
Sugar 2.0 in HOL
Computer Laboratory
Automated Reasoning Group
Hardware Verification Group

a deep embedding

Mike Gordon
(with help from Cindy Eisner and Dana Fisman of IBM)

IBM’s Sugar 2.0 selected by Accellera as the industry standard property language

I LTL based, but incorporates features from ITL (regular expressions) and CTL

{r1} → {r2}, {r1 && r2} (ITL), X!f , [f1Uf2] (LTL), EXf , E[f1 U f2] (CTL)

I supports infinite paths (for model checking) and finite paths (for simulation run checking)

I has both clocked and unclocked semantics (equivalent for trivial clocks)

π |=
c
f — formula f holds for (finite or infinite) path π when weakly clocked on c

π |=
c!

f — formula f holds for (finite or infinite) path π when strongly clocked on c

I most constructs are defined from a small kernel (name ‘sugar’ from ‘syntactic sugar’)

b[= i] = {¬b[∗]; b}[∗i];¬b[∗], within(r1, b){r2} = {r1} → {r2 && b[= 0]; b}
[f1 W f2] = [f1 U f2] ∨ Gf1, next event(b)(f) = [¬b W b ∧ f]

Semantics in HOL’s classical higher order logic is a straightforward deep embedding
Sugar syntax HOL representation

[f1 U f2] F UNTIL(f1, f2)

Sugar semantics HOL representation

π |=
c!

[f1 U f2] ⇐⇒ there exist i and k ≥ i s.t.

L̂(π0,i) |=T {¬c[∗]; c}, πk |=T c, πk |=
c!

f2, and for

every j s.t. i ≤ j < k and πj |=T c: πj |=
c!

f1

F_SEM M p (STRONG_CLOCK c) (F_UNTIL(f1,f2)) =

∃i k ∈ PL p. k ≥ i ∧

FIRST_RISE M p c i ∧

F_SEM M (RESTN p k) (WEAK_CLOCK T) (F_BOOL c) ∧

F_SEM M (RESTN p k) (STRONG_CLOCK c) f2 ∧

∀j ∈ PL p. i ≤ j ∧ j < k ∧

F_SEM M (RESTN p j) (WEAK_CLOCK T) (F_BOOL c)

⇒

F_SEM M (RESTN p j) (STRONG_CLOCK c) f1)

Typical examples of minor errors found by attempting to prove ‘sanity checking’ properties
Original semantics Corrected semantics

π |=
c
b ⇐⇒ if there exists i: L̂(π0,i) |=T {¬c[∗]; c}

then L(pi) |= b

π |=
c
b ⇐⇒ for every i s.t. L̂(π0,i) |=T {¬c[∗]; c},

L(pi) |= b

π |= {r1} → {r2} ⇐⇒ either for every j such

that L̂(π0,j) |= r1 there exists k such that

L̂(πj,k) |= r2, or for every j such that L̂(π0,j) |=
r1 and for every k there exists a finite word w

such that L̂(πj,k)w |= r2

π |= {r1} → {r2} ⇐⇒ for every j such that

L̂(π0,j) |= r1, either there exists k such that

L̂(πj,k) |= r2, or for every k there exists a finite

word w such that L̂(πj,k)w |= r2

HOL deduction can be used to derive and verify proof rules
McMillan’s ‘circular inference rule’ An iteration rule (c.f. Hoare Logic while-rule)

‘¬[f2U¬f1]’ means ‘f2 up to t−1 implies f1 at t’,

‘¬[f1U¬f2]’ means ‘f1 up to t−1 implies f2 at t’,

so:
¬[f2U¬f1], ¬[f1U¬f2]

G(f1 ∧ f2)

assume functions f , b and g satisfy:

∀x. f(x) = if b(x) then f(g(x)) else x

and ‘<x>’ means ‘the current state is x’, then:

∀x. G(<x> → X!<g(x)>)

∀x. <x> → next event(¬b)<f(x)>

