Executing the formal semantics of the Accellera Property Specification Language

- joint work with Joe Hurd & Konrad Slind -

Standard practice: generate tools from formal syntax

Idea of this talk: generate tools from formal semantics

Goals and non-Goals

Goal is to show formal semantics is not just documentation

- can run the Language Reference Manual (LRM)
- Correctness primary, efficiency secondary
 - but need sufficient efficiency!
- Programming methodology, not new verification algorithms
 - EDA tools with theorem prover inside (*c.f.* PROSPER)

Accellera's PSL (formerly IBM's Sugar 2.0)

- PSL is a property specification language combining
 - boolean expressions (Verilog syntax)
 - patterns (Sequential Extended Regular Expressions SEREs)
 - LTL formulas (Foundation language FL)
 - CTL formulas (Optional Branching Extension OBE)
- Designed both for model checking and simulation testbenches
- Intended to be the industry standard

Tools use standard algorithms

TOOL1: semantic calculator

- match regexps using automata; evaluate formulas recursively
- automata constructed and executed by proof inside HOL
- ► TOOL2: checker compiler
 - compile regexps to automata, then 'pretty print' to HDL (Verilog)
 - treatment of formulas incomplete and *ad hoc*
- TOOL3: symbolic model checker
 - classical McMillan-style μ -calculus checker
 - uses BDD representation judgements to link HOL terms to BDDs
 - see Gordon (TPHOLs2001), Amjad (TPHOLs2003)
- No new algorithms, but maybe a new kind of logic programming

Heroic proofs versus logic programming

- Theorem proving often associated with heroic proofs
 - *e.g.* Gödel's theorem (Shankar), relative consistency of AC (Paulson)
- We are not doing heroic proofs, but a kind of logic programming
 - computation by deduction
- ► HOL has a relatively fast call-by-value symbolic evaluator EVAL
 - by Bruno Barras using Coq technology (explicit substitutions)
 - doesn't compete with ACL2 or PVS ground evaluators (or C, C++)
 - runs ARM6 microarchitecture at a few seconds per instruction
 - key tool for our PSL evaluator

Executing the semantics (note: (0 .. |w|) should be [0 .. |w|))

By rewriting and evaluation (PSL in red, HOL in blue):

- $\vdash s_0 s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 s_9 \models p \land X! f = s_0 \models p \land s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 s_9 \models f$ $\vdash \{a\}\{a,b\}\{b\} \models a \land X! b = \mathsf{T}$
- ► LRM semantics of the until-operator not directly executable $w \models [f_1 \ U \ f_2] = \exists k \in (0 .. |w|). \ w^k \models f_2 \land \forall j \in (0 .. k). \ w^j \models f_1$
- Standard reformulation makes it directly executable $\vdash w \models [f_1 \ U \ f_2] = |w| > 0 \land (w \models f_2 \lor w \models f_1 \land w^1 \models [f_1 \ U \ f_2])$
- ▶ If f_1 , f_2 are boolean expressions and the path is arbitrary of length 5:

$$\vdash s_0 s_1 s_2 s_3 s_4 \models [b_1 \ U \ b_2] =$$

$$s_0 \models b_2 \lor$$

$$s_0 \models b_1 \land (s_1 \models b_2 \lor s_1 \models b_1 \land$$

$$(s_2 \models b_2 \lor s_2 \models b_1 \land (s_3 \models b_2 \lor s_3 \models b_1 \land s_4 \models b_2)))$$

Matching regular expressions

Semantics of PSL SEREs is self-explanatory

Make executable by proving

 $\vdash \forall w \ r. \ w \models r = \mathsf{amatch}(\mathsf{sere2regexp}(r))w$

where:

- sere2regexp converts a SERE to a HOL regular expression
- amatch is an executable matcher for regular expressions

9/17

Suffix implication $\{r\}(f)$

Semantics is:

 $w \models \{r\}(f) \ = \ \forall j \in (0 \ .. \ |w|). \ w^{0,j} \models r \Rightarrow w^j \models f$

► Have defined an efficient executable function acheck so that, for example: acheck $r f [x_0; x_1; x_2; x_3] =$ (amatch $r [x_0] \Rightarrow f[x_0; x_1; x_2; x_3]) \land$ (amatch $r [x_0; x_1] \Rightarrow f[x_1; x_2; x_3]) \land$ (amatch $r [x_0; x_1; x_2] \Rightarrow f[x_2; x_3]) \land$

 $(\text{amatch } r \ [x_0; \ x_1; \ x_2; \ x_3] \Rightarrow f[x_3])$

N.B. execution only costs the same as the last amatch call

Then proved

 $\vdash \ \forall w \ r \ f. \ w \models \{r\}(f) \ = \ \mathsf{acheck}(\mathsf{sere2regexp}(r))(\lambda \ x. \ x \models f)w$

Rewrite with this, then execute

11/17

Other constructs: $\{r_1\} \mapsto \{r_2\}!$ and $\{r_1\} \mapsto \{r_2\}$

- ▶ Reduce $\{r_1\} \mapsto \{r_2\}!$ to suffix implication by proving
 - $\vdash \forall w \ r_1 \ r_2. \ w \models \{r_1\} \mapsto \{r_2\}! = w \models \{r_1\}(\neg \{r_2\}(\mathsf{F}))$
- ► Handle $\{r_1\} \mapsto \{r_2\}$ with regular expression $\operatorname{Prefix}(r)$ (in HOL not PSL) $\vdash \forall r \ w. \ w \models \operatorname{Prefix}(r) = \exists w'. \ w \ w' \models r$
- Execution of $w \models \operatorname{Prefix}(r)$ uses Dijkstra's algorithm
- Have proved:

```
 \begin{array}{l} \vdash & \forall w \ r_1 \ r_2. \\ & w \models \{r_1\} \mapsto \{r_2\} = \\ & \text{acheck}(\text{sere2regexp} \ r_1) \\ & (\lambda \ x. \ x \models \neg \{r_2\}(\mathsf{F}) \lor \text{amatch (Prefix (sere2regexp} \ r_2)) \ x) \ w \end{array}
```

Rewrite with this, then execute

Remaining formulas: aborts and clocking

- Semantics of abort formulas needs a reachability algorithm
 - have implemented a partial method
 - awaiting new abort semantics before attempting complete solution
- Clocked formulas f@c, f@c! can be translated to unclocked formulas
 - translation to unclocked formulas is by a recursive function
 - can be directly executed
 - have proved a theorem that says (roughly):
 - $\vdash \forall r. unclocked_semantics(translation r) = clocked_semantics(r)$

Example

PSL Reference Manual Example 2, page 45

time	0	1	2	3	4	5	6	7	8	9
clk1 a	0	1 0	0 0	1 1	0 1	1 1	0 0	1 0	0	 1 0
b	0	0	0	0	0	1	0	1	1	0
С	1	0	0	0	0	1	1	0	0	0
clk2	1	0	0	1	0	0	1	0	0	1

Define w to be this path, so w is:

 $\c,clk2\clk1\clk1,a,clk2\a\clk1,a,b,c\clk2\clk1,b\clk1,b\clk1,clk2\$

Can evaluate in SML, or via a command line wrapper

Example: to evaluate (c && next!(a until b))@clk1 at all times in w:

```
% pslcheck -all \
    -fl '(c && next!(a until b))@clk1' \
    -path '{c,clk2}{clk1}{}{clk1,a,clk2}{a}{clk1,a,b,c}{c,clk2}{clk1,b}{b}{clk1,clk2}'
> > true at times 4,5,10
```

Uses of TOOL1 (calculating $w \models f$ from semantics)

- Teaching and learning tool for exploring semantics
- Checking one has the right property before using it in verification
- Post simulation analysis (path is generated by simulator)
 - compare with "TransEDA VN-Property" property checker and analyzer
 - our tools much slower but not necessary too slow!
 - guaranteed PSL compliant by construction: golden reference

TOOL2: Compile the semantics to checkers

- Idea pinched from IBM FoCs project
- ► A defined operator: $\forall r. never(r) = \{T[*]; r\} \mapsto \{F\}$
- **Example property:** $never(\neg stob_{REQ} \land btos_{ACK}; stob_{REQ})$
- Use semantics to generate a Verilog checker

```
module Checker (StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK);
input StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK;
reg [1:0] state;
initial state = 0;
always @ (StoB_REQ or BtoS_ACK or BtoR_REQ or RtoB_ACK)
begin
$display ("Checker: state = %Od", state);
case (state)
0: if (StoB_REQ) state = 1; else if (BtoS_ACK) state = 2; else state = 1;
1: if (StoB_REQ) state = 1; else if (BtoS_ACK) state = 2; else state = 1;
2: if (StoB_REQ) state = 3; else if (BtoS_ACK) state = 2; else state = 1;
3: begin $display ("Checker: property violated!"); $finish; end
default: begin $display ("Checker: unknown state"); $finish; end
endcase
end
```

 ${\tt endmodule}$

Example of how the checker works and is justified

The following theorem is first proved

 $\vdash |w| = \infty \implies w \models never(r) = \forall n. \neg \text{amatch (sere2regexp T[*]; } r)(w^{0,n})$

- ► Thus there's an error if amatch (sere2regexp T[*]; r) $(w^{0,n})$ is ever true
- Generate a DFA from sere2regexp T[*]; r
- So far everything is by proof, so correct by construction
- Final step is to pretty print checker into HDL (Verilog)
 - this may introduce errors
 - no formal semantics of Verilog :-(
- Only have 'proof of concept' for checkers: more work to cover all formulas

- Two tools: semantic calculator and checker generator
- Correct by construction
- More work needed (especially for checkers)
- Illustrates new kind of logic programming using a theorem prover
 - prototyping standards compliant tools
 - theorem proving is slow but not necessarily too slow
 - maybe OK for some industrial strength *performance-non-critical* tools

