Title: Temporal Logic and Model Checking

Lecturer: Mike Gordon

Class: Computer Science Tripos, Part II

Duration: Eight lectures

Document created March 3, 2015

Topics and corresponding slides

Торіс	Slides
Introduction to models	1 - 9
Atomic properties	10
Trees and paths	11 - 12
Examples of properties	13 - 16
Reachability	17
Introduction to model checking	18 - 26
Symbolic model checking	27 - 32
Disjunctive partitioning of BDDs	33 - 35
Generating counter-examples	36 - 42
Introduction to temporal logic	43 - 45
Linear Temporal Logic (LTL)	46 - 58
Computation Tree Logic (CTL)	59 - 75
CTL model checking	75 - 83
History of model checking	84
Expressibility of LTL and CTL	57 - 58, 85 - 87
CTL*	88 - 90
Fairness	91 - 92
Propositional modal µ-calculus	93
Sequential Extended Regular Expressions (SEREs)	94 - 95
Assertion Based Verification (ABV) and PSL	96 - 107
Dynamic verification: event semantics	108 - 117
Bisimulation	118 - 120
Abstraction	121 - 125
Counterexample Guided Abstraction Refinement (CEGAR)	126
Summary	127

Recall JM1: a non-deterministic program example

Mike Gordon

18 / 128

 $\mathbf{A}[\psi_1 \mathbf{W} \psi_2]$ continued (2) Continuing: $= \forall \pi$. Path *R s* π \Rightarrow $\forall i. \neg \llbracket \neg \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(i)) \lor \neg (\forall j. j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j)))$ $= \forall \pi$. Path *R s* π \Rightarrow $\forall i. \neg (\forall j. j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j))) \lor \neg \llbracket \neg \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(i))$ $= \forall \pi$. Path *R s* π \Rightarrow $\forall i. \ (\forall j. j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j))) \Rightarrow \llbracket \psi_1 \lor \psi_2 \rrbracket_M(\pi(i))$ • Exercise: explain why this is $[A[\psi_1 | W | \psi_2]]_M(s)$? this exercise illustrates the subtlety of writing CTL! Mike Gordon 67 / 128 Sanity check: $A[\psi W F] = AG \psi$ From last slide: $\llbracket \mathbf{A}[\psi_1 \ \mathbf{W} \ \psi_2] \rrbracket_M(s)$ $= \forall \pi$. Path *R* s π $\Rightarrow \forall i. (\forall j. j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j))) \Rightarrow \llbracket \psi_1 \lor \psi_2 \rrbracket_M(\pi(i))$ • Set ψ_1 to ψ and ψ_2 to F: $\llbracket \mathbf{A}[\psi \ \mathbf{W} \ \mathbf{F}] \rrbracket_{M}(s)$ $= \forall \pi$. Path *R* s π $\Rightarrow \forall i. (\forall j. j < i \Rightarrow \llbracket \psi \land \neg \mathbb{F} \rrbracket_{M}(\pi(j))) \Rightarrow \llbracket \psi \lor \mathbb{F} \rrbracket_{M}(\pi(i))$ Simplify: $[\![\mathbf{A}[\psi \mathbf{W} \mathbf{F}]]\!]_{M}(s)$ $= \forall \pi$. Path $R \ s \ \pi \Rightarrow \forall i$. $(\forall j. \ j < i \Rightarrow \llbracket \psi \rrbracket_M(\pi(j))) \Rightarrow \llbracket \psi \rrbracket_M(\pi(i))$ By induction on *i*: $[\mathbf{A}[\psi \mathbf{W} \mathbf{F}]]_{M}(s) = \forall \pi. \text{ Path } \mathbf{R} s \pi \Rightarrow \forall i. [[\psi]]_{M}(\pi(i))$ Exercises 1. Describe the property: $A[T W \psi]$. 2. Describe the property: $\neg \mathbf{E}[\neg \psi_2 \mathbf{U} \neg (\psi_1 \lor \psi_2)]$. 3. Define $\mathbf{E}[\psi_1 \mathbf{W} \psi_2] = \mathbf{E}[\psi_1 \mathbf{U} \psi_2] \vee \mathbf{E}\mathbf{G}\psi_1$. Describe the property: $\mathbf{E}[\psi_1 \mathbf{W} \psi_2]$? Mike Gordon 68 / 128

Combines CTL state semantics with LTL path semantics:

