Executing the formal semantics
of the Accellera Property Specification Language

t work with Joe Hurd & Konrad Slind —

— join

Input a grammar
» Apply theory of formal languages

» Generate a parser

generate tools from formal syntax

Formal grammar

Standard practice

Parser

ICS

generate tools from formal semanti

Idea of this talk

Input ‘golden’ semantics from LRM

Formal semantics

» Perform mechanised proof

» Generate tools

A
o
-
s
“
-
s
“
-
s
“
-
s
“
-
s
“
-
8

EDA tools

/ I\

Goals and non-Goals

» Goalis to show formal semantics is not just documentation

e can run the Language Reference Manual (LRM)

» Correctness primary, efficiency secondary

e but need sufficient efficiency!

» Programming methodology, not new verification algorithms
e EDA tools with theorem prover inside (c.f. PROSPER)

Accellera’s PSL (formerly IBM’s Sugar 2.0)

» PSL is a property specification language combining

e boolean expressions (Verilog syntax)
e patterns (Sequential Extended Regular Expressions SERES)
e LTL formulas (Foundation language FL)
e CTL formulas (Optional Branching Extension OBE)

» Designed both for model checking and simulation testbenches

» Intended to be the industry standard

Generating PSL tools

Official semantics of PSL

th
to HDL checkers (idea from FoCs)

evaluate FL properties on a specific pa

TOOLA1:

TOOL2
TOOL3

€S

compile propert

t a model (Amjad’s PhD)

ies agains

check OBE properti

Tools use standard algorithms

» TOOL1: semantic calculator
e match regexps using automata; evaluate formulas recursively
e automata constructed and executed by proof inside HOL

» TOOL2: checker compiler
e compile regexps to automata, then ‘pretty print’ to HDL (Verilog)
e treatment of formulas incomplete and ad hoc

» TOOLS: symbolic model checker
e classical McMillan-style p-calculus checker
e uses BDD representation judgements to link HOL terms to BDDs
e see Gordon (TPHOLs2001), Amjad (TPHOLs2003)

» No new algorithms, but maybe a new kind of logic programming

g

((

Heroic proofs versus logic programming —

» Theorem proving often associated with heroic proofs

e e.g. Godel’'s theorem (Shankar), relative consistency of AC (Paulson)

» We are not doing heroic proofs, but a kind of logic programming

e computation by deduction

» HOL has a relatively fast call-by-value symbolic evaluator EVAL
e by Bruno Barras using Coq technology (explicit substitutions)
e doesn’t compete with ACL2 or PVS ground evaluators (or C, C++)
e runs ARM6 microarchitecture at a few seconds per instruction

e key tool for our PSL evaluator

Executing the semantics (note: (0 .. |w|) should be [0 .. |w|))

» By rewriting and evaluation (PSL in red, HOL in blue):
= 50515253545556575859 =P A X! f = 50D A 515253545556575859 = f
- {aM{a,b}H{b} EanX!b =T
» LRM semantics of the until-operator not directly executable
whk[fi Uf] = k(0. |w]). w*EfrAVjc (0. k). w = fi
» Standard reformulation makes it directly executable
FwkE[fUf] = |w>0NwEf2VwE firw' E[fi U f])
» If fi, f> are boolean expressions and the path is arbitrary of length 5:
- s9s1828384 = |01 U bo| =
So = ba V
so EbiAN(s1 EbV s Eb A
(so =baVso=bi A(ssEbaVsg Ebi Asy Eb2)))

Matching regular expressions

» Semantics of PSL SEREs is self-explanatory

(wEb = (Jlw|=1) Awgy E b) A
(w =115 19 = Jwiwsy. (W =wiwz) ANwy =11 Awse = 13) A
(wE7rL:r = Jwiwsal. (w = wy[llwa) ANwi[l] =r1 A [lwe = 12) A
(wEA{ri}|[{r:} = wEmMVwkEm”) A
(w EAr1}&&{rs} = wEM Aw E=19) A
(w = 7] = Jwlist. (w = Concat wlist) \Every(Aw. w |= r)wlist)

» Make executable by proving
= Vw r. w = r = amatch(sere2regexp(r))w
where:

e sere2regexp converts a SERE to a HOL regular expression
e amatch is an executable matcher for regular expressions

Suffix implication {r}(f)

» Semantics is:
wEArHf) = Vie (0. |w]). v Er=uw | f
» Have defined an efficient executable function acheck so that, for example:

acheck r f |xo; x1; x9; x3] =
(amatch 7 [xg] = flzo; x1; T2; X3

> > >

)
(amatch 7 [zo; z1] = flz1; T2; T3])
(amatch 7 [zo; x1; 22| = flw2; 23))

(amatch r [xg; x1; x2; x3] = flrs])
N.B. execution only costs the same as the last amatch call

» Then proved
= Ywr f.w E{r}(f) = acheck(sere2regexp(r))(Ax. z = flw

» Rewrite with this, then execute

Other constructs: {r,} — {r,} and {r;} — {r,}

» Reduce {r,} — {r}! to suffix implication by proving
F Ywryre.wE{ri}— {reH =w E {r }(—{r:}(F))

» Handle {r,} — {r2} with regular expression Prefix(r) (in HOL not PSL)
= Vrw. w = Prefix(r) = Jw’ . ww =r

» Execution of w = Prefix(r) uses Dijkstra’s algorithm

» Have proved:
= Ywry ro.

w = A{r1} = {r2} =
acheck(sere2regexp 1)
(Az. x = —{r2}(F) V amatch (Prefix (sere2regexp r3)) x) w

» Rewrite with this, then execute

Remaining formulas: aborts and clocking

» Semantics of abort formulas needs a reachability algorithm

e have implemented a partial method

e awaiting new abort semantics before attempting complete solution
» Clocked formulas f@c, f@c! can be translated to unclocked formulas

e translation to unclocked formulas is by a recursive function

e can be directly executed

e have proved a theorem that says (roughly):

= Vr. unclocked_semantics(translation r) = clocked_semantics(r)

Example

» PSL Reference Manual Example 2, page 45

clki 0 1. 0 1 0 1 O 1 O 1
a o 0 011 1 0 O O O
b O 0 0 0O 01 0 1 1 0
C 1 0 0 0 01 1 O O O
clk2 1 0 0 1 0 0 1 O O 1

» Define w to be this path, so w is:
{c,clk2}{clk1}{}{clkl,a,clk2}{a}t{clkl,a,b,ct{c,clk2}{clkl,b}{b}{clkl,clk2}

» Can evaluate in SML, or via a command line wrapper

» Example: to evaluate (¢ && next!(a until b))@clkl at all times in w:

% pslcheck -all \
-fl ’(c &&% next!(a until b))e@clkl’> \
-path ’{c,clk2}{clki1}{}{clkl,a,clk2}{a}t{clkl,a,b,c}{c,clk2}{clkl,b}{b}{clkl,clk2}’

> > true at times 4,5,10

Uses of TOOL1 (calculating w = f/ from semantics)

» Teaching and learning tool for exploring semantics
» Checking one has the right property before using it in verification

» Post simulation analysis (path is generated by simulator)
e compare with “TransEDA VN-Property” property checker and analyzer
e our tools much slower — but not necessary too slow!

e guaranteed PSL compliant by construction: golden reference

TOOL2: Compile the semantics to checkers

vV v v ¥

ldea pinched from IBM FoCs project
A defined operator: V r. never(r) = {T|[x|; r} — {F}
Example property: never(—StoB_REQ A BtoS_ACK; StoB_REQ)

Use semantics to generate a Verilog checker

module Checker (StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK);

input StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK;
reg [1:0] state;

initial state = 0;

always @ (StoB_REQ or BtoS_ACK or BtoR_REQ or RtoB_ACK)
begin
$display ("Checker: state
case (state)

%0d", state);

0: if (StoB_REQR) state = 1; else if (BtoS_ACK) state = 2; else state = 1;
1: if (StoB_REQR) state = 1; else if (BtoS_ACK) state = 2; else state = 1;
2: if (StoB_REQ) state = 3; else if (BtoS_ACK) state = 2; else state = 1;

3: begin $display ("Checker: property violated!"); $finish; end
default: begin $display ("Checker: unknown state"); $finish; end
endcase
end

endmodule

Example of how the checker works and is justified

» The following theorem is first proved

= Jw| =00 = w | never(r) = Vn. —amatch (sere2regexp T[+]; r)(w"™)

» Thus there’s an error if amatch (sere2regexp T[x]; r)(w"™) is ever true
» Generate a DFA from sere2regexp T[x]; r
» So far everything is by proof, so correct by construction

» Final step is to pretty print checker into HDL (Verilog)
e this may introduce errors
e no formal semantics of Verilog : - (

» Only have ‘proof of concept’ for checkers: more work to cover all formulas

Conclusions

» Two tools: semantic calculator and checker generator
» Correct by construction
» More work needed (especially for checkers)

» lllustrates new kind of logic programming using a theorem prover
e prototyping standards compliant tools
e theorem provingisslow but not necessarily too slow

e maybe OK for some industrial strength performance-non-critical tools

THE END

