
PSL semantics in higher order logic

Mike Gordon, University of Cambridge Computer Laboratory, 14 April 2004

1. Introduction

In a paper, published in the journal Formal Aspects of Computing (FAC) [Gor03]1, we described a deep
semantic embedding of Version 1.01 of the Accellera Property Specification Language (PSL) in higher order
logic. The main goal of that paper was to demonstrate that mechanised theorem proving can be a useful aid
to the validation of the semantics of an industrial design language.

In another paper, presented at CHARME 2003 [GHS03]2, we showed how mechanised deduction could be
applied to a formal encoding of the PSL semantics in higher order logic to generate correct-by-construction
tools (a property evaluator, a simulation monitor generator and a model checker). The point of that paper
was to show that a formal semantics was not just documentation, but could be executed by special purpose
theorem proving scripts.

This document gives more detail than the published papers on how the semantics is represented in the HOL
system. It also reflects the (not yet released) Version 1.1 semantics3. Some material has been taken from the
FAC paper, but the details are updated to correspond to the latest version of PSL.

2. Review of higher order logic, the HOL system and semantic embedding

Higher order logic is an extension of first-order predicate calculus that allows quantification over functions
and relations. It is a natural notation for formalising informal set theoretic specifications (indeed, it is usually
more natural than formal first-order set theories, like ZF). We hope that the formal logic notation in what
follows is sufficiently close to standard informal mathematics that it needs no systematic explanation. In
this section we briefly outline some features of the version of higher order logic implemented in the HOL4
system. We refer to this logic as “the HOL logic” or just “HOL”.

The HOL logic is built out of terms which are of four types: constants, variables, combinations (or function
applications) t1 t2 and λ-abstractions λx. t.

The particular set of constants that are available depends on the theory one is working in. The kernel of the
HOL logic contains constants T and F representing truth and falsity, respectively. In the HOL system, new
constants can be defined in terms of existing constants using definitional mechanisms that guarantee no new
inconsistencies are introduced. Defined constants include numerals (e.g. 0, 1, 2), strings (e.g. "a", "b", "ab")
and logical operators (e.g. ∧, ∨, ¬, ∀, ∃). The details of HOL’s theory of definition are available elsewhere
[GM93].

The simple kernel of four kinds of terms can be extended using syntactic sugar to include all the normal
notations of predicate calculus. The extension process consists of defining new constants and then adding
syntactic sugar to make terms containing these constants look familiar. For example, constants ∀, ∃ and
Pair can be defined and then ∀x. ∃y. P (x, y) is syntactic sugar for ∀(λx. ∃(λy. P (Pair x y))), (here the
function application Pair x y means ((Pair x) y), so Pair is ‘curried’). If P is a function that returns a
truth-value (i.e. a predicate), then P can be thought of as a set, and we write x ∈ P to mean P (x) is true.
The term λx. · · ·x · · · corresponds to the set abstraction {x | · · ·x · · ·} and we will write ∀x ∈ P. Q(x) and
∃x ∈ P. Q(x) to mean ∀x. P (x)⇒ Q(x) and ∃x. P (x) ∧Q(x), respectively.

Higher order logic is typed to avoid inconsistencies.4 Types are syntactic constructs that denote sets of values.

Address: Mike Gordon, University of Cambridge Computer Laboratory, William Gates Building, JJ Thomson Avenue, Cam-
bridge CB3 0FD, U.K. e-mail: mjcg@cl.cam.ac.uk
1 Draft online at: http://www.cl.cam.ac.uk/~mjcg/Sugar/facpaper/.
2 Draft online at: http://www.cl.cam.ac.uk/~mjcg/Sugar/GordonHurdSlind03.pdf.
3 Preliminary draft online at: http://www.eda.org/vfv/docs/psl_lrm-1.01.pdf
4 Russell’s paradox can be formulated as: (λx. ¬(x x)) (λx. ¬(x x)) = ¬((λx. ¬(x x)) (λx. ¬(x x))).

2 Mike Gordon, University of Cambridge Computer Laboratory, 14 April 2004

For example, types bool and num are atomic types in HOL and denote the sets of booleans and natural
numbers, respectively. Complex types can be built using type constructors. For example, if ty1 and ty2 are
types, then ty1→ty2 denotes the set of functions with domain ty1 and range ty2, and ty1 × ty2 denotes the
Cartesian product of the sets denoted by ty1 and ty2. Type constructors are traditionally applied to their
arguments using a postfix notation like (ty1, . . . , tyn)constructor. The types ty1→ty2 and ty1 × ty2 are just
special notations for (ty1, ty2)fun and (ty1, ty2)prod, respectively.

If the types for all the variables and constants in a term t are given, then a type-checking algorithm can
determine whether t is well-typed – i.e. every function is applied to an argument of the correct type – and
compute a type for t. For example, ¬3 is not well-typed (assuming ¬ has type bool→bool and 3 has type
num) and would be rejected by type-checking, however, ¬T is well-typed (assuming T has type bool) and
would be accepted and given type bool. Only the well-typed terms are considered meaningful and we write
t : ty if term t is well-typed and has type ty. Well-typed terms of type bool are the formulas of the HOL
logic, thus formulas are a subset of terms: ∀x. ∃y. x+ 1 < y is a term that is a formula, but x+ 1 is a term
(of type num) that is not a formula. The HOL logic kernel only has two types and one type constructor:
type bool of booleans, an infinite type ind of ‘individuals’ and the function type constructor →. Other types
and type constructors can be defined in terms of these [GM93]. For example, the type num of numbers is
defined as a subset of the primitive type ind, and the Cartesian product constructor × can be defined in
terms of →. Families of terms can be created by using type variables. For example, if variable x is assigned
the type α, where α is a type variable, then λx. x has type α→α and is a family of identity functions with
an instance λx : ty. x for each type ty.

2.1. HOL system notation

Input to the HOL system uses ASCII characters. The table below shows some common idioms, including
those that are used in this paper.

Standard notation HOL notation Description

true T truth
false F falsity
¬t ~t negation
t1 ∧ t2 t1 /\ t2 conjunction
t1 ∨ t2 t1 \/ t2 disjunction
t1 ⇒ t2 t1 ==> t2 implication
∀x .P(x) !x.P(x) universal quantification
∃x .P(x) ?x.P(x) existential quantification
p ∈ s p IN s set membership
[0..n) LESS n set of natural numbers less than n
∀x ∈ s. P(x) !x::s. P(x) universal quantification restricted to s
∃x ∈ s. P(x) ?x::s. P(x) existential quantification restricted to s
∀x ∈ [0..n). P(x) !x::LESS n. P(x) universal quantification restricted to numbers less than n
∃x ∈ [0..n). P(x) ?x::LESS n. P(x) existential quantification restricted to numbers less than n
ε [] empty list
x [x] list with one element (singleton)
l1l2 l1 <> l2 list concatenation (append)
ty1 × ty2 ty1 # ty2 Cartesian product of types ty1 and ty2

ty1→ty2 ty1 --> ty2 type of functions from ty1 to ty2

To enable an easy comparison with the informal presentation in the PSL Language Reference Manual (LRM),
we include snippets from the LRM in framed boxes5

5 Thanks to Dana Fisman for supplying LATEX source of the draft LRM. Note that as we are using a different style file for
typesetting, the appearance of the material in the boxes may be formatted here differently from how the text will appear in
the forthcoming LRM.

PSL semantics in higher order logic 3

2.2. Representing letters and words in HOL

In LRM Version 1.1 (Section B.2.1) we find:

The semantics of FL is defined with respect to finite and infinite words over Σ = 2P ∪ {>,⊥}.

Members of Σ are called letters and to represent them in HOL we define a type (’a)letter, where the
parametrisation on a type variable ’a is so that different sets P of atomic propositions can be ‘plugged-in’
by instantiating ’a to a type representing P .

A data-type definition has the form Hol datatype ‘<description of type>‘. The following input to HOL
defines a new type (’a)letter together with three constants (which are separated by “|”).

Hol_datatype ‘letter = TOP | BOTTOM | STATE of (’a -> bool)‘

Note that the syntax used for declaring data-types in the HOL system logic requires the type name without
any parameters on the left hand side (i.e. letter rather than (’a)letter). The presence of the single free
type variable ’a in the right hand side causes a unary type operator to be defined.

The constants TOP and BOTTOM are distinct values of type (’a)letter. The constant STATE is a function
taking an argument of the type shown after the “of” and returning a result of type (’a)letter. Thus the
effect of executing the data-type definition is to define a new type (’a)letter together with the following
constants.

TOP : (’a)letter
BOTTOM : (’a)letter
STATE : (’a → bool) → (’a)letter

The argument to STATE is the characteristic function of a set of atomic propositions. When HOL performs
such a definition it automatically proves a standard set of useful theorems about the type and the constants
defined on it (e.g. ~(TOP = BOTTOM), which represents ¬(> = ⊥)).

The PSL LRM continues:

We denote a letter from Σ by ` and an empty, finite, or infinite word from Σ by u, v, or w (possibly with
subscripts).

Finite paths can be represented by a built-in type list of finite lists. Infinite paths can be represented as
functions from natural numbers (type num). Thus to represent paths in HOL we define a disjoint union type:

Hol_datatype
‘path = FINITE of (’s list) | INFINITE of (num -> ’s)‘

This defines a unary type operator path. A type (ty)path represents paths whose elements are of type ty.

Next the PSL LRM says:

We denote the length of word v as |v|. An empty word v = ε has length 0, a finite word v = (`0`1`2 · · · `n)
has length n+ 1, and an infinite word has length ∞.

The length of a path is thus either a natural number or is∞. To model this we define a type xnum of extended
natural numbers. Comments in HOL are enclosed between (* and *).

Hol_datatype
‘xnum = INFINITY (* length of an infinite path *)

| XNUM of num‘ (* length of a finite path *)

This defines the type xnum together with the following constants.

INFINITY : xnum
XNUM : num → xnum

4 Mike Gordon, University of Cambridge Computer Laboratory, 14 April 2004

The length of a path can now be defined in the HOL logic by defining a constant LENGTH : (’a)path → xnum.
The function list$LENGTH, which occurs below, is the pre-existing length function on finite lists.

Define ‘(LENGTH(FINITE l) = XNUM(list$LENGTH l))
/\
(LENGTH(INFINITE p) = INFINITY)‘

This definition overloads the name LENGTH so it now can be applied both to lists and to paths.

Continuing with B2.1 of the PSL LRM:

We use i, j, and k to denote non-negative integers. We denote the ith letter of v by vi−1 (since counting
of letters starts at zero). We denote by vi.. the suffix of v starting at vi. That is, for every i < |v|,
vi.. = vivi+1 · · · vn or vi.. = vivi+1 · · ·. We denote by vi..j the finite sequence of letters starting from vi

and ending in vj . That is, for j ≥ i, vi..j = vivi+1 · · · vj and for j < i, vi..j = ε. We use `ω to denote an
infinite-length word, each letter of which is `.
We use v to denote the word obtained by replacing every > with a ⊥ and vice versa. We call v the
complement of v.

These operations are straightforward to define by ‘functional programming’ in the HOL logic. We do not give
the definitions here, but show in the table below the PSL notation and corresponding HOL representation.

PSL Notation HOL representation Description

∞ INFINITY infinity
ε [] empty path
>ω TOP OMEGA infinite repetition of >
|v | LENGTH v length of a path
v i ELEM v i ith letter of v
v i.. RESTN v i suffix of v starting at v i

v i..j SEL v (i, j) sequence starting at v i and ending at v j

v1v2 CAT(v1, v2) concatenation of finite or infinite sequences v1 and v2

v COMPLEMENT v complement of v (swap >s and ⊥s)

3. Representing syntax in higher order logic

PSL has four classes of constructs: boolean expressions, Sequential Extended Regular Expressions (SEREs),
Foundation Language (FL) formulas and Optional Branching Extension (OBE) formulas. The OBE is ignored
here, though for PSL Version 1.01 its semantics in HOL appears in the FAC paper.

Although the syntax of boolean expressions is not explicitly defined, it says in Section B.1 of the LRM:

The logic Accellera PSL is defined with respect to a non-empty set of atomic propositions P and a given
set of boolean expressions B over P . We assume two designated boolean expression true and false belong
to B.

In addition, in LRM B.2.1 the semantics of boolean expressions ¬b and b1 ∧ b2 are defined, so we include
these as primitives too.

Abstract syntax is represented in HOL by defining a data-type whose operations are the constructors.

For boolean expressions, a data-type bexp is defined. Since atomic propositions are boolean expressions, we
parameterise the type of boolean expressions on a type variable ’a that can be subsequently instantiated
to a particular type representing the set P of atomic propositions. If aprop is such a type, then the type of
terms representing boolean expressions is (aprop)bexp. Thus bexp is a unary type constructor.

When a constructors is to take n arguments, where n > 1, one writes “of ty1 # · · · # tyn” after a constructor
name in the data-type declaration, where ty1, . . ., tyn are the types of the arguments.

The input to the HOL system to define bexp is:

PSL semantics in higher order logic 5

Hol_datatype
‘bexp = B_PROP of ’a (* atomic proposition *)

| B_TRUE (* true *)
| B_FALSE (* false *)
| B_NOT of bexp (* negation *)
| B_AND of bexp # bexp‘ (* conjunction *)

This defines a new unary type constructor bexp and constants:

B_PROP : ’a → (’a)bexp
B_TRUE : (’a)bexp
B_FALSE : (’a)bexp
B_NOT : (’a)bexp → (’a)bexp
B_AND : (’a)bexp × (’a)bexp → (’a)bexp

The prefix B indicates a boolean expression constructor.

If atomic propositions are taken to be strings, then the boolean expression x ∧ ¬y would be represented by
the term B AND(B PROP "x", B NOT(B PROP "y")) which has the type (string)bexp.

The syntax of SEREs is described in the LRM by:

Definition 1 (Sequential Extended Regular Expressions (SEREs)).

– Every boolean expression b ∈ B is a SERE.

– If r, r1, and r2 are SEREs, and c is a boolean expression, then the following are SEREs:
• {r} • r1 ; r2 • r1 : r2 • r1 | r2

• r1 && r2 • [∗0] • r[∗] • r@c

This is represented in HOL by defining a data-type sere by (the prefix S indicates a SERE constructor):

Hol_datatype
‘sere = S_BOOL of ’a bexp (* boolean expression *)

| S_CAT of sere # sere (* r1 ; r2 *)
| S_FUSION of sere # sere (* r1 : r2 *)
| S_OR of sere # sere (* r1 | r2 *)
| S_AND of sere # sere (* r1 && r2 *)
| S_EMPTY (* [*0] *)
| S_REPEAT of sere (* r[*] *)
| S_CLOCK of sere # ’a bexp‘ (* r@c *)

This defines a unary type operator sere (the need for parametrisation is inferred from the free type variable
’a in the right hand side of the definition).

The syntax of FL formulas is defined in the LRM by (the prefix F indicates an FL formula constructor):

Definition 2 (Formulas of the Foundation Language (FL formulas)).

– If b is a boolean expression then both b and b! are FL formulas.

– If ϕ and ψ are FL formulas, r, r1, r2 are SEREs, and b a boolean expression, then the following are FL
formulas:
• (ϕ) • ¬ϕ • ϕ ∧ ψ • r! • r
• X! ϕ • [ϕ U ψ] • ϕ abort b • r → ϕ • ϕ@b

This is represented in HOL by defining a data-type fl by:

6 Mike Gordon, University of Cambridge Computer Laboratory, 14 April 2004

Hol_datatype
‘fl = F_STRONG_BOOL of ’a bexp (* b! *)

| F_WEAK_BOOL of ’a bexp (* b *)
| F_NOT of fl (* not f *)
| F_AND of fl # fl (* f1 and f2 *)
| F_STRONG_SERE of ’a sere (* r! *)
| F_WEAK_SERE of ’a sere (* r *)
| F_NEXT of fl (* X! f *)
| F_UNTIL of fl # fl (* [f1 U f2] *)
| F_ABORT of fl # ’a bexp (* f abort b *)
| F_CLOCK of fl # ’a bexp (* f@b *)
| F_SUFFIX_IMP of ’a sere # fl‘ (* r |-> f *)

This defines a unary type operator fl.

4. Formal semantics in higher order logic

In this section we give the semantics that is expected to be released in the forthcoming LRM for Accellera
PSL Version 1.1. We then show its representation in HOL, both pretty printed and in raw ASCII form.

4.1. Boolean expressions in PSL

The semantics of boolean expressions is described in the LRM as follows:

The semantics of boolean expression is assumed to be given as a relation ⊆ Σ×B relating letters in Σ

with boolean expressions in B. If (`, b) ∈ we say that the letter ` satisfies the boolean expression b and

denote it ` b. We assume the two special letters > and ⊥ behave as follows: for every boolean expression

b, > b and ⊥ / b. We assume that otherwise the boolean relation behaves in the usual manner. In
particular, that for every letter ` ∈ 2P , atomic proposition p ∈ P and boolean expressions b, b1, b2 ∈ B (i)

` p iff p ∈ `, (ii) ` ¬b iff ` / b, and (iii) ` true and ` / false. Finally, we assume that for every letter

` ∈ Σ, ` b1 ∧ b2 iff ` b1 and ` b2.

The semantics of boolean expressions is represented in HOL by defining a new constant corresponding to a
semantic function B SEM : (’a→bool)→(’a)bexp→bool such that B SEM l b is true iff b is true with respect
to letter l. The actual input to HOL to define S SEM is:

Define
‘(B_SEM TOP b = T)
/\
(B_SEM BOTTOM b = F)
/\
(B_SEM (STATE s) (B_PROP p) = p IN s)
/\
(B_SEM (STATE s) B_TRUE = T)
/\
(B_SEM (STATE s) B_FALSE = F)
/\
(B_SEM (STATE s) (B_NOT b) = ~(B_SEM (STATE s) b))
/\
(B_SEM (STATE s) (B_AND(b1,b2)) = B_SEM (STATE s) b1 /\ B_SEM (STATE s) b2)‘

If B SEM l b is pretty printed as l b, then the semantics above pretty prints as:

PSL semantics in higher order logic 7

(> b = true)
∧
(⊥ b = false)
∧
(s p = p ∈ s)
∧
(s true = true)
∧
(s false = false)
∧
(s ¬b = ¬(s b))
∧
(s b1 ∧ b2 = s b1 ∧ s b2)

Pretty-printing introduces potentially confusing overloading: the occurrence of ¬ in ¬b is part of the boolean
expression syntax of PSL, but the occurrence in ¬(l |= b) is negation in higher order logic. Similarly ∧ is
overloaded: the occurrence in b1 ∧ b2 is part of the boolean expression syntax, but the other occurrences are
conjunction in higher order logic.

4.2. Extended Regular Expressions (SEREs)

The unclocked semantics (B.2.1.1.1 of the LRM) is shown in the next box:

Unclocked SEREs are defined over finite words from the alphabet Σ. The notation v |≡ r, where r is a
SERE and v a finite word means that v models tightly r. The semantics of unclocked SEREs are defined
as follows, where b denotes a boolean expression, and r, r1, and r2 denote unclocked SEREs.

– v |≡ {r} ⇐⇒ v |≡ r
– v |≡ b⇐⇒ |v| = 1 and v0 b

– v |≡ r1 ; r2 ⇐⇒ ∃v1, v2 s.t. v = v1v2, v1 |≡ r1, and v2 |≡ r2

– v |≡ r1 : r2 ⇐⇒ ∃v1, v2, and ` s.t. v = v1`v2, v1` |≡ r1, and `v2 |≡ r2

– v |≡ r1 | r2 ⇐⇒ v |≡ r1 or v |≡ r2

– v |≡ r1 && r2 ⇐⇒ v |≡ r1 and v |≡ r2

– v |≡ [∗0]⇐⇒ v = ε

– v |≡ r[∗]⇐⇒ either v |≡ [∗0] or ∃v1, v2 s.t. v1 6= ε, v = v1v2, v1 |≡ r and v2 |≡ r[∗]

The pretty-printed HOL representation of this is:

(v |≡ b = (|v | = 1) ∧ v0 b)
∧
(v |≡ r1; r2 = ∃v1v2. (v = v1v2) ∧ v1 |≡ r1 ∧ v2 |≡ r2)
∧
(v |≡ r1 : r2 = ∃v1v2l . (v = v1[l]v2) ∧ v1[l] |≡ r1 ∧ [l]v2 |≡ r2)
∧
(v |≡ r1 | r2 = v |≡ r1 ∨ v |≡ r2)
∧
(v |≡ r1&&r2 = v |≡ r1 ∧ v |≡ r2)
∧
(v |≡ [∗0] = (v = ε))
∧
(v |≡ r [∗] = v |≡ [∗0] ∨ ∃v1v2. ¬(v = ε) ∧ (v = v1v2) ∧ v1 |≡ r ∧ v2 |≡ r [∗])

8 Mike Gordon, University of Cambridge Computer Laboratory, 14 April 2004

The raw HOL is (we omit the Define and enclosing quotes):

(US_SEM v (S_BOOL b) = (LENGTH v = 1) /\ B_SEM (ELEM v 0) b)
/\
(US_SEM v (S_CAT(r1,r2)) = ?v1 v2. (v = v1 <> v2) /\ US_SEM v1 r1 /\ US_SEM v2 r2)
/\
(US_SEM v (S_FUSION(r1,r2)) =

?v1 v2 l. (v = v1 <> [l] <> v2) /\ US_SEM (v1<>[l]) r1 /\ US_SEM ([l]<>v2) r2)
/\
(US_SEM v (S_OR(r1,r2)) = US_SEM v r1 \/ US_SEM v r2)
/\
(US_SEM v (S_AND(r1,r2)) = US_SEM v r1 /\ US_SEM v r2)
/\
(US_SEM v S_EMPTY = (v = []))
/\
(US_SEM v (S_REPEAT r) =

US_SEM v S_EMPTY \/
?v1 v2. ~(v=[]) /\ (v = v1 <> v2) /\ US_SEM v1 r /\ US_SEM v2 (S_REPEAT r))

The clocked semantics (B.2.1.2.1 of the LRM) is more complex.

We say that finite word v is a clock tick of c iff |v| > 0 and v|v|−1 c and for every natural number

i < |v| − 1, vi ¬c.

This is formalised by defining a constant: ClockTick(v , c) = |v | > 0 ∧ v |v |−1 c ∧ ∀i ∈ [0..|v | − 1). v i ¬c.

Clocked SEREs are defined over finite words from the alphabet Σ and a boolean expression that serves
as the clock context. The notation v |≡c r, where r is a SERE and c is a boolean expression, means that v
models tightly r in context of clock c. The semantics of clocked SEREs are defined as follows, where b, c,
and c1 denote boolean expressions, r, r1, and r2 denote clocked SEREs.

– v |≡c {r} ⇐⇒ v |≡c r
– v |≡c b⇐⇒ v is a clock tick of c and v|v|−1 b

– v |≡c r1 ; r2 ⇐⇒ ∃v1, v2 s.t. v = v1v2, v1 |≡c r1, and v2 |≡c r2

– v |≡c r1 : r2 ⇐⇒ ∃v1, v2, and ` s.t. v = v1`v2, v1` |≡c r1, and `v2 |≡c r2

– v |≡c r1 | r2 ⇐⇒ v |≡c r1 or v |≡c r2

– v |≡c r1 && r2 ⇐⇒ v |≡c r1 and v |≡c r2

– v |≡c [∗0]⇐⇒ v = ε

– v |≡c r[∗]⇐⇒ either v |≡c [∗0] or ∃v1, v2 s.t. v1 6= ε, v = v1v2, v1 |≡c r and v2 |≡c r[∗]
– v |≡c r@c1 ⇐⇒ v |≡c1 r

The HOL representation of this semantics of SEREs is defined by a semantic function S SEM such that
S SEM w c r is true iff word w is in the language recognised by the extended regular expression r when the
clock context (i.e. current clock) is c. The HOL term S SEM w c r is pretty-printed as w |≡cr .

(v |≡cb = ClockTick(v , c) ∧ v |v |−1 b)
∧
(v |≡cr1; r2 = ∃v1v2. (v = v1v2) ∧ v1 |≡cr1 ∧ v2 |≡cr2)
∧
(v |≡cr1 : r2 = ∃v1v2l . (v = v1[l]v2) ∧ v1[l] |≡cr1 ∧ [l]v2 |≡cr2)
∧
(v |≡cr1 | r2 = v |≡cr1 ∨ v |≡cr2)
∧

PSL semantics in higher order logic 9

(v |≡cr1&&r2 = v |≡cr1 ∧ v |≡cr2)
∧
(v |≡c [∗0] = (v = ε))
∧
(v |≡cr [∗] = v |≡c [∗0] ∨ ∃v1v2. ¬(v = ε) ∧ (v = v1v2) ∧ v1 |≡cr ∧ v2 |≡cr [∗])
∧
(v |≡cr@c1 = v |≡c1r)

The raw HOL input is

(S_SEM v c (S_BOOL b) = CLOCK_TICK v c /\ B_SEM (ELEM v (LENGTH v - 1)) b)
/\
(S_SEM v c (S_CAT(r1,r2)) = ?v1 v2. (v = v1 <> v2) /\ S_SEM v1 c r1 /\ S_SEM v2 c r2)
/\
(S_SEM v c (S_FUSION(r1,r2)) =

?v1 v2 l. (v = v1 <> [l] <> v2) /\ S_SEM (v1<>[l]) c r1 /\ S_SEM ([l]<>v2) c r2)
/\
(S_SEM v c (S_OR(r1,r2)) = S_SEM v c r1 \/ S_SEM v c r2)
/\
(S_SEM v c (S_AND(r1,r2)) = S_SEM v c r1 /\ S_SEM v c r2)
/\
(S_SEM v c S_EMPTY = (v = []))
/\
(S_SEM v c (S_REPEAT r) =

S_SEM v c S_EMPTY
\/ ?v1 v2. ~(v=[]) /\ (v = v1 <> v2) /\ S_SEM v1 c r /\ S_SEM v2 c (S_REPEAT r))

/\
(S_SEM v c (S_CLOCK(r,c1)) = S_SEM v c1 r)

4.3. Foundation Language (FL)

FL combines standard LTL notation with a less standard abort operation and some constructs using SEREs.
The abstract syntax from B.1 of the LRM is:

The unclocked semantics from B.2.1.1.2 of the LRM is:

We refer to a formula of FL with no @ operator as an unclocked formula. Let v be a finite or infinite word,
b be a boolean expression, r, r1, r2 unclocked SEREs, and ϕ,ψ unclocked FL formulas. We use |= to define
the semantics of unclocked FL formulas: If v |=ϕ we say that v models (or satisfies) ϕ.

1. v |= (ϕ)⇐⇒ v |=ϕ

2. v |=¬ϕ⇐⇒ v |=/ ϕ
3. v |=ϕ ∧ ψ ⇐⇒ v |=ϕ and v |=ψ

4. v |= b!⇐⇒ |v| > 0 and v0 b

5. v |= b⇐⇒ |v| = 0 or v0 b

6. v |= r!⇐⇒ ∃j < |v| s.t. v0..j |≡ r
7. v |= r ⇐⇒ ∀j < |v|, v0..j>ω |= r!

8. v |=X! ϕ⇐⇒ |v| > 1 and v1.. |=ϕ

9. v |= [ϕUψ]⇐⇒ ∃k < |v| s.t. vk.. |=ψ, and ∀j < k, vj.. |=ϕ

10. v |=ϕ abort b⇐⇒ either v |=ϕ or ∃j < |v| s.t. vj b and v0..j−1>ω |=ϕ

11. v |= r → ϕ⇐⇒ ∀j < |v| s.t. v0..j |≡ r, vj.. |= ϕ

10 Mike Gordon, University of Cambridge Computer Laboratory, 14 April 2004

The pretty-printed HOL version of this is:

(v |= ¬f = ¬(v |= f))
∧
(v |= f1 ∧ f2 = v |= f1 ∧ v |= f2)
∧
(v |= b! = (|v | > 0) ∧ v0 b)
∧
(v |= b = (|v | = 0) ∨ v0 b)
∧
(v |= r ! = ∃j ∈ [0..|v |). v0..j |≡ r)
∧
(v |= r = ∀j ∈ [0..|v |). v0..j>ω |= r !)
∧
(v |= X! f = |v | > 1 ∧ v1.. |= f)
∧
(v |= [f1 U f2] = ∃k ∈ [0..|v |). v k .. |= f2 ∧ ∀j ∈ [0..k). v j .. |= f1)
∧
(v |= f abort b = v |= f ∨ ∃j ∈ [0..|v |). v j b ∧ v0..j−1>ω |= f)
∧
(v |= r → f = ∀j ∈ [0..|v |). v0..j |≡ r ⇒ v j .. |= f)

The raw HOL is

(UF_SEM v (F_NOT f) = ~(UF_SEM (COMPLEMENT v) f))
/\
(UF_SEM v (F_AND(f1,f2)) = UF_SEM v f1 /\ UF_SEM v f2)
/\
(UF_SEM v (F_STRONG_BOOL b) = (LENGTH v > 0) /\ B_SEM (ELEM v 0) b)
/\
(UF_SEM v (F_WEAK_BOOL b) = (LENGTH v = XNUM 0) \/ B_SEM (ELEM v 0) b)
/\
(UF_SEM v (F_STRONG_SERE r) = ?j :: LESS(LENGTH v). US_SEM (SEL v (0,j)) r)
/\
(UF_SEM v (F_WEAK_SERE r) =
!j :: LESS(LENGTH v).
UF_SEM (CAT(SEL v (0,j),TOP_OMEGA)) (F_STRONG_SERE r))

/\
(UF_SEM v (F_NEXT f) = LENGTH v > 1 /\ UF_SEM (RESTN v 1) f)
/\
(UF_SEM v (F_UNTIL(f1,f2)) =
?k :: LESS(LENGTH v).
UF_SEM (RESTN v k) f2 /\ !j :: LESS k. UF_SEM (RESTN v j) f1)

/\
(UF_SEM v (F_ABORT (f,b)) =
UF_SEM v f
\/
?j :: LESS(LENGTH v).

B_SEM (ELEM v j) b /\ UF_SEM (CAT(SEL v (0,j-1),TOP_OMEGA)) f)
/\
(UF_SEM v (F_SUFFIX_IMP(r,f)) =
!j :: LESS(LENGTH v).
US_SEM (SEL (COMPLEMENT v) (0,j)) r ==> UF_SEM (RESTN v j) f)

The clocked semantics from B.2.1.2.2 of the LRM is:

PSL semantics in higher order logic 11

The semantics of (clocked) FL formulas is defined with respect to finite/infinite words over Σ and a boolean
expression c which serves as the clock context. Let v be a finite or infinite word, b, c, c1 boolean expressions,

r, r1, r2 SEREs, and ϕ,ψ FL formulas. We use |=c to define the semantics of FL formulas. If v |=c ϕ we say
that v models (or satisfies) ϕ in the context of clock c.

1. v |=c (ϕ)⇐⇒ v |=c ϕ
2. v |=c ¬ϕ⇐⇒ v |=/c ϕ
3. v |=c ϕ ∧ ψ ⇐⇒ v |=c ϕ and v |=c ψ
4. v |=c b!⇐⇒ ∃j < |v| s.t. v0..j is a clock tick of c and vj b

5. v |=c b⇐⇒ ∀j < |v| s.t. v0..j is a clock tick of c, vj b

6. v |=c r!⇐⇒ ∃j < |v| s.t. v0..j |≡c r
7. v |=c r ⇐⇒ ∀j < |v|, v0..j>ω |=c r!
8. v |=c X! f ⇐⇒ ∃j < k < |v| s.t. v0..j and vj+1..k are clock ticks of c and vk.. |=c f
9. v |=c [ϕUψ]⇐⇒ ∃k < |v| s.t. vk c, vk.. |=c ψ, and ∀j < k s.t. vj c, vj.. |=c ϕ

10. v |=c ϕ abort b⇐⇒ either v |=c ϕ or ∃j < |v| s.t. vj b and v0..j−1>ω |=c ϕ
11. v |=c r → ϕ⇐⇒ ∀j < |v| s.t. v0..j |≡c r, vj.. |=c ϕ
12. v |=c ϕ@c1 ⇐⇒ v |=c1 ϕ

The HOL semantics is specified by defining a semantic function F SEM such that F SEM w c f means FL
formula f is true of path w with current clock c.

The HOL term F SEM v c f is pretty printed as v |=c f .

(v |=c ¬f = ¬(v |=c f))
∧
(v |=c f1 ∧ f2 = v |=c f1 ∧ v |=c f2)
∧
(v |=c b! = ∃j ∈ [0..|v |). ClockTick(v 0..j , c) ∧ v j b)
∧
(v |=c b = ∀j ∈ [0..|v |). ClockTick(v 0..j , c)⇒ v j b)
∧
(v |=c r ! = ∃j ∈ [0..|v |). v0..j |≡cr)
∧
(v |=c r = ∀j ∈ [0..|v |). v0..j>ω |=c r !)
∧
(v |=c X! f = ∃jk ∈ [0..|v |). j < k ∧ ClockTick(v 0..j , c) ∧ ClockTick(v j+1..k , c) ∧ vk .. |=c f)
∧
(v |=c [f1 U f2] = ∃k ∈ [0..|v |). v k c ∧ vk .. |=c f2 ∧ ∀j ∈ [0..k). v j c ⇒ v j .. |=c f1)
∧
(v |=c f abort b = v |=c f ∨ ∃j ∈ [0..|v |). v j b ∧ v0..j−1>ω |=c f)
∧
(v |=c f @c1 = v |=c1 f)
∧
(v |=c r → f = ∀j ∈ [0..|v |).v0..j |≡cr ⇒ v j .. |=c f)

The raw HOL is:

12 Mike Gordon, University of Cambridge Computer Laboratory, 14 April 2004

(F_SEM v c (F_NOT f) = ~(F_SEM (COMPLEMENT v) c f))
/\
(F_SEM v c (F_AND(f1,f2)) = F_SEM v c f1 /\ F_SEM v c f2)
/\
(F_SEM v c (F_STRONG_BOOL b) =

?j :: LESS(LENGTH v). CLOCK_TICK (SEL v (0,j)) c /\ B_SEM (ELEM v j) b)
/\
(F_SEM v c (F_WEAK_BOOL b) =

!j :: LESS(LENGTH v). CLOCK_TICK (SEL (COMPLEMENT v) (0,j)) c ==> B_SEM (ELEM v j) b)
/\
(F_SEM v c (F_STRONG_SERE r) = ?j :: LESS(LENGTH v). S_SEM (SEL v (0,j)) c r)
/\
(F_SEM v c (F_WEAK_SERE r) =

!j :: LESS(LENGTH v). F_SEM (CAT(SEL v (0,j),TOP_OMEGA)) c (F_STRONG_SERE r))
/\
(F_SEM v c (F_NEXT f) =

?j k :: LESS(LENGTH v).
j < k /\
CLOCK_TICK (SEL v (0,j)) c /\
CLOCK_TICK (SEL v (j+1,k)) c /\
F_SEM (RESTN v k) c f)

/\
(F_SEM v c (F_UNTIL(f1,f2)) =

?k :: LESS(LENGTH v).
B_SEM (ELEM v k) c /\
F_SEM (RESTN v k) c f2 /\
!j :: LESS k. B_SEM (ELEM (COMPLEMENT v) j) c ==> F_SEM (RESTN v j) c f1)

/\
(F_SEM v c (F_ABORT (f,b)) =

F_SEM v c f
\/
?j :: LESS(LENGTH v). B_SEM (ELEM v j) b /\ F_SEM (CAT(SEL v (0,j-1),TOP_OMEGA)) c f)

/\
(F_SEM v c (F_CLOCK(f,c1)) = F_SEM v c1 f)
/\
(F_SEM v c (F_SUFFIX_IMP(r,f)) =

!j :: LESS(LENGTH v). S_SEM (SEL (COMPLEMENT v) (0,j)) c r ==> F_SEM (RESTN v j) c f)

5. Definitions and proofs

The HOL versions of the semantics given in the preceding sections were not the actual definitions of the
semantic functions US SEM, S SEM, UF SEM and F SEM, but were theorems derived from reformulations of the
LRM definitions to make them fall within the scope of the HOL definitional tools provided by the TFL
package [Sli96]. Definitions in HOL simply declare a name for an existing closed term. Recursive ‘definitions’
are made by compiling equations into primitive definitions (using recursion theorems), making the definition
using HOL’s definition mechanism, and then deriving the equation one wants. For simple recursive equations
this is handled completely automatically by TFL. For recursions that are not simple there are two options: (i)
supply a proof script when making the definition (which typically involves giving some well-founded relation
that ensures the recursion terminates on all arguments), or (ii) first defining a simple recursion and then
deducing the desired ‘definitional’ equation as a theorem. We used approach (ii) for the PSL 1.1 semantics
(approach (i) was used with the 1.01 semantics).

As an example, consider the definition of the unclocked semantics of the repetition SERE r[*] (the same
issue arises with the clocked semantics). The definition of v |≡ r is mostly by a structural recursion on the
syntax of SEREs r. However, the clause defining v |≡ r[∗] does not recurse on r, but instead on v:

v |≡ r [∗] = v |≡ [∗0] ∨ ∃v1v2. ¬(v = ε) ∧ (v = v1v2) ∧ v1 |≡ r ∧ v2 |≡ r [∗]
Observe that v2 |≡ r[∗] occurs in the right hand side of the equation. TFL cannot automatically prove that
this LRM semantics is well-founded.

PSL semantics in higher order logic 13

The actual definition used in HOL for the r[*] case does recurse on r and is:

v |≡ r [∗] = ∃vlist . (v = Concat vlist) ∧ All(λv ′.v ′ |≡ r)vlist

where Concat vlist concatenates (flattens) a list of lists and All P vlist applies a predicate P to each member
of vlist and conjoins the results (i.e. combines the results with ∧). The LRM equation is then deduced from
the definition with Concat and All

In both the FAC and CHARME papers we described theorems about the semantics that had been mechan-
ically proved using the HOL system. These were either ‘sanity checking’ properties that helped validate the
semantics (FAC paper), or reformulations of the semantics needed to support tools that worked by deduction
(CHARME paper).

5.1. Sanity checking properties

So far we have proved a few ‘sanity checking’ properties of the PSL Version 1.1 SERE semantics taken from
the first page of an unpublished note entitled Some characteristics of Accellera PSL by Cindy Eisner, Dana
Fisman and John Havlicek.

` ClockTick(v , true) = ∃kl . ¬(l = ⊥) ∧ (v = >k [l])

` ∀rvc. |v | > 0 ∧ ClockFree(r) ∧ v |≡cr ⇒ v |v |−1 c

` ∀r . ClockFree(r)⇒ ∀v . v |≡ r [+] = ∃vlist . (v = Concat vlist) ∧ |vlist | > 0 ∧ All(λv .v |≡ r)vlist

` ∀rcv . v |≡cr [+] = ∃vlist . (v = Concat vlist) ∧ |vlist | > 0 ∧ All(λv .v |≡cr)vlist

` ∀r . ClockFree(r)⇒ ∀v .v |≡ r ⇒ BottomFree(v)

` ∀rcv . v |≡cr ⇒ BottomFree(v)

` ∀rv . ClockFree(r) ∧ v |≡ r ⇒ ∀k ∈ [0..|v |). v 0..k>(|v |−k−1) |≡ r

In these lemmas, ClockFree(r) is defined to mean that r has no sub-term containing @ (i.e. is in the unclocked
subset), BottomFree(v) is defined to mean that no letter of v is ⊥ and r [+] is syntactic sugar for r ; r [∗] (which
in raw HOL is S CAT(r,S REPEAT r)). All these lemmas were routine to prove, though sometimes surprisingly
tedious.

The representation of these lemmas in raw HOL is:

|- CLOCK_TICK v B_TRUE = ?k l. ~(l = BOTTOM) /\ (v = TOP_ITER k <> [l])

|- !r v c.
LENGTH v > 0 /\ S_CLOCK_FREE r /\ S_SEM v c r
==>
B_SEM (ELEM v (LENGTH v - 1)) c

|- !r.
S_CLOCK_FREE r ==>
!v.
US_SEM v (S_NON_ZERO_REPEAT r) =
?vlist.

(v = CONCAT vlist) /\ LENGTH vlist > 0 /\
ALL_EL (\v. US_SEM v r) vlist

14 Mike Gordon, University of Cambridge Computer Laboratory, 14 April 2004

|- !r c v.
S_SEM v c (S_NON_ZERO_REPEAT r) =
?vlist.
(v = CONCAT vlist) /\ LENGTH vlist > 0 /\
ALL_EL (\v. S_SEM v c r) vlist

|- !r. S_CLOCK_FREE r ==> !v. US_SEM v r ==> BOTTOM_FREE v

|- !r c v. S_SEM v c r ==> BOTTOM_FREE v

|- !r v.
S_CLOCK_FREE r /\ US_SEM v r ==>
!k::LESS (LENGTH v).
US_SEM (SEL v (0,k) <> TOP_ITER (LENGTH v - k - 1)) r

We hope eventually to prove all the propoerties in the Eisner, Fisman and Havlicek note.

5.2. Validation of the clock elimination rewrites

Clocked SEREs and formulas can be translated to equivalent unclocked formulas using a set of rewrites given
in Section B.5 of the draft Version 1.1 PSL semantics. If c is a boolean expression specifying a clock, these
rewrites define functions Rc and Fc such that Rc(r) is an unclocked SERE corresponding to r@c and F c(f)
is an unclocked formula corresponding to f @c. The definition of Rc(r) is recursive on the structure of r:

1. Rc({r}) = Rc(r)

2. Rc(b) = ¬c[∗]; c ∧ b
3. Rc(r1 ; r2) = Rc(r1) ;Rc(r2)

4. Rc(r1 : r2) = {Rc(r1)} : {Rc(r2)}
5. Rc(r1 | r2) = {Rc(r1)} | {Rc(r2)}
6. Rc(r1 && r2) = {Rc(r1)} && {Rc(r2)}
7. Rc(r[∗0]) = {Rc(r)}[∗0]

8. Rc(r[∗]) = {Rc(r)}[∗]
9. Rc(r@c1) = Rc1(r)

The pretty-printed HOL encoding of this is (note that we use [∗0] not r[*0]):

(Rc(b) = (¬c[∗]; c ∧ b))
∧
(Rc(r1; r2) = Rc(r1);Rc(r2))
∧
(Rc(r1 : r2) = Rc(r1) : Rc(r2))
∧
(Rc(r1 | r2) = Rc(r1) | Rc(r2))
∧
(Rc(r1&&r2) = Rc(r1)&&Rc(r2))
∧
(Rc([∗0]) = [∗0])
∧
(Rc(r [∗]) = Rc(r)[∗])
∧
(Rc(r@c1) = Rc1(r))

which is represented in raw HOL by defining a function S CLOCK COMP corresponding to Rc

PSL semantics in higher order logic 15

(S_CLOCK_COMP c (S_BOOL b) =
(S_CAT (S_REPEAT (S_BOOL (B_NOT c)),S_BOOL(B_AND(c, b)))))

/\
(S_CLOCK_COMP c (S_CAT(r1,r2)) =

S_CAT(S_CLOCK_COMP c r1, S_CLOCK_COMP c r2))
/\
(S_CLOCK_COMP c (S_FUSION(r1,r2)) =

S_FUSION(S_CLOCK_COMP c r1, S_CLOCK_COMP c r2))
/\
(S_CLOCK_COMP c (S_OR(r1,r2)) =

S_OR(S_CLOCK_COMP c r1, S_CLOCK_COMP c r2))
/\
(S_CLOCK_COMP c (S_AND(r1,r2)) =

S_AND(S_CLOCK_COMP c r1, S_CLOCK_COMP c r2))
/\
(S_CLOCK_COMP c S_EMPTY = S_EMPTY)
/\
(S_CLOCK_COMP c (S_REPEAT r) = S_REPEAT(S_CLOCK_COMP c r))
/\
(S_CLOCK_COMP c (S_CLOCK(r, c1)) = S_CLOCK_COMP c1 r)

The definition of Fc(f) needs some auxiliary definitions. The pretty-printed HOL versions of these are:

f1 ∨ f2 = ¬(¬f1 ∧ ¬f2)

f1 → f2 = ¬f1 ∨ f2

F f = [true U f]

G f = ¬F ¬f

[f1 W f2] = [f1 U f2] ∨G f1

[¬c W (c ∧ f)] = [¬c W c ∧ f]

Using this syntactic sugar, the rewrites for formulas in B.5 of the Version 1.1 draft LRM are:

1. Fc((ϕ)) = (Fc(ϕ))

2. Fc(b!) = [¬c U (c ∧ b)]

3. Fc(b) = [¬c W (c ∧ b)]

4. Fc(¬ϕ) = ¬Fc(ϕ)

5. Fc(ϕ ∧ ψ) = (Fc(ϕ) ∧ Fc(ψ))

6. Fc(X!ϕ) = [¬c U (c ∧X! [¬c U (c ∧ F c(ϕ))])]

7. Fc(ϕ U ψ) = [(c→ Fc(ϕ)) U (c ∧ Fc(ψ))]

8. Fc(ϕ abort b) = Fc(ϕ) abort b

9. Fc(ϕ@c1) = Fc1(ϕ)

10. Fc(r → ϕ) = Rc(r) → Fc(ϕ)

11. Fc(r!) = Rc(r)!

12. Fc(r) = Rc(r)

16 Mike Gordon, University of Cambridge Computer Laboratory, 14 April 2004

The pretty-printed HOL representation of the formula rewrites is:

(Fc(b!) = [¬c U (c ∧ b)])
∧
(Fc(b) = [¬c W (c ∧ b)])
∧
(Fc(¬f) = ¬Fc(f))
∧
(Fc(f1 ∧ f2) = Fc(f1) ∧ Fc(f2))
∧
(Fc(X! f) = [¬c U (c ∧X! ([¬c U (c ∧ Fc(f))]))])
∧
(Fc([f1 U f2]) = [(c → Fc(f1)) U (c ∧ Fc(f2))])
∧
(Fc(f abort b) = Fc(f) abort b)
∧
(Fc(f @c1) = Fc1(f))
∧
(Fc(r → f) = Rc(r) → Fc(f))
∧
(Fc(r !) = Rc(r)!)
∧
(Fc(r) = Rc(r))

The abbreviations are defined in raw HOL by:

F_OR(f1,f2) = F_NOT(F_AND(F_NOT f1, F_NOT f2))

F_IMPLIES(f1,f2) = F_OR(F_NOT f1, f2)

F_F f = F_UNTIL(F_WEAK_BOOL B_TRUE, f)

F_G f = F_NOT(F_F(F_NOT f))

F_W(f1,f2) = F_OR(F_UNTIL(f1,f2), F_G f1)

F_W_CLOCK c f = F_W(F_WEAK_BOOL(B_NOT c),F_AND(F_WEAK_BOOL c, f))

The formula rewrites are defined in raw HOL by defining a function F CLOCK COMP corresponding to T c

(F_CLOCK_COMP c (F_STRONG_BOOL b) =
F_U_CLOCK c (F_WEAK_BOOL b))

/\
(F_CLOCK_COMP c (F_WEAK_BOOL b) =

F_W_CLOCK c (F_WEAK_BOOL b))
/\
(F_CLOCK_COMP c (F_NOT f) =

F_NOT(F_CLOCK_COMP c f))
/\
(F_CLOCK_COMP c (F_AND(f1,f2)) =

F_AND(F_CLOCK_COMP c f1, F_CLOCK_COMP c f2))
/\
(F_CLOCK_COMP c (F_NEXT f) =

F_U_CLOCK c (F_NEXT(F_U_CLOCK c (F_CLOCK_COMP c f))))
/\

PSL semantics in higher order logic 17

(F_CLOCK_COMP c (F_UNTIL(f1,f2)) =
F_UNTIL(F_IMPLIES(F_WEAK_BOOL c, F_CLOCK_COMP c f1),

F_AND(F_WEAK_BOOL c, F_CLOCK_COMP c f2)))
/\
(F_CLOCK_COMP c (F_ABORT (f,b)) =

F_ABORT(F_CLOCK_COMP c f, b))
/\
(F_CLOCK_COMP c (F_CLOCK(f,c1)) =

F_CLOCK_COMP c1 f)
/\
(F_CLOCK_COMP c (F_SUFFIX_IMP(r,f)) =

F_SUFFIX_IMP(S_CLOCK_COMP c r, F_CLOCK_COMP c f))
/\
(F_CLOCK_COMP c (F_STRONG_SERE r) =

F_STRONG_SERE(S_CLOCK_COMP c r))
/\
(F_CLOCK_COMP c (F_WEAK_SERE r) =

F_WEAK_SERE(S_CLOCK_COMP c r))

These are verified by proving

` ∀r v c. v |≡cr = v |≡ Rc(r)

` ∀f v c. v |=c f = v |= Fc(f)

Lemmas 22 and 23 of the Eisner, Fisman and Havlicek note correspond to these theorems. The first was easy
to check mechanically using the HOL system, but the second was quite tricky, especially the b (weak boolean)
and X! f cases. We had access to a note by Dana Fisman, entitled “September 22, 2003”, containing short
and elegant hand proofs of these results. We initially tried to follow Fisman’s proofs in HOL, but the steps
were too large for HOL’s automatic proof capability to reproduce, so we ended up just using brute force
proof hacking, which was painful but eventually worked.

The additional intricacy of the mechanical proofs seemed to arise because of a need to perform frequent case
analyses to handle the possibility of letters being > or ⊥. It’s possible that with a suitable set of lemmas
one could ‘work above’ the messy top/bot details level. This seems to be what was done in Fisman’s hand
proofs. It would be an interesting proof methodology project to investigate further the difference between
the hand proofs and the HOL proof scripts. This might provide data for improved theorem proving tools
that would enable the mechanical proofs to be easily scripted to follow the hand proofs. We were not able
to achieve this, though it might just need additional lemmas rather than new proof tools.

The validation of the rewrites for the Version 1.1 semantics was significantly more messy than the corre-
sponding validation for the Version 1.01 semantics (due to > and ⊥ case splitting). However we were able
to reuse substantial infrastructure and methodological expertise from proofs about earlier semantics, so the
Version 1.1 proofs probably proceeded more quickly.

To give an impression of the details needed to mechanically validate the rewrites, we list below the pretty-
printed sequence of HOL lemmas we proved (a few minor technical results have been deleted).6

` v |≡ ¬c[∗]; c ∧ b = |v | > 0 ∧ v |v |−1 b ∧ v |v |−1 c ∧ ∀i . i < |v | − 1⇒ v i ¬c

` ∀rvc. v |≡cr = v |≡ Rc(r)

6 The lemmas shown here were generated from the output of the HOL system. The pretty printer removes information (e.g.
pertaining to types) and so could produce confusing results. Furthermore, the tables mapping raw HOL to LATEX commands
could contain errors, so the pretty-printed versions could fail to accurately reflect the raw HOL sources from which they were
generated.

18 Mike Gordon, University of Cambridge Computer Laboratory, 14 April 2004

` ∀P .
(∀b. P(b!)) ∧ (∀b. P(b)) ∧
(∀f . P f ⇒ P(¬f)) ∧
(∀p1p2. P p1 ∧ P p2 ⇒ P(p1 ∧ p2)) ∧
(∀r . P(r !)) ∧ (∀r . P(r)) ∧
(∀f . P f ⇒ P(X! f)) ∧
(∀p1p2. P p1 ∧ P p2 ⇒ P([p1 U p2])) ∧
(∀p1. P p1 ⇒ ∀p2. P(p1 abort p2)) ∧
(∀p1. P p1 ⇒ ∀p2. P(p1@p2)) ∧
(∀p2. P p2 ⇒ ∀p1. P(p1 → p2))⇒
∀f . P f

` ∀kv . k ≤ |v | ⇒ ((v k .. = ε) = (|v | = k))

` ∀kv . k ≤ |v | ⇒ ((|v k ..| = 0) = (|v | = k))

` ∀kv . k ≤ |v | ⇒ ((|v k ..| = 0) = ∃l . (|l | = k) ∧ (v = l))

` ∀kl . k ≤ |l | ⇒ ((|lk ..| = 0) = (|l | = k))

` ∀kv . k < |v | ⇒ ((|v k ..| = 0) = ∃l . (|l | = k) ∧ (v = l))

` v |= [¬c U (c ∧ f)] = ∃j ∈ [0..|v |). v j .. |= c ∧ f ∧ ∀i . i < j ⇒ v i ¬c

` (l) = l

` (v) = v

` |v | = |v |

` ∀nv . n < |v | ⇒ (vn.. = (vn..))

` n < |l | ⇒ ((l)
n..

= (ln..))

` ∀nv . n < |v | ⇒ (vn = (vn))

` n < |l | ⇒ ((l)
n

= (ln))

` v |= f1 ∨ f2 = v |= f1 ∨ v |= f2

` v |= f1 ∧ f2 = v |= f1 ∧ v |= f2

` v |= f1 → f2 = v |= f1 ⇒ v |= f2

` ∀jv . j < |v | ⇒ (v j .. |= b = v j b)

` ∀jv . j < |v | ∧ v j .. |= b = j < |v | ∧ v j b

` v |= F f ⇒ ∃i ∈ [0..|v |). v i.. |= f

` v |= F f = ∃i ∈ [0..|v |). v i.. |= f ∧ ∀j ∈ [0..i). (v j = ⊥)⇒ (|v | = j)

` v |= G f = ∀i . i < |v | ⇒ (v i..) |= f ∨ ∃j . j < i ∧ (v j = ⊥) ∧ ¬(|v | = j)

PSL semantics in higher order logic 19

` v |= G f = ∀i ∈ [0..|v |). v i.. |= f ∨ ∃j ∈ [0..i). (v j = >) ∧ ¬(|v | = j)

` v |= [¬c W (c ∧ f)] =

v |= [¬c U (c ∧ f)] ∨ ∀i . i < |v | ⇒ ((|v i..| = 0) ∨ v i ¬c) ∨ ∃j . j < i ∧ (v j = >) ∧ ¬(|v | = j)

` v |= [¬c W (c ∧ f)] = v |= [¬c U (c ∧ f)] ∨ ∀i ∈ [0..|v |). v i ¬c ∨ ∃j ∈ [0..i). v j = >

` ∀bvc. v |=c b! = v |= Fc(b!)

` ∀P . (∃n. Pn) = ∃n. Pn ∧ ∀m. m < n ⇒ ¬Pm

` ∀Pn. Pn ⇒ ∃n. Pn ∧ ∀m. m < n ⇒ ¬Pm

` ∀p. (p0..j)j = pj

` ∀p. i ≤ j ⇒ ((p0..j)i = pi)

` ∀bvc. v |=c b ⇒ v |= Fc(b)

` ∀bvc. v |= Fc(b)⇒ v |=c b

` ∀bvc. v |=c b = v |= Fc(b)

` ∀p. i + n ≤ j ⇒ ((pi..j)n = pi+n)

` ∀f . (∀vc. v |=c f = v |= Fc(f))⇒ ∀vc. v |=c X! f ⇒ v |= Fc(X! f)

` ∀f . (∀vc. v |=c f = v |= Fc(f))⇒ ∀vc. v |= Fc(X! f)⇒ v |=c X! f

` ∀f . (∀vc. v |=c f = v |= Fc(f))⇒ ∀vc. v |=c X! f = v |= Fc(X! f)

` ∀f1f2.
(∀vc. v |=c f1 = v |= Fc(f1)) ∧ (∀vc. v |=c f2 = v |= Fc(f2))

⇒ ∀vc. v |=c [f1 U f2]⇒ v |= Fc([f1 U f2])

` ∀f1f2.
(∀vc. v |=c f1 = v |= Fc(f1)) ∧ (∀vc. v |=c f2 = v |= Fc(f2))

⇒ ∀vc. v |= Fc([f1 U f2])⇒ v |=c [f1 U f2]

` ∀f1f2.
(∀vc. v |=c f1 = v |= Fc(f1)) ∧ (∀vc. v |=c f2 = v |= Fc(f2))

⇒ ∀vc. v |=c [f1 U f2] = v |= Fc([f1 U f2])

` ∀fvc. v |=c f = v |= Fc(f)

See the SourceForge.net open source software development website:
http://cvs.sourceforge.net/viewcvs.py/hol/hol98/examples/PSL/1.1/official-semantics/RewritesPropertiesScript.sml

for the HOL proof scripts that generated these lemmas.

5.3. Validation of a projection view (cycle-based temporal abstraction)

The unclocked semantics are simpler than the clocked ones, so when evaluating clocked semantics of SEREs
v |≡cr or formulas v |=c f it is convenient to reduce the problem to unclocked semantics. One way to do this is
to use the rewrites (LRM 1.1, B.5) whose verification was described in the preceding section in the form of

20 Mike Gordon, University of Cambridge Computer Laboratory, 14 April 2004

theorems ` v |≡cr = v |≡ Rc(r) and ` v |=c f = v |= Fc(f). The right hand side of these equations specify
the unclocked semantics of the result of ‘inlining’ the clock c into a SERE r or a formula f . However, this
can be inefficient because (i) the rewritten SERE Rc(r) and formula Fc(f) may be quite complex, and (ii)
one needs to evaluate at each point in the path, rather than just at the points when the clock ticks. Just as
more efficient simulation results from a ‘cycle-based’ approach, similarly we hope more efficient checking can
be obtained using a ‘cycle-based’ semantics. The idea is to evaluate the clocked semantics v |≡cr and v |=c f
by evaluating the unclocked semantics on the projection of v to those states where the clock c is true. Such
projection is standard in theorem proving verification, where it is called “temporal abstraction” [Mel93,
Chapter 7]. It also has a history in temporal logic (an early reference is Moszkowski’s 1986 book [Mos86,
Section 9.1], a recent one is the 2003 ICALP paper by Eisner et. al. on projection for LTL [EFH+03]).

PSL’s semantics of multiple clocks makes general projection problematical, but in the common case when
there is only one clock we hope it will be fairly straightforward. The ideas is to reduce the clocked semantics
v |≡cr and v |=c f to unclocked evaluations of r and f on projected paths v |c and v |c . Unfortunately, the
PSL 1.1 semantics makes it tricky to formulate projection theorems. The use of > and ⊥ thwarts temporal
abstraction as they can have an immediate ‘asynchronous’ effect. Abort formulas of the form f abort b are
also asynchronous, in that immediately b becomes true, checking of f aborts. Thus if one projects away
states for which the clock is false, one might eliminate states in which the abort condition holds.

So far we have only proved a result for the projection of SEREs with a single clock, and assuming no > or ⊥
in the path. First define ClockFree(r) to mean r is unclocked (i.e. contains no occurrence @c) and TopFree(v),
BottomFree(v) to mean v contains no occurrences of >, ⊥, respectively. Next, for a finite sequence v, define
v |c to be the result of deleting all letters l from v such that l c is false. The definitions in higher order logic
are routine functional programming, and are not shown. A tedious (but essentially routine) proof yields:

` ∀r . ClockFree(r)⇒ ∀v . TopFree(v) ∧ BottomFree(v)⇒ ∀c. v |≡cr = (|v | > 0⇒ v |v |−1 c) ∧ v |c |≡ r

We are trying to prove a similar projection result for formulas. The definition of v |c when v may be infinite
needs care (if the clock only ticks a finite number of times, then an infinite path will project to a finite one).

6. Acknowledgements

The work described here would not have been possible without the help of Cindy Eisner and Dana Fisman
from the PSL/Sugar team at IBM. Dana Fisman supplied the LATEX sources for the extracts of the draft
Version 1.1 LRM shown in the framed boxes. Thanks also to Koen Claessen and Johan Mårtensson for
illuminating discussions (at DCC 2004 in Barcelona) on the abort construct and the role of > and ⊥.
Keith Wansbrough’s HOL-to-LATEX tool for typesetting the ASCII syntax of HOL terms was invaluable for
generating the pretty-printed versions of the HOL semantics.

This work was partially supported by an IBM Faculty Award.

References

[EFH+03] Cindy Eisner, Dana Fisman, John Havlicek, Anthony McIsaac, and David Van Campenhout. The definition of a
temporal clock operator. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger,
editors, ICALP Proceedings, volume 2719 of Lecture Notes in Computer Science, pages 857–870. Springer-Verlag,
2003.

[GHS03] Mike Gordon, Joe Hurd, and Konrad Slind. Executing the formal semantics of the Accellera Property Specification
Language by mechanised theorem proving. In Daniel Geist and Enrico Tronci, editors, Proc. 12th Advanced
Research Working Conference on Correct Hardware Design and Verification Methods (CHARME 2003), Lecture
Notes in Computer Science. Springer-Verlag, October 2003. 21 - 24 October 2003, University of L’Aquila, Computer
Science Department, L’Aquila, Italy.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a theorem-proving environment for higher-order
logic. Cambridge University Press, 1993.

[Gor03] Michael J. C. Gordon. Validating the PSL/Sugar Semantics Using Automated Reasoning. Formal Aspects of
Computing, 15(4):406–421, 2003.

[Mel93] T. F. Melham. Higher Order Logic and Hardware Verification. Cambridge Tracts in Theoretical Computer Science
31. Cambridge University Press, 1993.

[Mos86] B. C. Moszkowski. Executing Temporal Logic Programs. Cambridge University Press, 1986. Available for download
from: http://www.cse.dmu.ac.uk/~cau/papers/tempura-book.pdf.

[Sli96] K. Slind. Function definition in higher order logic. In J. von Wright, J. Grundy, and J. Harrison, editors, Theorem
Proving in Higher Order Logics: 9th International Conference, Turku, Finland, August 1996: Proceedings, volume
1125 of Lecture Notes in Computer Science, pages 381–397. Springer-Verlag, 1996.

