: Wl p. C. Qfrom Dijkstra & Scholten)

» easytocompute WP CQ if C has no loops

» Precondition calculation works backwards from Q
» nice Hoare assignment calculation rule for WP
WP (V:=E)Q = Q[V—E]
» pulls postcondition Q back through program
WP (Cy; C2) Q = WP C; (WP C,; Q)
» can’t dynamically prune unreachable conditional branches
WP (I FB THENC; ELSEC,)Q =
(BAWPC1Q)V(-BAWPC,Q)
» {P}IC{Q} = P=WPCQ

» wip.C.Q is weakest solution of P : ({P} C {Q})
(Predicate Calculus & Program Semantics, Dijkstra & Scholten, 1990)

Happy 75 Tony!
MJICG (MSR. April 16. 2009) appy 7> fony 5/31

Proving {P}C{Q} forwards

» Less used alternative is strongest postconditions
» SP P C holds after C terminates if started when P holds
» SP Q C is ‘strongest postcondition’
(sp. C. Qin Dijkstra & Scholten, Ch.12 —not st p. C. Q
» Postcondition calculation works forwards from P
» nasty Floyd assignment rule introduces 3-quantification
SPP(V:=E) = V.V =E[V<V]AP[V«V]
“The problem with this rule is the accumulation of
quantifiers.” [Reynolds] “... a semantic theory based
on weakest preconditions turned out to be simpler than
one based on strongest postconditions.” [Dijkstra]

» compute by symbolic execution + building up constraints
SPP (Cy;Cy) = SP(SPP Cy) Cy

» can prune branches with symbolic state and constraints
SPP (Il FBTHENC,; ELSEC,) =
SP(PAB)C; v SP(PA-B)C;

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 6/31

Proving {P}C{Q} forwards

» Less used alternative is strongest postconditions
» SP P C holds after C terminates if started when P holds

» SP Q C is ‘strongest postcondition’
(sp. C. Qin Dijkstra & Scholten, Ch.12 —notst p. C. Q

» Postcondition calculation works forwards from P
» nasty Floyd assignment rule introduces 3-quantification
SPP(V:=E) = V.V =E[V<V]AP[V«V]
“The problem with this rule is the accumulation of
quantifiers.” [Reynolds] “... a semantic theory based
on weakest preconditions turned out to be simpler than
one based on strongest postconditions.” [Dijkstra]
» compute by symbolic execution + building up constraints
SPP (Cy;Cy) = SP(SPP Cy) C,
» can prune branches with symbolic state and constraints
SPP (I FBTHENC, ELSEC,) =
SP(PAB)Cy VvV SP(PA-B)C,

» {P}C{Q} = SPPC=Q
» sp.C.P is strongest solution of Q : ({P} C {Q})
MJCG (MSR, April 16, 2009) 6/31

Backwards or forwards?
» Calculating WP C Q is easy but leads to big formulae
» can't prune case splits ‘on-the-fly’

» Calculating SP P C generates 3 at assignments
» at branches state+constraint can reject infeasible paths

» Consider {P}Cy; (I FB THENC, ELSE C3); C4{Q}
» going forwards P and effect of C; might determine B
» if P specifies a unique state, computing SP is execution

» Forwards methods meshes better with BMC

» Example
<y
K:=0;
| FI <JTHENK :=K + 1 ELSE SKI P;
IFK=1A-(=J)THENR:=J -1 ELSER :=1-1J
(R=1-J}

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 71731

Backwards or forwards?
» Calculating WP C Q is easy but leads to big formulae
» can't prune case splits ‘on-the-fly’

» Calculating SP P C generates 3 at assignments

» at branches state+constraint can reject infeasible paths
» Consider {P}Cy; (I FB THENC, ELSE C3); C4{Q}

» going forwards P and effect of C; might determine B

» if P specifies a unique state, computing SP is execution

» Forwards methods meshes better with BMC

» Example
<y
K:=0;
| FI <JTHENK :=K + 1 ELSE SKI P;
IFK=1A-(=J)THENR:=J -1 ELSER :=1 -
{(R=1-J}

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 71731

Backwards or forwards?
» Calculating WP C Q is easy but leads to big formulae
» can't prune case splits ‘on-the-fly’
» Calculating SP P C generates 3 at assignments
» at branches state+constraint can reject infeasible paths

» Consider {P}Cy; (I FB THENC, ELSE C3); C4{Q}
» going forwards P and effect of C; might determine B
» if P specifies a unique state, computing SP is execution
» Forwards methods meshes better with BMC
» Example
a<n
K:=0; {J<IAK =0}
| FI <JTHENK :=K +1 ELSE SKI P;
IFK=1A-(=J)THENR:=J -1 ELSER :=1-J
{R=1-J}

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 71731

Backwards or forwards?
» Calculating WP C Q is easy but leads to big formulae
» can't prune case splits ‘on-the-fly’
» Calculating SP P C generates 3 at assignments
» at branches state+constraint can reject infeasible paths

» Consider {P}Cy; (I FB THENC, ELSE C3); C4{Q}
» going forwards P and effect of C; might determine B
» if P specifies a unique state, computing SP is execution
» Forwards methods meshes better with BMC
» Example
a<n
K:=0; {J<IAK =0}
IFI<JTHENK : =K +1ELSESKI P; {J <IAK =0}
IFK=1A-(=J)THENR:=J —I1ELSER :=1-J
{R=1-J}

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 71731

Backwards or forwards?
» Calculating WP C Q is easy but leads to big formulae
» can't prune case splits ‘on-the-fly’
» Calculating SP P C generates 3 at assignments
» at branches state+constraint can reject infeasible paths

» Consider {P}Cy; (I FB THENC, ELSE C3); C4{Q}
» going forwards P and effect of C; might determine B
» if P specifies a unique state, computing SP is execution
» Forwards methods meshes better with BMC
» Example
a<n
K:=0; {J<IAK =0}
IFI<JTHENK : =K +1ELSESKI P; {J <IAK =0}
IFK=1A-(=J)THENR:=J —I1ELSER :=1-J
{R=1-J}

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 71731

Backwards or forwards?
» Calculating WP C Q is easy but leads to big formulae
» can't prune case splits ‘on-the-fly’

» Calculating SP P C generates 3 at assignments
» at branches state+constraint can reject infeasible paths

» Consider {P}Cy; (I FB THENC, ELSE C3); C4{Q}
» going forwards P and effect of C; might determine B
» if P specifies a unique state, computing SP is execution

» Forwards methods meshes better with BMC

» Example
{I <3}
K:=0;
| FI <JTHENK :=K + 1 ELSE SKI P;
IFK=1A-(=J)THENR:=J -1 ELSER :=1-1J
(R=J-1}

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 71731

Backwards or forwards?
» Calculating WP C Q is easy but leads to big formulae
» can't prune case splits ‘on-the-fly’

» Calculating SP P C generates 3 at assignments

» at branches state+constraint can reject infeasible paths
» Consider {P}Cy; (I FB THENC, ELSE C3); C4{Q}

» going forwards P and effect of C; might determine B

» if P specifies a unique state, computing SP is execution

» Forwards methods meshes better with BMC

» Example
{I <J}
K:=0;
| FI <JTHENK :=K + 1 ELSE SKI P;
IFK=1A-(=J)THENR:=J -1 ELSER :=1-1J
(R=J-1}

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 71731

Backwards or forwards?
» Calculating WP C Q is easy but leads to big formulae
» can't prune case splits ‘on-the-fly’
» Calculating SP P C generates 3 at assignments
» at branches state+constraint can reject infeasible paths

» Consider {P}Cy; (I FB THENC, ELSE C3); C4{Q}
» going forwards P and effect of C; might determine B
» if P specifies a unique state, computing SP is execution
» Forwards methods meshes better with BMC
» Example
{I <J}
K:=0; {Il<JAK =0}
| F1 <JTHENK :=K +1 ELSE SKI P;
IFK=1A-(=J)THENR:=J -1 ELSER :=1-J
{R=J-1}

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 71731

Backwards or forwards?
» Calculating WP C Q is easy but leads to big formulae
» can't prune case splits ‘on-the-fly’
» Calculating SP P C generates 3 at assignments
» at branches state+constraint can reject infeasible paths

» Consider {P}Cy; (I FB THENC, ELSE C3); C4{Q}
» going forwards P and effect of C; might determine B
» if P specifies a unique state, computing SP is execution
» Forwards methods meshes better with BMC
» Example
{I <J}
K:=0; {Il<JAK =0}
IFI<JTHENK : =K +1ELSESKI P; {l<JAK =1}
IFK=1A-(=J)THENR:=J -1 ELSER :=1-J
{R=J-1}

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 71731

Backwards or forwards?
» Calculating WP C Q is easy but leads to big formulae
» can't prune case splits ‘on-the-fly’
» Calculating SP P C generates 3 at assignments
» at branches state+constraint can reject infeasible paths

» Consider {P}Cy; (I FB THENC, ELSE C3); C4{Q}
» going forwards P and effect of C; might determine B
» if P specifies a unique state, computing SP is execution
» Forwards methods meshes better with BMC
» Example
{I <J}
K:=0; {Il<JAK =0}
IFI<JTHENK : =K +1ELSESKI P; {l<JAK =1}
IFK=1A-(=J)THENR:=J -1 ELSER :=1-J
{R=J-1}

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 71731

Can’t compute finite WP or SP for loops

» Loop-free: symbolic evaluation is just calculating SP

» Loops: no finite formula for WP or SP in general

» WP (VWHILEB DOC)Q =
(BAWPC (WP (WHI LEB DOC)Q)) v (-BAQ)

» SPP (WHI LEB DOC) =
(SP (SP (P AB) C) (WHI LEB DOC)) v (P A-B)

» Solution: Hoare logic rule with an invariant R

FP=R F{RABJC{R} FRA-B=0Q
~ {PJWHI LE B DOC{Q}

» Use approximate WP or SP plus verification conditions

1
MJICG (MSR. April 16. 2009) Happy 75 Tony! 8/31

Method of verification conditions (VCs)

» Define AWP and ASP (“A” for “approximate”)
» like WP, SP for skip, assignment, sequencing, conditional

» for while-loops assume invariant R magically supplied
AWP (WHI LEB DO{R} C)Q =R
ASPP (WHI LEB DO{R} C) = R A -B

» Define WVC C Q and SVC P C to generate VCs
(more details on next slide)

» Prove {P}C{Q} using theorems

WVC C Q = {AWP C Q}C{Q}
SVCP C = {P}C{ASPP C}

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 9/31

Calculating verification conditions (VCs)

» VCs to augment approximate weakest preconditions

» VCs to augment approximate strongest postconditions

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 10/31

Calculating verification conditions (VCs)

» VCs to augment approximate weakest preconditions
WVC (SKI P)Q=T
C(V:=E)Q =T
WVC (Cy; C2) Q = WVC C; (AWP C, Q) A WVC C, Q

wvc (I FB THENC, ELSEC,) Q =
WVCC; Q A WCGC,Q

wvC (WHI LEB DO{R} C)Q =
(RAB=AWPCR) A (RA-B=Q) A WCCR

» VCs to augment approximate strongest postconditions

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 10/31

Calculating verification conditions (VCs)

» VCs to augment approximate weakest preconditions
WVC (SKI P)Q=T
C(V:=E)Q =T
WVC (Cy; C2) Q = WVC C; (AWP C, Q) A WVC C, Q
wvC (I FB THENC; ELSEC,)Q =
WVC C; Q A WVCC,Q
wvC (WHI LEB DO{R} C)Q =
(RAB=AWPCR) A (RA-B=Q) A WCCR
» VCs to augment approximate strongest postconditions
SVCP (SKI P) =
SVCP (V:=E) =T
SVCP (Cy3;Cy) = SVCP C; A SVC (ASP P C3) C,
SVCP (Il FB THENC,; ELSEC,) =
SVC (P AB)C; A SVC (P A-B) C,
svCcP (WH LEB DO{R} C) =
(P=R) A (ASP(RAB)C=R) A SVC(RAB)C

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 10/31

Symbolic execution as postcondition calculation
» Recall SPP (V:=E) = 3v.V =E[V—V]AP[V«—V]

» Suppose P has form

constraint symbolic state
where
» Xq,...,X, are program variables (e.g. string constants)

> Xi,...,Xn are logic variables (i.e. symbolic values)

» S.eq,...,e,only contain variables x, ..., X, and constants
» Abbreviating notation: [X €] for [X;«e1, ..., Xp—ep]
» It follows that SP P (X : = E;) is then

Iy Xn. SAXL=€1A ... AX = E[X—€]A...AXy =€y

» Computing SP is now symbolic execution
» Nno new existential quantifiers generated by assignments!
» SPP(SKIP) =P
» SPP (Cy; Cy) = SP(SPP C;)Cy

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 11/31

Symbolic execution of conditional branches

» Recall
SPP (IFBTHENC,; ELSEC,) =
SP(PAB)C; vV SP(PA-B)C,
» Hence

(I FB THENC; ELSE C))
Vv
SP (IX1 - Xn. (S A-B[X—€]) A X1=€1 A ... A Xp=€,) Cy

» Prune paths by checking S A B[X €] with a solver
» FVP = PVF =P

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 12731

Approximate symbolic execution of while-loops

» Symbolically execute straight line code as before

» For while-loops, recall from previous slide
ASPP (WHI LEB DO{R} C) = R A -B

» Hence execute while-loops as follows
ASP (X1 - Xp. S A Xy=e1 A ... A Xp=€p)
(WH LE B DO{ R} C)

= (3Xy - Xn. (RA-B[XX]) AXy=X1 A ... A Xn=Xn)

» constraint S computed up to loop is discarded
» create new state satisfying invariant and loop exit condition
» link between pre and post loop states provided by VCs
((3X1 - Xn. SAXz=€1 A ... AXp=€y) = R)
N
(ASP (3x1 - - - Xn. (R AB[X+X]) AX3=X1 A ... A Xn=Xn)C = R)

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 13/31

Combining BMC and full verification

» BMC unrolls programs and symbolically executes them
» paths dynamically pruned via accumulated properties

» Traditional full verification generates WP + VCs for loops
» working backwards precludes BMC-style forwards pruning

» Computing postconditions unifies BMC and full verification

» symbolic execution is SP calculation
» add forward VCs for verification of loops

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 14731

Overview of the implementation

» Everything is programmed deduction in a theorem prover

» semantic embedding plus custom theorem proving tools
» for efficiency external oracles used to prune paths
» oracle provenance tracking via theorem tags

» HOL4 used for implementation of theorem proving

» provides higher order logic for representing semantics
» LCF-style proof tools (deriving Hoare logic, solving VCs)
» ML for proof scripting and general programming

» YICES used as oracle

» SMT solver from SRI International
» used to quickly check conditional branch feasibility
» ‘blow away’ easy VCs (hard ones by HOL4 interactive proof)

Happy 75 Tony!
MJICG (MSR. April 16. 2009) appy 7> fony 15/31

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 16/31

Happy 75th for Hoare!

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 16/31

Happy 75th for Hoare! Happy 40th for Hoare Logic!

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 16/31

Happy 75th for Hoare! Happy 40th for Hoare Logic!

Tony has many years ahead

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 16/31

Happy 75th for Hoare! Happy 40th for Hoare Logic!

Tony has many years ahead and so does Hoare Logic!

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 16/31

Happy 75th for Hoare! Happy 40th for Hoare Logic!

Tony has many years ahead and so does Hoare Logic!

THE END

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 16/31

Happy 75th for Hoare! Happy 40th for Hoare Logic!

Tony has many years ahead and so does Hoare Logic!

THE END

only of the main talk

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 16/31

Happy 75th for Hoare! Happy 40th for Hoare Logic!

Tony has many years ahead and so does Hoare Logic!

THE END

only of the main talk ... actually there are lots more slides!

Happy 75 Tony!
MICG (MSR. April 16. 2009) appy 7> fony 16/31

Mechanically Proving Hoare Formulae

Additional material

MICG 17 /31

Semantic embedding

» Semantics of commands C given by SEM C s s’
» SEM C s s’ is an inductively defined relation
» if C run in state s then it will terminate in state s’

» commands assumed deterministic — at most one final state
(“Formalizing Dijkstra” by J. Harrison for non-determinism)

v

Notation: abbreviate SEM C s s’ to [C](s,s’)

v

{P}C{Q} =get VsS".PsA[C](s,s')=Q¢

v

WP C Q =gt As.VS'.[C](s,8') = QS

v

-{P}C{Q} = ¥s.Ps=WPCQs

» SPP C =g As'.3s. P sA[C](s,s)

v

-{P}C{Q} = Vs.SPPCs=0Qs

MICG

18 / %1

Details and notations
» {P}C{Q} =get VsS.PsA[C](s,s')= Q¢S

[E] : state — value (IE] short for NVAL B)
WP C Q : state — bool
SP P C : state — bool

» P, Q : state — bool

» state = string — value (finite map)

» s[x—uv] is the state mapping x to v and like s elsewhere

> [Xg—V1;-- -, Xp—Vn]| has domain {xi,--- , X, }; maps x; to v;
» [C] : state x state — bool

» [B] : state — bool ([B] short for BVAL B)

>

>

>

» Overload A, V, =, — to pointwise operations on predicates
(Pl/\Pz)S_Pls/\st

(Pl\/Pz)S—PlS\/PzS

(P1:>P2)S_P18:>P28

(-P)s=~(Ps)

v

v vVYyy

» Define: =P =4 Vs.P s

MICG 19/ 31

Proving {P}C{Q} by calculating WP C Q

» Easy consequences of definition of WP
» WP (SKIP)Q = Q
» WP (V:=E)Q = Xs. Q(s[V—[E]s])
WP (Cy4; C2) Q = WP Cy (WP C; Q)

WP (I FB THENC; ELSEC,) Q =
([B] = WP C1 Q) A (-[B] = WP C; Q)

wP (WHI LEB DOC) Q —
([B] = WP C (WP (WHI LE B DOC) Q)) A (<[B] = Q)

v

v

v

» To prove {P}C{Q} for straight line code

» calculate WPCQ back substitution + case splits
» proveEP=WPCQ use a theorem prover

MICG 20/ 31

Proving {P}C{Q} by calculating SP P C

» Easy consequences of definition of SP

SPP(SKIP) =P

SPP (V:=E) = Xs.3s.PsA (s’ = s[V—=[E]s])
SPP (Cy; C,) = SP(SPP Cy)Cy

SPP (Il FB THENC,; ELSEC,) =

SP (P A[B])C1 Vv SP (P A—[B]) C2

SPP (WH LEB DOC) =

SP(SP (P A[B])C) (WHI LEB DOC) v (P A-[B])

v

v

v

v

v

» To prove {P}C{Q} for straight line code

» calculate SPPC calculating with 3 a problem
» prove EWPPC=Q use a theorem prover

MICG 21 /31

Computing assignment postconditions
» -SPP (V:=E) = Xs.3s.PsA(s" = s[V—=[E]s])
» Consider P of form
AS. X1 Xn. S A (s = [X—€])

where
» Xq,..., X, are distinct program variables (string constants)
» Xi,...,Xq are logic variables (i.e. symbolic values)
» S.eq,...,e,only contain variables x4, .. ., X, and constants
» [X—€] abbreviates [X;—e1, ..., Xn—€y]

» It follows that
FSP(As. 3x1---Xn. S A(s = [X—€]))
(Xi :=Ei)
— 283 xS A (s = [X—e]X — ([E]X—&])])
where
> [X—elXi — ([E]X—e])]
= [Xi—e1, ..., Xi = ([E] [X—€]),..., Xn—en]

MICG

292 /31

Symbolic state notation for predicates

» Abbreviate
AS. X1 Xn. S A (s = [X—=E])
as
(IX. S AX1=e1 A ... A Xp=€n)
then it follows that
SP (IX. SAXi=e1 A... AXp=en) (Xj : = E)
= (. SAXy=e1 A ... AX=[E]][X—E] A ... A Xn=€n)

» Computing SP is now symbolic execution
» symbolic state term: (IX. S A X;=e; A ... A Xy=ep)
» No new existential quantifiers generated by assignments!
» SPP(SKIP) =P
» SPP (Cy; C;) = SP(SPP Cy)Cy

MICG 22 /31

Symbolic state notation for predicates

» Abbreviate
AS. X1 Xn. S A (s = [X—=E])
as
(IX. S AX1=e1 A ... A Xp=€n)
then it follows that
SP (IX. SAXi=e1 A... AXp=en) (Xj : = E)
= (IX. SAXy=e1 A ... AX=[Ei][X—€] A ... A Xn=€p)

» Computing SP is now symbolic execution
» symbolic state term: (IX. S A X;=e; A ... A Xy=ep)
» No new existential quantifiers generated by assignments!
» SPP(SKIP) =P
» SPP (Cy; C;) = SP(SPP Cy)Cy

» Simplersymbolic state represention OK forloop-free code

MICG 22 /31

Symbolic execution of conditional branches

» Recall
SPP (I FB THENC, ELSEC,)
= SP(PA[B])Cy Vv SP (P A-[B]) C.
» Now
(IX. S AXi=e1 A... A Xp=en) A [B]
= (AS. Xy Xn. S's A(S=[X—E€])) A BVALB
AS. (3X1---Xn. Ss A(s=[X—€])) A BVALB s
AS. Xy ---X,. Ss A(s=[X—€]) A BVALB s
AS. 3Xq -+ -Xn. (SSABVAL B s) A (s = [X—€])
AS. 3Xq -+ -Xn. (SABVAL B [X—=€])s A (s = [X—€])
(FX. (S A [B][X—€]) A Xy=€1 A ... A Xn=6p)
» Hence
SP (IX. S A Xy=e1 A...AXn=ep) (I FB THENC,; ELSE C,)
= SP <E|Y (S A I[B]] [Y—>§]) AXi=e1 A...A Xn:en> Cy
vV

SP (3X. (S A —[B][X—€]) A X1=€1 A ... A Xp=€p) C,
» Prune paths by checking S A [B] [X—€&] and S A —[B] [X—€]

MICG 24 | 21

Summary so far

All one needs

v

» semantics of commands ([C])
» suitable theorem prover

v

Define {P}C{Q} and SP P C from semantics

v

Prove rules for calculating SP P C (one-off proof)

v

For particular P, C, Q prove {P}C{Q} by
» calculating SP P C using rules and a theorem prover
» prove = SP P C = Q using theorem prover

v

Next: what about loops?

MICG 25 /31

Method of verification conditions (VCs)

» Define AWP and ASP (“A” for “approximate”)
» like WP, SP for skip, assignment, sequencing, conditional

» for while-loops assume invariant R magically supplied
AWP (WHI LEB DO{R} C)Q =R
ASP P (WHI LEB DO{R} C) = RA-[B]

» Define WVC C Q and SVC P C to generate VCs
(more details on next slide)

» Prove {P}C{Q} using theorems

WVC C Q = {AWP C Q}C{Q}
SVCP C = {P}C{ASPP C}

MICG

26 / %1

Calculating verification conditions
» WVC C Q is a standard ‘backwards’ calculation

» SVC P C is a ‘forwards’ calculation

MICG 27 | 31

Calculating verification conditions

» WVC C Q is a standard ‘backwards’ calculation
WVC (SKI P)Q=T
C(V:i=E)Q =T
WVC (C1; C;) Q = WVC C; (AWP C; Q)AWVC C; Q
wvC (Il FB THENC; ELSEC;)Q = WVC C; Q AWVCC;, Q
wvC (WHI LEB DO{R} C)Q =
(ERA[B]=AWPCR) A (j:R/\ﬂllB]]:>Q) A WVC CR

» SVC P C is a ‘forwards’ calculation

MICG

27 /31

Calculating verification conditions

» WVC C Q is a standard ‘backwards’ calculation
WVC (SKI P)Q =T
C(V:i=E)Q =T
WVC (Cy; C2) Q = WVC C; (AWP C; Q) AWVC C, Q
wvC (Il FB THENC; ELSEC;)Q = WVC C; Q AWVCC;, Q
wvC (WHI LEB DO{R} C)Q =
(ERA[B]=AWPCR) A (ERA-[B]=Q) A WCCR

» SVC P C is a 'forwards’ calculation
SVCP (SKI P) =
SVCP (V:=E) =T
SVC P (Cy; C3) = SVCP Cy; ASVC (ASP P Cy) C;
SvCP (Il FBTHENC,; ELSEC,) =
SVC (P A[B])Cis A SVC (P A—[B])C
svcP (WHI LEB DO{R} C) =
(EP=R) A (EASP(RA[B])C=R) A SVC(RA[B])C

MICG

27 /31

Approximate symbolic execution of while-loops

» Symbolically execute straight line code as before

» For while-loops, recall from previous slide
ASPP (WHI LEB DO{R} C) = RA-[B]

» Hence execute while-loops as follows

ASP (IX. S A X1=€1 A ... A Xp=€,) (WHI LEB DO{R} C)
= (IX. (R A-[B][X—=X]) A X1=X1 A ... A Xn=Xn)

» constraint S computed up to loop is discarded
» create new state satisfying invariant and loop exit condition

» link between pre and post loop states provided by VCs

’:<S/\ Xlzel/\.../\Xn:en>:>R
A

E ASP (R A[B]) A Xi=X1 A...AXp=Xn) C =R

MICG 28 /31

Pretty slides hide messy HOL details!
» Term As. Ix; ---X,. S's A (s = [X—€]) is for a given X

» The rule
SP (IX. SAXi=e1 A ... AXp=epn) (X 1= Ej)
= (. SAXy=e1 A ... AX=[E]][X—E] A ... A Xn=€n)
is also for a given X4,...,X,
» HOL theorem generating specific assignment rule is:

|- wxI f Pv e

ALL_DI STINCT x| =
(VI. (MAP FST | =xl) = (MAP FST (f |) =xl)) =
(LP

xl

(Xs. 3. (MAP FST I =xlI) APl A (s = FEMPTY [++ f 1))
(v ::i=e) =

(As.

3.
(MAP FST | =xI) APl A

(s = FEMPTY | ++ (ASSIGN.FUN Vv e o f) 1)))

» Won't rexplain this here beyond:

» LPrepresents SP
» dl instantiated to Jx; ... x, for a specific program

MICG

20/ 31

THE END

THE END

Really!

	Hoare 75 talk (revised)
	Additional material

