
Applying Theorem Proving to PSL Formal Semantics 1/14

Applying Theorem Proving to PSL Formal Semantics

I Assertions capture design intent for documentation and verification

“assertion-based methodologies offer the same leap in productivity
for verification that logic synthesis did for design entry”

http://www.eetimes.com/story/OEG20021112S0031

I Assertions are written in a property language. Competing languages:

• Property Specification Language (PSL)
∗ originating from IBM, donated to Accellera

• SystemVerilog Assertions (SVA)
∗ originating from Intel & Synopsys, donated to Accellera

• e properties
∗ the property subset of Verisity’s proprietary verification language

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 2/14

Property languages come with formal semantics

I Frequently used acronyms
(http://www.deepchip.com/items/0423-14.html)

PSL: Property Specification Language

OVL: Open Verification Library (Verilog modules)

OVA: Open Vera Language

SVA: System Verilog Assertions

SVL: System Verilog assertion Library (SVA version of OVL)

I Property languages are quite simple and come with formal semantics

• compare situation with programming languages and HDLs

I PSL had formal semantics from the start, SVA semantics being drafted

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 3/14

From IBM’s Sugar to Accellera’s PSL

I Sugar 1.0 was CTL plus lots of syntactic sugar (hence name)

I Sugar 2.0 added LTL to Sugar 1.0

• won Accellera competition to select standard property language

• development handed over to Accellera committee

I Accellera also standardising SystemVerilog verification language

• derived from Synopsys Vera language

• with properties based on Intel’s ForSpec property language

I Accellera wants to ‘align’ SystemVerilog assertions with PSL

• set up a committee and produced a report

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 4/14

� � �� � �� � �� �� 	 � �
 ��
 � � �� �� � 	�

 � �� �

�
 � � � � � �� � �

��� � �� �� �� � � � �� � !� � � "# � $� �� % � � � �& � $' � �% ()

* �� � " & + $, �� - . +/ � * �01 � 2 �354 . + $ � 6 /7 � 8 # � � 2/9 �� $ 2/ � �� :

. +/ � �9 ;�� , �� $ $ + � < = ' > �� � �� 3 �� ? @ � $ $ � 'A � > > �� �� B

C D EF G HI EI J KLM N OPQ RS TF F KF IUQ UV U P GW DXQ P F X PY Z TI HP[\P IQ]F^ V U G S TUQ GF _M GU G[G` T a DV F b c Td P F X Pe D TWP ` G]Q X f g T[TdQ] S O G[hI C i j Gk TI D GWUl T[P

& � >� � �� "m m no p pq

r st uv wxy z u{ w t

| � 9 � " o } n o p p~ n = 2 2 �1 1 �� � � � � +� � 2 � � , / � +� 2� �1 � 6 6� + 0 �1 +� = 2 2 �1 1 �� �� �7

�� � + 6 �� , " � 6 � 2�� 2 � ,� + �7 � � �� � � � �m� pm n � �0 �1 + 6 � � > " , / � = 2 2 �1 1 �� �& +� ' �1 � ����� 2 � ,� + �A � 2/ � � 2 �1 ! + ' ' � , , � � �& �A ! � n � � � +� � " $, � ' � �� � 1 + � ~� m n � �0 �1 + 6 � � > ", / � = 2 2 �1 1 �� � � " $, � ' � �� � 1 + �A � 2/ � � 2 �1 ! + ' ' � , , � �� � " $, � ' � �� � 1 + � 2 + � , �� � $ � �� $ $ �� ,� + � 2 � 6 � >� 1 � , " 3 � +� � � $ � � = n � �0 �1 + 6 � � > " , / � � " $, � ' � �� � 1 + � = $ $ �� ,� + � $! + ' ' � , , � � � � �� = ! ��� �� � � � , / � � �0 �1 + 6 ' �� , +� , / � $ � , � + $, � � � �� � $ n , / � 6 �� �� � � 2 +� ��� $, � � 2 � +�, � + ��� �� �� , = 2 2 �1 1 �� �� � 6 6� + 0 � � � $ $ �� ,� + � 1 � � �� � � � $� �� $ � � 2 + � 2 �� � � > +� , , / �

6 + , �� ,� �1 � +� $ " � , � 2 ,� 2 � � � $ � ' � � ,� 2 2 + �� � 2 , > � , � � �� , / � ' n � / � 2/ ' � �/ , 2 �� $ �2 + � � � $� + � � ' + � � � $ �� $� A / � $1 � � , +� � , �� � $, � � �1 � � �� � � , / � , � +1 � � �� � � � $ n , +2� � � , � ��� � �� � � � 3 �� � �1�� � $ $ �� ,� + � 2 � 6 � >� 1 � , " , / � , � +� 1 � > � 2 + ' ' + � , + > + , /�A / � � +� ��� 3 �� � �1�� � � , / � $ 6 /� � $ �� �� � 2 , $, / �� � 2 + � �� ,� + � , / � , � �7 � � � � � = � � 2/2 + � , �� � � � n � � � � +� 1 � 2 + � ,� � � � , + 2 + � , �� � n , / �� � +� � $ 6 � 2�� 2 � � � , �� � $, / � , � �� �� + , � � � � +� 1 � � + , > � 6� � $ �� , � � , / � + , / �� 1 � � �� � � � n >� , , / � , � / �� � , / � , � +1 � � �� � � � $ + 0 �� 1 � 6 6 � � n , / � " $/ +� 1 � > � �1 � � � � ��� / � 1 � $ + ' � �� +� , � � $ ' � � � �� � � � � , / � � �0 �1 + 6 ' �� , +� � � = , + �1 � � � � � , /� �7 �� +� � � $, � � 2 � n , / � � � ' � � ,� 2 $ �� >� 2 + ' ' � , , � � +� , / � � �� = ! � � 21 � � � � , / �� �0 �1 + 6 �� $ +� , / �� �7 � +� ' �1 $ � ' � � ,� 2 $ � n + �1 " 6 �� ,� �1 �1 � � � ' � � , � � $ � 2/ � �0 � � n� � 6 �� , > � 2 �� $ � , / �� �7 � �� � � ,� + � � � $� � � , $� � �1 $, � � � $ +� � + 2� ' �� , � ,� + � > ", / � ,� ' � � � = � � $ � �0 �1 + 6 � �� = $� �7 m� pm � � � � " $, � ' � �� � 1 + � ~� m � �� � � +� � �, /� +� �/ � � �1 � �0 � �� � � � �� 1 " o p p~ n , / �� � � � � � � 3 �� � �1� n +� 2 + ' ' + � 2 +� � +� $ " � , � �� � � $ � ' � � ,� 2 $ $/ �� � � > "� �7 � � � � � = n � � $ $,� 1 1 $ 6 + , , " � � � 6 + +� 1 " � �� � � �� ��� � 2 + � �� ,� + � +� , / � $ n , / �& �A ! 6� + 6 + $ � � �� + � � ' � 6 � +� � � � , / �� �1 � � � ' �� , +� , / �, � +1 � � �� � � � $� A / � $� + � � ' � 6 � � $ 6� � $ �� , � � , + n � � � � 6 6� + 0 � � > " n , / � = 2 2 �1 1 �� �@ + �� � +� � � � � 2 , +� $� � & � >� � �� " o p p~��� 9 � " o p p~ n , / � =1 � � � ' �� , �� >� 2 + ' ' � , , � � +� , / � & �A ! � � $ � +� ' � � , +2 + � ,� � � � �1 � � � ' �� , +� , / � , � +1 � � �� � � � $ n � +1 1 +� � � � , / �� + � � ' � 6 � 6 6� + 0 � � > ", / � = 2 2 �1 1 �� � @ + �� �� A / � =1 � � � ' �� , �� >� 2 + ' ' � , , � � ' � , � � �31 " �� + ' 9 � " , +| 2 , + > �� o p p~ n � � � $ 6 +� � �� 2 �1 1 " �� + ' | 2 , + > �� o p p~ , + . � � � �� " o p pq� � � $ 6� , �

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 5/14

Academic versus industrial strength property languages

I PSL and SVA designed for both static and dynamic checking

• dynamic checking by simulation monitors (finite traces)

• static checking by formal verification (infinite traces)

I Industrially motivated language constructs, e.g. in PSL:

• Patterns
∗ r → f formula f holds whenever pattern (SERE) r matched

• Multiple clocking
∗ f@c formula f holds whenever clock c ticks

• Abort construct
∗ f abort c abort checking formula f if b becomes true

I Makes semantics several times more complex than textbook semantics

• but several times small is still smallish – i.e. still tractable

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 6/14

Embedding PSL/Sugar in higher order logic (HOL)

I Whilst teaching a course I read an article of IBM’s Sugar language

• added industrial reality to academic CTL and LTL

• Sugar team at IBM very helpful

• I teach CTL/LTL as domain specific subsets of HOL

• model checking is a decision procedure for a subset of HOL (c.f. PVS)

I After my course finished I did an embedding in HOL system logic

• straightforward and standard exercise

• initially just fun and sanity checking my understanding

• applications came later (still looking)

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 7/14

How PSL/Sugar is embedded in higher order logic (HOL)

I Deep semantic embedding

• define data-types in HOL to represent expressions, formulas etc

• define data-types to represent paths (finite and infinite)

• define constant “|=” to represent semantics: 〈path〉 |= 〈formula〉

I Higher order logic is very natural for representing the semantics

• only alternative is formal set theory (but limited tool support)

• HOL system ASCII notation a bit verbose and ad hoc

I Would be nice if official semantics were machine readable

• currently LATEX plus English

• AI+NLP would be needed to mechanically decode

• encoding in HOL revealed minor ‘looseness’ and ‘semantic typos’

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 8/14

Standard logical notation and equivalent HOL notation
Standard notation HOL notation Description

true T truth
false F falsity
¬t ~t negation
t1 ∧ t2 t1 /\ t2 conjunction
t1 ∨ t2 t1 \/ t2 disjunction
t1 ⇒ t2 t1 ==> t2 implication
∀x.P (x) !x.P(x) universal quantification
∃x.P (x) ?x.P(x) existential quantification
p ∈ s p IN s set membership
[0..n) LESS n set of natural numbers less than n
∀x ∈ s. P (x) !x::s. P(x) universal quantification restricted to s
∃x ∈ s. P (x) ?x::s. P(x) existential quantification restricted to s
∀x ∈ [0..n). P (x) !x::LESS n. P(x) universal quantification restricted to numbers less than n
∃x ∈ [0..n). P (x) ?x::LESS n. P(x) existential quantification restricted to numbers less than n
ε [] empty list
x [x] list with one element (singleton)
l1l2 l1 <> l2 list concatenation (append)
ty1 × ty2 ty1 # ty2 Cartesian product of types ty1 and ty2

ty1 → ty2 ty1 --> ty2 type of functions from ty1 to ty2

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 9/14

PSL semantic notation (B2.1 of the Reference Manual)

We use i , j , and k to denote non-negative integers. We denote the i th letter of v by v i−1 (since
counting of letters starts at zero). We denote by v i.. the suffix of v starting at v i . That is, for every
i <| v |, v i.. = v i v i+1 · · · vn or v i.. = v i v i+1 · · ·. We denote by v i..j the finite sequence of
letters starting from v i and ending in v j . That is, for j ≥ i , v i..j = v i v i+1 · · · v j and for j < i ,
v i..j = ε. We use `ω to denote an infinite-length word, each letter of which is `.
We use v to denote the word obtained by replacing every > with a ⊥ and vice versa. We call v

the complement of v .

PSL Notation HOL representation Description

∞ INFINITY infinity
ε [] empty path
>ω TOP OMEGA infinite repetition of >
|v| LENGTH v length of a path
vi ELEM v i i th letter of v
vi.. RESTN v i suffix of v starting at vi
vi..j SEL v (i , j) sequence starting at vi and ending at vj
v1v2 CAT(v1, v2) concatenation of finite or infinite sequences v1 and v2

v COMPLEMENT v complement of v (swap >s and ⊥s)

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 10/14

LRM semantics, pretty-printed HOL and raw HOL

I Example from Accellera Language Reference Manual (B.2.1.1.2)

v |= ϕ abort b ⇐⇒ either v |= ϕ or ∃ j < |v | s.t. v j b and v0..j−1>ω |= ϕ

I Pretty-printed translation into higher order logic

v |= f abort b = v |= f ∨ ∃ j ∈ [0..|v|). vj b ∧ v0..j−1>ω |= f

I Raw HOL representation (i.e. not pretty-printed)
UF_SEM v (F_ABORT (f,b)) =

UF_SEM v f

\/

?j :: LESS(LENGTH v).

B_SEM (ELEM v j) b /\ UF_SEM (CAT(SEL v (0,j-1),TOP_OMEGA)) f

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 11/14

Why encode PSL semantics in machine readable logic?

I Analyse the semantics (FAC paper)
• reveal vagueness, ambiguity, ‘semantic typos’ etc
• perform shallow ‘sanity checking’ proofs
• verify complex properties

I Implement semantics directed tools (CHARME paper with Hurd & Slind)

THEOREM PROVER

Formal semantics

EDA tools

• Tool1: evaluate properties on finite paths

• Tool2: compile properties to simulation checkers

• Tool3: semantics driven fully expansive model checker

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 12/14

Issues arising from analysing PSL/Sugar semantics

I Transcription errors when manually translating LATEX+English to HOL

• need a ‘golden’ machine readable format for proofs (XML?)

I Yields interesting data for improving proof support

• need better tools to combine arithmetical and logical reasoning

I Hard to reuse proof scripts as semantics evolves

• redid proofs for Sugar 2.0, PSL 1.01 and PSL 1.1

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 13/14

Issues arising from building semantics directed tools

I Fast execution vital

• Barras EVAL tool in HOL good for proof of concept
• Intel’s reFLect better for actual implementation?

I Research needed to develop efficient executable specifications

• example: Hurd & Slind execution of regular expression semantics

I Can use theorems to make correct-by-construction optimisations

• clock elimination rewriting
` ∀ r v c. v |≡cr = v |≡ Rc(r) , ` ∀ f v c. v |=c f = v |= Fc(f)

(recently completed for 1.1 semantics – messy)

• cycle-based evaluation (projection, temporal abstraction)
` ∀ r v c. v |≡cr = v|c |≡ r , ` ∀ f v c. v |=c f = v|c |= f

(in progress – complicated for 1.1 semantics – side conditions needed)

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 14/14

Future research

I More analysis of PSL 1.1 semantics

• especially projection view

I Embed SVA semantics in HOL

• develop executable translators

I Embed Fisler’s Timing Diagram Language in HOL

• verify translation to PSL and SVA

I Goal: applications for which execution inside a theorem prover is feasible

• training and property validation tools

• checker and translator generators

. THE END

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 14-a/14

Future research

I More analysis of PSL 1.1 semantics

• especially projection view

I Embed SVA semantics in HOL

• develop executable translators

I Embed Fisler’s Timing Diagram Language in HOL

• verify translation to PSL and SVA

I Goal: applications for which execution inside a theorem prover is feasible

• training and property validation tools

• checker and translator generators

. THE END

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 15/14

Example

I PSL 1.01 Reference Manual Example 2, page 45
time 0 1 2 3 4 5 6 7 8 9

clk1 0 1 0 1 0 1 0 1 0 1
a 0 0 0 1 1 1 0 0 0 0
b 0 0 0 0 0 1 0 1 1 0
c 1 0 0 0 0 1 1 0 0 0
clk2 1 0 0 1 0 0 1 0 0 1

I Define w to be this path, so w is:
{c,clk2}{clk1}{}{clk1,a,clk2}{a}{clk1,a,b,c}{c,clk2}{clk1,b}{b}{clk1,clk2}

I Can evaluate in SML, or via a command line wrapper

I Example: to evaluate (c && next!(a until b))@clk1 at all times in w:
% pslcheck -all \

-fl ’(c && next!(a until b))@clk1’ \
-path ’{c,clk2}{clk1}{}{clk1,a,clk2}{a}{clk1,a,b,c}{c,clk2}{clk1,b}{b}{clk1,clk2}’

> > true at times 4,5,10

Mike Gordon University of Cambridge

Applying Theorem Proving to PSL Formal Semantics 16/14

Example from http://www.eda.org/vfv/hm/1017.html

time 0 1 2 3 4 5 6 7

clk1 0 1 0 1 0 1 0 1
a 0 1 1 0 0 0 0 0
b 0 0 0 1 0 0 0 0
c 0 0 0 0 1 0 1 0
clk2 1 0 0 1 0 0 1 0

Someone asks Formal Property Language Technical Committee mailing list
| p34 line 18 :
| The multiply-clocked SERE {{a;b}@clk1;c}@clk2 holds tightly
| from time 0 to time 6. It does not hold tightly
| over any other interval of the given behaviour.
|
| It seems however to me that it also holds tightly from time
| 1 to time 6, or there is an inconsistency with what is said p33 line 52 :

HOL tool can mechanically calculate all intervals where SERE holds tightly:
% pslcheck -all \

-sere ’{{a;b}@clk1;c}@clk2’ \

-path ’{clk2}{clk1,a}{a}{clk1,b,clk2}{c}{clk1}{c,clk2}{clk1}’

> > true on intervals [0:6]

Mike Gordon University of Cambridge

