
Executing the PSL semantics 1/17

Executing the formal semantics
of the Accellera Property Specification Language

— joint work with Joe Hurd & Konrad Slind —

Standard practice: generate tools from formal syntax

 Parser
 generator

 Formal grammar

 Parser

I Input a grammar

I Apply theory of formal languages

I Generate a parser

Mike Gordon University of Cambridge

Executing the PSL semantics 2/17

Idea of this talk: generate tools from formal semantics

THEOREM PROVER

Formal semantics

EDA tools

I Input ‘golden’ semantics from LRM

I Perform mechanised proof

I Generate tools

Mike Gordon University of Cambridge

Executing the PSL semantics 3/17

Goals and non-Goals

I Goal is to show formal semantics is not just documentation

• can run the Language Reference Manual (LRM)

I Correctness primary, efficiency secondary

• but need sufficient efficiency!

I Programming methodology, not new verification algorithms

• EDA tools with theorem prover inside (c.f. PROSPER)

Mike Gordon University of Cambridge

Executing the PSL semantics 4/17

Accellera’s PSL (formerly IBM’s Sugar 2.0)

I PSL is a property specification language combining

• boolean expressions (Verilog syntax)

• patterns (Sequential Extended Regular Expressions SEREs)

• LTL formulas (Foundation language FL)

• CTL formulas (Optional Branching Extension OBE)

I Designed both for model checking and simulation testbenches

I Intended to be the industry standard

Mike Gordon University of Cambridge

Executing the PSL semantics 5/17

Generating PSL tools

Official semantics of PSL

 HOL 4
THEOREM PROVER

TOOL1: evaluate FL properties on a specific path

TOOL2: compile properties to HDL checkers (idea from FoCs)

TOOL3: check OBE properties against a model (Amjad’s PhD)

Mike Gordon University of Cambridge

Executing the PSL semantics 6/17

Tools use standard algorithms

I TOOL1: semantic calculator
• match regexps using automata; evaluate formulas recursively
• automata constructed and executed by proof inside HOL

I TOOL2: checker compiler
• compile regexps to automata, then ‘pretty print’ to HDL (Verilog)
• treatment of formulas incomplete and ad hoc

I TOOL3: symbolic model checker
• classical McMillan-style µ-calculus checker
• uses BDD representation judgements to link HOL terms to BDDs
• see Gordon (TPHOLs2001), Amjad (TPHOLs2003)

I No new algorithms, but maybe a new kind of logic programming

Mike Gordon University of Cambridge

Executing the PSL semantics 7/17

Heroic proofs versus logic programming

I Theorem proving often associated with heroic proofs

• e.g. Gödel’s theorem (Shankar), relative consistency of AC (Paulson)

I We are not doing heroic proofs, but a kind of logic programming

• computation by deduction

I HOL has a relatively fast call-by-value symbolic evaluator EVAL

• by Bruno Barras using Coq technology (explicit substitutions)

• doesn’t compete with ACL2 or PVS ground evaluators (or C, C++)

• runs ARM6 microarchitecture at a few seconds per instruction

• key tool for our PSL evaluator

Mike Gordon University of Cambridge

Executing the PSL semantics 8/17

Executing the semantics (note: (0 .. |w|) should be [0 .. |w|))

I By rewriting and evaluation (PSL in red, HOL in blue):

` s0s1s2s3s4s5s6s7s8s9 |= p ∧X ! f = s0 |= p ∧ s1s2s3s4s5s6s7s8s9 |= f

` {a}{a, b}{b} |= a ∧X ! b = T

I LRM semantics of the until-operator not directly executable
w |= [f1 U f2] = ∃ k ∈ (0 .. |w|). wk |= f2 ∧ ∀ j ∈ (0 .. k). wj |= f1

I Standard reformulation makes it directly executable
` w |= [f1 U f2] = |w| > 0 ∧ (w |= f2 ∨ w |= f1 ∧ w1 |= [f1 U f2])

I If f1, f2 are boolean expressions and the path is arbitrary of length 5:
` s0s1s2s3s4 |= [b1 U b2] =

s0 |= b2 ∨
s0 |= b1 ∧ (s1 |= b2 ∨ s1 |= b1 ∧
(s2 |= b2 ∨ s2 |= b1 ∧ (s3 |= b2 ∨ s3 |= b1 ∧ s4 |= b2)))

Mike Gordon University of Cambridge

Executing the PSL semantics 9/17

Matching regular expressions

I Semantics of PSL SEREs is self-explanatory

(w |= b = (|w| = 1) ∧ w0 |= b) ∧
(w |= r1; r2 = ∃w1w2. (w = w1w2) ∧ w1 |= r1 ∧ w2 |= r2) ∧
(w |= r1 : r2 = ∃w1w2l. (w = w1[l]w2) ∧ w1[l] |= r1 ∧ [l]w2 |= r2) ∧
(w |= {r1} | {r2} = w |= r1 ∨ w |= r2) ∧
(w |= {r1}&&{r2} = w |= r1 ∧ w |= r2) ∧
(w |= r[∗] = ∃wlist. (w = Concat wlist)∧Every(λw. w |= r)wlist)

I Make executable by proving

` ∀w r. w |= r = amatch(sere2regexp(r))w

where:
• sere2regexp converts a SERE to a HOL regular expression

• amatch is an executable matcher for regular expressions

Mike Gordon University of Cambridge

Executing the PSL semantics 10/17

Suffix implication {r}(f)

I Semantics is:

w |= {r}(f) = ∀ j ∈ (0 .. |w|). w0,j |= r ⇒ wj |= f

I Have defined an efficient executable function acheck so that, for example:

acheck r f [x0; x1; x2; x3] =

(amatch r [x0]⇒ f [x0; x1; x2; x3]) ∧
(amatch r [x0; x1]⇒ f [x1; x2; x3]) ∧
(amatch r [x0; x1; x2]⇒ f [x2; x3]) ∧
(amatch r [x0; x1; x2; x3]⇒ f [x3])

N.B. execution only costs the same as the last amatch call

I Then proved

` ∀w r f. w |= {r}(f) = acheck(sere2regexp(r))(λx. x |= f)w

I Rewrite with this, then execute

Mike Gordon University of Cambridge

Executing the PSL semantics 11/17

Other constructs: {r1} 7→ {r2}! and {r1} 7→ {r2}

I Reduce {r1} 7→ {r2}! to suffix implication by proving

` ∀w r1 r2. w |= {r1} 7→ {r2}! = w |= {r1}(¬{r2}(F))

I Handle {r1} 7→ {r2} with regular expression Prefix(r) (in HOL not PSL)
` ∀ r w . w |= Prefix(r) = ∃w ′. w w ′ |= r

I Execution of w |= Prefix(r) uses Dijkstra’s algorithm

I Have proved:
` ∀w r1 r2.

w |= {r1} 7→ {r2} =
acheck(sere2regexp r1)

(λx. x |= ¬{r2}(F) ∨ amatch (Prefix (sere2regexp r2)) x) w

I Rewrite with this, then execute

Mike Gordon University of Cambridge

Executing the PSL semantics 12/17

Remaining formulas: aborts and clocking

I Semantics of abort formulas needs a reachability algorithm

• have implemented a partial method
• awaiting new abort semantics before attempting complete solution

I Clocked formulas f@c, f@c! can be translated to unclocked formulas

• translation to unclocked formulas is by a recursive function

• can be directly executed

• have proved a theorem that says (roughly):

` ∀ r . unclocked semantics(translation r) = clocked semantics(r)

Mike Gordon University of Cambridge

Executing the PSL semantics 13/17

Example

I PSL Reference Manual Example 2, page 45
time 0 1 2 3 4 5 6 7 8 9

clk1 0 1 0 1 0 1 0 1 0 1
a 0 0 0 1 1 1 0 0 0 0
b 0 0 0 0 0 1 0 1 1 0
c 1 0 0 0 0 1 1 0 0 0
clk2 1 0 0 1 0 0 1 0 0 1

I Define w to be this path, so w is:
{c,clk2}{clk1}{}{clk1,a,clk2}{a}{clk1,a,b,c}{c,clk2}{clk1,b}{b}{clk1,clk2}

I Can evaluate in SML, or via a command line wrapper

I Example: to evaluate (c && next!(a until b))@clk1 at all times in w:
% pslcheck -all \

-fl ’(c && next!(a until b))@clk1’ \
-path ’{c,clk2}{clk1}{}{clk1,a,clk2}{a}{clk1,a,b,c}{c,clk2}{clk1,b}{b}{clk1,clk2}’

> > true at times 4,5,10

Mike Gordon University of Cambridge

Executing the PSL semantics 14/17

Uses of TOOL1 (calculating w |=T f from semantics)

I Teaching and learning tool for exploring semantics

I Checking one has the right property before using it in verification

I Post simulation analysis (path is generated by simulator)

• compare with “TransEDA VN-Property” property checker and analyzer

• our tools much slower – but not necessary too slow!

• guaranteed PSL compliant by construction: golden reference

Mike Gordon University of Cambridge

Executing the PSL semantics 15/17

TOOL2: Compile the semantics to checkers

I Idea pinched from IBM FoCs project

I A defined operator: ∀ r . never(r) = {T[∗]; r} 7→ {F}

I Example property: never(¬StoB REQ ∧ BtoS ACK; StoB REQ)

I Use semantics to generate a Verilog checker
module Checker (StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK);

input StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK;

reg [1:0] state;

initial state = 0;

always @ (StoB_REQ or BtoS_ACK or BtoR_REQ or RtoB_ACK)

begin

$display ("Checker: state = %0d", state);

case (state)

0: if (StoB_REQ) state = 1; else if (BtoS_ACK) state = 2; else state = 1;

1: if (StoB_REQ) state = 1; else if (BtoS_ACK) state = 2; else state = 1;

2: if (StoB_REQ) state = 3; else if (BtoS_ACK) state = 2; else state = 1;

3: begin $display ("Checker: property violated!"); $finish; end

default: begin $display ("Checker: unknown state"); $finish; end

endcase

end

endmodule

Mike Gordon University of Cambridge

Executing the PSL semantics 16/17

Example of how the checker works and is justified

I The following theorem is first proved

` |w| =∞ ⇒ w |= never(r) = ∀n. ¬amatch (sere2regexp T[∗]; r)(w0,n)

I Thus there’s an error if amatch (sere2regexp T[∗]; r)(w0,n) is ever true

I Generate a DFA from sere2regexp T[∗]; r

I So far everything is by proof, so correct by construction

I Final step is to pretty print checker into HDL (Verilog)
• this may introduce errors
• no formal semantics of Verilog :-(

I Only have ‘proof of concept’ for checkers: more work to cover all formulas

Mike Gordon University of Cambridge

Executing the PSL semantics 17/17

Conclusions HOL 4
THEOREM PROVER

I Two tools: semantic calculator and checker generator

I Correct by construction

I More work needed (especially for checkers)

I Illustrates new kind of logic programming using a theorem prover

• prototyping standards compliant tools

• theorem proving is slow but not necessarily too slow

• maybe OK for some industrial strength performance-non-critical tools

THE END

Mike Gordon University of Cambridge

