
Executing the formal semantics
of the Accellera Property Specification Language

by mechanised theorem proving

Mike Gordon1, Joe Hurd1 and Konrad Slind2

1 University of Cambridge Computer Laboratory, William Gates Building,
JJ Thomson Avenue, Cambridge CB3 0FD, U.K.,

2 University of Utah, School of Computing, 50 South Central Campus Drive,
Salt Lake City, Utah, UT84112, USA

Abstract. The Accellera Property Specification Language (PSL) is de-
signed for the formal specification of hardware. The Reference Manual
contains a formal semantics, which we previously encoded in a machine
readable version of higher order logic. In this paper we describe how
to ‘execute’ the formal semantics using proof scripts coded in the HOL
theorem prover’s metalanguage ML. The goal is to see if it is feasible to
implement useful tools that work directly from the official semantics by
mechanised proof. Such tools will have a high assurance of conforming
to the standard. We have implemented two experimental tools: an inter-
preter that evaluates whether a finite trace w, which may be generated by
a simulator, satisfies a PSL formula f (i.e. w |= f), and a compiler that
converts PSL formulas to checkers in an intermediate format suitable for
translation to HDL for inclusion in simulation test-benches. Although our
tools use logical deduction and are thus slower than hand-crafted imple-
mentations, they may be speedy enough for some applications. They can
also provide a reference for more efficient implementations.

1 Introduction

We describe the implementation of two tools that work by applying theorem
proving strategies to the formal semantics of the Accellera Property Specifica-
tion Language (PSL [3]). The implementation method guarantees that the results
are compliant with the standard. Accellera [2] is an industry consortium formed
in 2000 by combining “Open Verilog International” and “VHDL International”.
PSL is being developed as a standard property language for both dynamic ver-
ification (e.g. simulation) and static verification (e.g. model checking) [8]. The
design of PSL is based on IBM’s Sugar language.

Previously we constructed a deep embedding of the Sugar semantics in higher
order logic. Using the HOL theorem proving system we proved various general
meta-theorems (see Section 2) and were able to provide some feedback and bug
reports to the language designers [12, 11]. As the semantics evolved into the
current standard we tracked the changes and made sure that our proofs in HOL
still went through. Our semantics is believed to correspond faithfully to the
official formal semantics in the PSL Manual, but we cannot be completely certain
because the official semantics is expressed in a mixture of English and LATEX.

2

Not only can theorem provers like HOL be used to prove meta-theorems, they
can also be programmed to dynamically generate theorems for particular models
and formulas. This provides a way of implementing tools that work deductively.
The approach of having tools with ‘HOL Proof Inside’ has been explored by the
Prosper project [7] and it is our goal to apply Prosper ideas to build verification
tools that work with ‘deduction from PSL semantics inside’. This paper describes
some preliminary experiments.

PSL has four kinds of syntactic constructs: Boolean Expressions b, Sequential
Extended Regular Expressions r (SEREs), Foundation Language (FL) formulas
f and Optional Branching Extension (OBE) formulas.

The PSL Foundation Language (FL) contains standard future-time LTL for-
mulas as well as less standard formulas that are composed out of regular expres-
sions. Formula {r}(f) is true if f holds at the last state of any sequence matching
r; formula {r1} 7→ {r2}! is true if every sequence matching r1 is followed by a
sequence matching r2. FL also has abort formulas f abort b that check f but
aborts the checking if a state in which b is true is encountered, and clocking
formulas f @c that are true when f is true of the sequence of states consisting
of only those states for which clock c holds.

The OBE is conventional branching time Computation Tree Logic (CTL).
Hasan Amjad has built a symbolic model checker for OBE properties that uses
BDD representation judgements applied to our semantics to calculate the truth-
value of PSL properties with respect to Kripke structures. This is described
elsewhere [4].

The semantics of SEREs specifies w |= r to mean that a finite sequence
of states w matches the regular expression r. Then semantics of FL formulas
specifies w |= f to mean that formula f holds of a path (i.e. a finite or infinite
sequence of states). The detailed semantics is in Section 2. PSL also has a large
number of operators that are defined in terms of the primitives. As we shall
illustrate, they can be added by making definitions in HOL.

Using standard methods of semantic embedding, w |= f can be viewed as a
boolean term of higher order logic, and then automated proof by the HOL system
can be applied. We have implemented a proof strategy to evaluate w |= f where
w is a specific finite path and f is a formula. Currently all formulas except aborts
are covered (though a few special cases of w |= f abort b can be evaluated). This
strategy implements a tool that is useful for sanity checking that a property
expresses what one expects: one can directly evaluate it on example paths and
the result is guaranteed to correspond to the official semantics. Example paths
can either be input directly as a sequence of states (a state is a set of atomic
propositions), or can be captured from a simulation run (see Section 3.3 for
examples). Evaluation is fast enough to be used on simple examples and provides
a pedagogically useful animation of the semantics.

Our second tool, inspired by the IBM FoCs system [1], compiles a formula
f (from a subset of PSL formulas) into a checker automaton that can be added
to a simulation test-bench to detect when a property is violated. The checker is
initially represented in an HDL-neutral format but can be ‘pretty printed’ into

3

the syntax of particular HDLs. We have implemented a simple converter that
generates Verilog. This provides a way of prototyping tools similar to FoCs, but
which are guaranteed by construction to conform to the Accellara standard. Al-
though generating a checker can be slow (seconds to minutes), the resulting HDL
code can be efficient, and it is guaranteed to be equivalent to the PSL property it
was compiled from. We think this compiler might be useful for debugging other
property generators. Also, since the compilation is driven by symbolic execution,
it can be tuned just by adding new theorems into the set of rules that are used.

The rest of this paper is as follows: Section 2 describes the Accellera property
Specification Language (PSL) and its semantics in higher order logic; Section 3
presents our first tool, which evaluates w |= f for a given w and f ; Section 4
presents our second tool, a checker generator.

2 The Accellera Property Specification Language PSL
This section describes the semantics of the linear parts of PSL (boolean expres-
sions, SEREs, FL formulas) and is a careful manual transcription of the official
semantics in the Language Reference Manual [3] into the machine readable logic
supported by the HOL system.

Boolean expressions are evaluated with respect to states. SEREs are evalu-
ated with respect to finite sequences of states, and FL formulas with respect to
finite or infinite sequences of states. A non-empty set P of atomic propositions
is assumed given. A state is a subset of P , i.e. the set of propositions that are
true in the state. If p ranges over P , then the syntax of boolean expressions b is:

b ::= p (Atomic proposition)
| ¬b (Negation)
| b1 ∧ b2 (Conjunction)

This is represented in higher order logic by defining a new type (using a data
type definition mechanism), parameterised on P , whose elements are boolean
expressions. The semantics of boolean expressions are specified by defining s |= b,
where s ⊆ P , by structural induction over the type of boolean expressions:

(s |= p = p ∈ s) ∧ (s |= ¬b = ¬(s |= b)) ∧ (s |= b1 ∧ b2 = s |= b1 ∧ s |= b2)

Here, and in what follows, the operator “|=” binds tightly, so that, for example,
s |= b1 ∧ s |= b2 means (s |= b1) ∧ (s |= b2) not s |= (b1 ∧ s |= b2). The
symbols ¬ and ∧ are overloaded: the occurrence of ¬ in ¬b is part of the boolean
expression syntax of PSL, but the occurrence in ¬(s |= b) is negation in higher
order logic. Similarly ∧ is overloaded: the occurrence in b1 ∧ b2 is part of the
boolean expression syntax, but the other occurrences are conjunction in higher
order logic.

2.1 Semantics of unclocked SEREs and FL formulas

In this section we do not specify the semantics of clocked SEREs r@c and for-
mulas f@c. These are described in Section 2.2.

The syntax of SEREs is represented in higher order logic by defining a new
type whose elements represent SEREs. If r, r1, r2 etc. range over Sequential Ex-
tended Regular Expressions (SEREs) and b and c range over boolean expressions,
then the syntax of SEREs is:

4

r ::= b (Boolean formula)
| {r1} | {r2} (Disjunction)
| r1; r2 (Concatenation)
| r1 : r2 (Fusion: overlapping concatenation)
| {r1}&&{r2} (Length matching conjunction)
| r[∗] (Repeat)
| r@c (Clocking – semantics in Section 2.2)

The semantics of a SERE r is given by specifying w |= r for every finite
sequence of states w. This can be read as “word w is recognised by regular
expression r”.

Words are represented as lists. A list containing elements e0, . . . , en is denoted
by [e0; . . . ; en]. Juxtaposition of words denotes concatenation (e.g. w[s]w′ is the
concatenation of w, [s] and w′). If wlist is a list of lists then Every p wlist
applies the predicate p to every element of wlist and returns the conjunction of
the result (e.g. in the semantics below Every (λw . w |= r) wlist asserts w |= r for
every w in wlist) and Concat wlist denotes the concatenation of the lists in wlist
(e.g. Concat [[a; b]; [c]; [d ; e; f]] = [a; b; c; d ; e; f]). The notation |w| denotes the
length of w (empty words have length 0) and wi denotes the ith element of w
counting from 0, so w0 is the first element (note that subscripts on symbols not
denoting lists are just subscripts). The input and output to HOL shown in this
paper has been typeset using a HOL-to-Latex translator implemented by Keith
Wansbrough. Applying this translator to the HOL semantics of SEREs yields:

(w |= b = (|w | = 1) ∧ w0 |= b) ∧
(w |= r1; r2 = ∃w1 w2 . (w = w1 w2) ∧ w1 |= r1 ∧ w2 |= r2) ∧
(w |= r1 : r2 = ∃w1 w2 l . (w = w1 [l]w2) ∧ w1 [l] |= r1 ∧ [l]w2 |= r2) ∧
(w |= {r1} | {r2} = w |= r1 ∨ w |= r2) ∧
(w |= {r1}&&{r2} = w |= r1 ∧ w |= r2) ∧
(w |= r [∗] = ∃wlist . (w = Concat wlist) ∧ Every(λw . w |= r)wlist)

It is hoped that this semantics requires no additional explanation. Interested
readers can compare it to the semantics in the PSL Reference Manual [3, B.2.2.1].

The syntax of PSL Foundation Language Formulas (FL) is given below. The
suffix “!” found on some constructs indicates that these are ‘strong’ (i.e. liveness-
enforcing) operators. If the corresponding weak operator (which is written with-
out the “!” suffix) can be defined in terms of FL formulas, then it is not included
in the core and is regarded as an defined operator (e.g. Xf = ¬X!¬f and
f@c = ¬(¬f@c!)). The distinction between strong and weak operators is dis-
cussed and motivated in the PSL Manual [3, Section 4.4.3].

The syntax is represented in higher order logic by defining a new type whose
elements are formulas. The FL primitives listed below are redundant. For exam-
ple, {r1} 7→ {r2}! and X! f can be defined in terms of suffix implication.

5

f ::= p (Atomic formula)
| ¬f (Negation)
| f1 ∧ f2 (Conjunction)
| X! f (Successor)
| [f1 U f2] (Until)
| {r}(f) (Suffix implication)
| {r1} 7→ {r2}! (Strong suffix implication)
| {r1} 7→ {r2} (Weak suffix implication)
| f abort b (Abort)
| f@c! (Clocking – semantics in Section 2.2)

Paths can be either finite or infinite. The notation wi denotes the i-th tail
of w, i.e. the path obtained by chopping i elements off the front of w (so
w0 = w). The notation wi,j denotes the finite sequence of states from i to j
in w, i.e. wiwi+1 · · ·wj . The juxtaposition wi,jw′ denotes the path obtained by
concatenating the finite sequence wi,j on to the front of the path w′. The HOL
semantics of FL formulas is:

(w |= b = |w | > 0 ∧ w0 |= b) ∧
(w |= ¬f = ¬(w |= f)) ∧
(w |= f1 ∧ f2 = w |= f1 ∧ w |= f2) ∧
(w |= X! f = |w | > 1 ∧ w1 |= f) ∧
(w |= [f1 U f2] = ∃k ∈ (0 .. |w |). w k |= f2 ∧ ∀j ∈ (0 .. k). w j |= f1) ∧
(w |= {r}(f) = ∀j ∈ (0 .. |w |). w 0,j |= r ⇒ w j |= f) ∧
(w |= {r1} 7→ {r2}! = ∀j ∈ (0 .. |w |). w0,j |= r1 ⇒ ∃k ∈ (j .. |w |). w j ,k |= r2)∧
(w |= {r1} 7→ {r2} =
∀j ∈ (0 .. |w |).
w0,j |= r1 ⇒ (∃k ∈ (j .. |w |). w j ,k |= r)∨(∀k ∈ (j .. |w |). ∃w ′. w j ,k w ′ |= r2))∧

(w |= f abort b = w |= f ∨w |= b∨∃j ∈ (1 .. |w |). ∃w ′. w j |= b∧w0,j−1w ′ |= f)

This semantics is a careful formalisation of the official semantics, with the
exception that |w | > 0 has been added to the definition of w |= b. This addi-
tion ensures that formulas are defined for empty paths (the official semantics is
undefined). The semantics for non-empty paths is unchanged.

2.2 Semantics of clocked SEREs and FL formulas

SEREs and formulas not containing “@” are called unclocked and the sets of
unclocked SEREs and formulas the unclocked subsets. In the previous section
only the semantics of the unclocked subsets were defined. This is called the
unclocked semantics.

Clocked SEREs have the form r@c and strongly clocked formulas the form
f @c!, where c is a boolean expression that is true when the clock is asserted.

Weakly clocked formulas f @c are defined by f @c = ¬((¬f)@c!). Intuitively,
w |= r@c and w |= f @c! mean, respectively, that w |c |= r and w |c |= f where
w |c is obtained from w by removing (‘projecting out’) all states in which c is
false (i.e. restricting w to states in which c is true).

The formal semantics in the Reference Manual doesn’t use projections, in-
stead two separate semantics are given: the first one defines the semantics of

6

all constructs (included clocked ones) directly, the second one provides a set
of ‘rewrites’ that can be used to recursively eliminate all occurrences of “@”,
i.e. translate into the unclocked subsets.

The direct semantics is specified by recursively defining w |=c r and w |=c f
for an arbitrary clock c, and then the semantics of a SERE r and formula f are
w |=T

r and w |=T
f , respectively, where T is the top-level clock which is always

true. The top-level semantics with a clock c are w |=T
r@c and w |=T

f @c!.
The rewrites semantics is formalised by first defining, for each clock c, a

function T c that maps an arbitrary SERE or formula into the unclocked subset.
Thus λc. T c is a function mapping a clock c to a translation function T c which
has c as the clock context. The top-level clock is T, so the top-level translations
of r and f are T T(r) and T T(f). The meanings of these can then be computed
using the unclocked semantics in Section 2.1.

The definition of |=c is much more complex than the definition of |=, and we do
not give it here. However, we have formalised it in higher order logic and proved
[12, 11] the sanity checking property that, if ClockFree(r) and ClockFree(f) mean
that r and f are unclocked, then:

` ∀r w . ClockFree(r)⇒ (w |=T
r = w |= r)

` ∀f w . ClockFree(f)⇒ (w |=T
f = w |= f)

We have also proved using the HOL system that:

` ∀r w . w |=T
r = w |= T T(r)

` ∀f w . w |=T
f = w |= T T(f)

which allows us to evaluate the semantics of any construct by first applying these
equations and then using the unclocked semantics.

The definition of T c(r) and T c(f) is by recursion over the structure of SERE
r and formula f . For SEREs:

(T c(b) = (¬c[∗]; c ∧ b)) ∧
(T c(r1; r2) = T c(r1); T c(r2)) ∧
(T c(r1 : r2) = T c(r1) : T c(r2)) ∧
(T c({r1} | {r2}) = {T c(r1)} | {T c(r2)}) ∧
(T c({r1}&&{r2}) = {T c(r1)}&&{T c(r2)}) ∧
(T c(r [∗]) = T c(r)[∗]) ∧
(T c(r@c1) = (¬c1[∗]; c1 : T c1(r)))

and for formulas:

(T c(b) = b) ∧
(T c(¬f) = ¬T c(f)) ∧
(T c(f1 ∧ f2) = T c(f1) ∧ T c(f2)) ∧
(T c(X! f) = X! ([¬c U (c ∧ T c(f))])) ∧
(T c([f1 U f2]) = [(c ⇒ T c(f1)) U (c ∧ T c(f2))]) ∧
(T c({r}(f)) = {T c(r)}([¬c U (c ∧ T c(f))])) ∧
(T c({r1} 7→ {r2}!) = {T c(r1)} 7→ {T c(r2)}!) ∧
(T c({r1} 7→ {r2}) = {T c(r1)} 7→ {T c(r2)}) ∧
(T c(f abort b) = T c(f) abort (c ∧ b)) ∧
(T c(f @c1!) = [¬c1 U (c1 ∧ T c1(f))])

7

3 Executing the formal semantics

The HOL system has an ML function EVAL [5] which when applied to a term t
proves a theorem ` t = t′, where t′ is the result of evaluating t. EVAL performs
call-by-value order rewriting efficiently using logic definitions that are in force
in the context in which it is invoked. It can also invoke equations and decision
procedures that have been explicitly added to the context.

3.1 Executing the clock removal rewrites

The semantics of a formula f with respect to a path w is w |=T
f . The first step

in evaluating w |=T
f is to rewrite with the equations:

` ∀r w . w |=T
r = w |= T T(r) and ` ∀f w . w |=T

f = w |= T T(f)

The next step is to execute the definition of T T, and the final step is to evaluate
the unclocked semantics (Section 3.2).

The clocking removal rewrites are directly executable, but the results are
complicated. For example EVAL (T c(T[∗]; {¬rq@c1}&&{ak@c2}; rq@c1)) evalu-
ates to the almost completely incomprehensible theorem:

` T c(T[∗]; {¬rq@c1}&&{ak@c2}; rq@c1) =
¬c[∗]; c ∧ T[∗]; {¬c1[∗]; c1 : ¬c1[∗]; c1 ∧ ¬rq}&&{¬c2[∗];
c2 : ¬c2[∗]; c2 ∧ ak};¬c1[∗]; c1 : ¬c1[∗]; c1 ∧ rq

This illustrates how much more natural and high-level are properties expressed
using the @c clocking construct. Note also that c1 : ¬c1[∗] is equivalent to
c1, which shows the need to perform peephole optimisations on the output of
naive evaluation with the rewrites. Executing the rewrites for formulas typically
produces even more incomprehensible results than with SEREs! For example,
consider the following (the operator before is defined in Section 3.3):

` T c({T[∗];¬ak1; ak1; T}(¬ak2 ∧X! (ak2) before ¬ak1 ∧X! (ak1))) =
{¬c[∗]; c ∧ T[∗];¬c[∗]; c ∧ ¬ak 1;¬c[∗]; c ∧ ak1;
¬c[∗]; c ∧ T}([¬c U c∧¬¬[¬¬¬c∧¬¬¬ak 1∧X! ([¬c U c∧ak1]) U c∧¬ak2∧
X! ([¬c U c ∧ ak2]) ∧ ¬¬ak1 ∧X! ([¬c U c ∧ ak1])] ∧ ¬¬[¬¬¬c ∧ ¬T U c ∧
¬¬¬ak1 ∧X! ([¬c U c ∧ ak1])]])

Just looking at this suggests that boolean simplifications should be applied to the
result of naive evaluation. Simple evaluation like this can provide a useful tool
development aid, as concrete examples may provide insight into the semantics of
clocking that is not immediately apparent from the general semantic definitions.

3.2 Executing the unclocked formula semantics

In some cases w |= f can be executed directly, in other cases we have to first
transform it into a different form.

Boolean expressions
The semantics of boolean expressions can be directly evaluated. For example,
[s]w |=T

a ∧ b evaluates to a ∈ s ∧ b ∈ s (if s were an explicit set rather than a
variable then EVAL could reduce this further).

8

Negations ¬f , conjunctions f1 ∧ f2 and next-state X! f
To evaluate formulas, first note that w |= ¬f , w |= f1 ∧ f2 and w |= X! f can
be rewritten directly using the semantics. For example, here are the results of
invoking EVAL on p ∧ X! f with three increasingly specific paths (in each case
EVAL is applied to the term on the left hand side of the equation, and generates
a theorem showing the evaluation of this term):

` w |= p ∧X! f = (|w | > 0 ∧ w0 |= p) ∧ |w | > 1 ∧ (w1) |= f

` ([s0]w) |= p ∧X! f = s0 |= p ∧ |w |+ 1 > 1 ∧ w |= f

` s0s1s2s3s4s5s6s7s8s9 |= p ∧X! f = s0 |= p ∧ s1s2s3s4s5s6s7s8s9 |= f

These illustrate symbolic evaluation: when laws apply they are used to reduce a
term, but if no laws are applicable then the term is left unevaluated: |w |+ 1 > 0
can be evaluated, since EVAL has been told ` ∀n. n +1 > 0 = T, but |w |+1 > 1
cannot be evaluated for an arbitrary variable w, but the more specific term
|s0s1s2s3s4s5s6s7s8s9| + 1 > 1 can be evaluated: even though the states si are
left as variables, since the path has length 10, which is greater than 0. With
a fully concrete path the truth of the formula is completely determined. To
display concrete examples we write {. . .}{. . .} · · · {. . .} |= f where {. . .} are sets
of atomic propositions representing states. Note that in such examples braces
are set brackets, not part of SERE syntax. For example:

` {a}{a, b}{b} |= a ∧X! (b) = T

Until formulas [f1 U f2]
The semantics of the until-construct is:

w |= [f1 U f2] = ∃k ∈ (0 .. |w |). w k |= f2 ∧ ∀j ∈ (0 .. k). w j |= f1

which cannot be directly executed, but there is a standard recursive version of
this definition that can easily be proved as a theorem and is directly executable:

` w |= [f1 U f2] = |w | > 0 ∧ (w |= f2 ∨ w |= f1 ∧ w1 |= [f1 U f2])

The following example is from the Reference Manual [3, Example 2, page 45].

time 0 1 2 3 4 5 6 7 8 9

clk1 0 1 0 1 0 1 0 1 0 1
a 0 0 0 1 1 1 0 0 0 0
b 0 0 0 0 0 1 0 1 1 0
c 1 0 0 0 0 1 1 0 0 0
clk2 1 0 0 1 0 0 1 0 0 1

Define w1 to be this path, namely:

w1 = {c,clk2}{clk1}{}{clk1,a,clk2}{a}{clk1,a,b,c}{c,clk2}

{c,clk2}{clk1,b}{b}{clk1,clk2}

Recall that weak clocking is defined by: f @c = ¬(¬f @c!). After making this
definition we can evaluate examples like (w1 i) |=T

(c ∧ X! ([a U b]))@clk1 and
(w1 i) |=T

(c ∧X! (([a U b])@clk1))@clk2 for 0 ≤ i < |w1 | and confirm that the
first is true only when i is 4 or 5, and the second only when i is 0. The semantics
of multiple clocking is subtle (clocks do not accumulate: an inner clock ignores
an outer one) and is still under discussion and may change. Our tools facilitate
experiments on concrete scenarios to gain insight into the current semantics.

9

Suffix implication {r}(f)
Suffix implication formulas {r}(f) are executed by generating a matcher for r
and then invoking EVAL on f whenever a match is found. In detail, the SERE
r is first lifted to an element of a HOL theory of regular expressions (based on
Nipkow’s Isabelle work [13], but with many details adjusted for PSL), and then
a proof procedure lazily constructs the state set, accepting states and transition
table of an equivalent DFA. This DFA is run along a finite trace w, and whenever
it enters an accepting state EVAL is used to check x |= f on the remaining trace x.
The constants that do this lifting (sere2regexp) and DFA execution (acheck) are
defined to be executed efficiently in the logic, but the following theorem shows
that they also preserve the semantics of the original suffix implication formula:

` ∀w r f . ClockFree(r)⇒ (w |= {r}(f) = acheck (sere2regexp r) (λx . x |= f) w)

Strong suffix implications {r1} 7→ {r2}!
Strong implications {r1} 7→ {r2}! are reduced to suffix implications by:1

` ∀w r1 r2. w |= {r1} 7→ {r2}! = w |= {r1}(¬{r2}(F))

Weak suffix implications {r1} 7→ {r2}
Weak implications are executed by, if necessary, performing a reachability cal-
culation inside HOL. We add a Prefix operator2 to the HOL regular expression
theory, with the semantics that Prefix(r) matches a word w if it can be ex-
tended by w′ such that r matches ww′. We can now use our generic lifting and
DFA execution constants to execute weak implication, and the following theorem
guarantees that the semantics of the original formula are preserved:

` ∀w r1 r2.
ClockFree(r1) ∧ ClockFree(r2)⇒
w |= {r1} 7→ {r2} =

acheck (sere2regexp r1)
(λx . x |= ¬{r2}(F) ∨ amatch (Prefix (sere2regexp r2)) x) w

The amatch constant checks whether a regular expression matches a word, by
building an equivalent DFA, executing it along the word, and testing whether it
is in an accepting state at the end. If the regular expression is Prefix(r), then the
state s is accepting precisely when it is possible to reach an accepting state from
s on the transition graph of (the DFA corresponding to) r. To implement this, we
defined a version of Dijkstra’s reachability algorithm, and proved it correct [6].

To summarise, we execute w |= {r1} 7→ {r2} solely by deductions in the
logical kernel. We first use the above theorem to reduce the problem to exe-
cuting a DFA. This involves performing many on-the-fly deductions to evaluate
transitions and accepting states. The Prefix operator is the most complex of
these on-the-fly deductions, requiring a reachability calculation on the transi-
tion graph. This reachability calculation can be reduced to an instance of Di-
jkstra’s algorithm, but to make that step we need the correctness proof of the

1 This equivalence was first observed by Dana Fisman (private communication).
2 The prefix operators used for weak implication (Prefix) and abort (FormPrefix) are

based on an idea from Dana Fisman (private communication).

10

algorithm. The end result of all this deduction is a HOL theorem of the form
` (w |= {r1} 7→ {r2}) = b, where b is either T, F, or something more complex if
the original term contained variables.

Aborts f abort b

We currently do not have a fully general method of executing w |= f abort b,
but evaluation in some cases is possible. First define a formula prefix function
FormPrefix and an auxiliary function AbortAux.

FormPrefix w f = ∃w ′.ww ′ |= f
AbortAux w f b n = ∃j ∈ n .. |w | .w j |= b ∧ FormPrefix w 0,j−1 f

then it is easy to prove:

` w |= f abort b = w |= f ∨ w |= b ∨ AbortAux w f b 1

` AbortAux w f b n =
n < |w | ∧ (wn |= b ∧ FormPrefix w 0,n−1 f ∨ AbortAux w f b n + 1)

and adding these to the rewrites used by EVAL enables f abort b to be executed
in the trivial cases when w |= f or w |= b evaluate to true. For a non-trivial
concrete example, consider the following (c.f. [14, Fig. 8, page 22]):

time 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

start 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
req 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
ack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
interrupt 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

this corresponds to the finite path w2 where

w2 = {}{start}{}{}{req}{}{}{}{}{}{interrupt}{}{}{}{}{}

If we define:

∀f . F f = [T U f], ∀f . eventually!f = F f

∀f . G f = ¬(F (¬f)), ∀f . always f = G f

then EVAL will prove:

` w2 |= always(start → (always(req → eventually!ack) abort interrupt))
=

FormPrefix ({start}{}{}{req}{}{}{}{}{}) ¬[T U ¬¬¬¬req ∧ ¬[T U ack]]

The right hand side of this equation is true if path {start}{}{}{req}{}{}{}{}{}
can be extended to make (¬[T U ¬¬¬¬req ∧¬[T U ack]]) true. In this particular
case it is sufficient to only consider extensions either by the empty path or by
a singleton path consisting of one state of the form {x}. The following easily
proved theorem says that w |= f or ∃x .(w [{x}]) |= f is sufficient.

` FormPrefix w f = w |= f ∨ (∃x .(w [{x}]) |= f) ∨ FormPrefix w f

For the example above, adding this to the equations used by EVAL results in a
term ∃x .¬(¬(ack = x) ∨ (req = x) ∧ ¬(ack = x)) being generated. EVAL can
be programed to invoke a decision procedure on such terms. This is an ad hoc
partial solution. We hope eventually to make our implementation complete.

11

3.3 More examples

The first example below illustrates the utility of having an automatic semantics
calculator. The second example shows how such a calculator can be used to
analyse behaviours captured from simulation.

3.3.1 An example from an Accellera online discussion

A recent online discussion [9, 10] concerned the intervals for which the SERE
(((a; b))@clk1; c)@clk2 “hold tightly” within the behaviour:

time 0 1 2 3 4 5 6 7

clk1 0 1 0 1 0 1 0 1
a 0 1 1 0 0 0 0 0
b 0 0 0 1 0 0 0 0
c 0 0 0 0 1 0 1 0
clk2 1 0 0 1 0 0 1 0

The Reference Manual introduces the terminology r “holds tightly” for w if and
only if w |=T

r . To understand this example, note that clocks don’t accumulate:
only the current, i.e. innermost, one is used to sample the path. To analyse this
example, a simple ML function can easily be written that evaluates a SERE on
all sub-intervals of a path and returns the results that correspond to intervals
for which the SERE holds. Using this we can analyse the example and deduce
that the only interval where the SERE holds tightly is:

` {clk2}{clk1, a}{a}{clk1, b, clk2}{c}{clk1}{c, clk2} |=T
a; b@clk1; c@clk2 = T

This resolves the discussion in favour of the Manual ([10] is correct, [9] is wrong).
Note that the other examples in the Manual can be (and have been) automat-
ically checked. The fact that there is ongoing discussion about properties as
simple as this suggests that our semantics calculator might be a useful tool for
property writers.

3.3.2 An example from the FoCs Manual

Evaluation in HOL is nearly instantaneous for examples of the scale above.
Whilst we would not claim our evaluator can handle ‘industrial scale’ problems,
it can be applied to significantly more complex examples. In the IBM FoCs Man-
ual there is a Sender-Buffer-Receiver in which the Sender (S) communicates with
the buffer (B) using four-phase handshakes with request signal StoB REQ and
acknowledgement BtoS ACK, and the Buffer communicates with the Receiver
(R) with a four-phase handshake with request signal BtoR REQ and acknowl-
edgement RtoB ACK.

We can define in HOL a function FourPhase such that FourPhase req ack is
true if signals req and ack satisfy properties required of a four-phase handshake.
First define:

∀r . never(r) = {T[∗]; r} 7→ {F}
then define:

FourPhase req ack =
never(T[∗];¬req ∧ ack ; req) ∧ never(T[∗]; req ∧ ¬ack ;¬req) ∧
never(T[∗];¬ack ∧ ¬req ; ack) ∧ never(T[∗]; ack ∧ req ;¬ack)

12

Definitions like FourPhase in HOL are analogous to definitions of verification
units (vunits) in PSL.

We have written a Verilog model to generate paths. If SimRun is a 700
state Verilog generated path, our tool currently takes about a couple of minutes
on a 1GHz machine to evaluate: SimRun |=T

FourPhase StoB REQ BtoS ACK
and SimRun |=T

FourPhase BtoR REQ RtoB ACK . Notice that both never and
FourPhase have an initial T[∗]. If we remove the occurrences of T[∗] in FourPhase
then the checking is more than twice as fast. If we augmented the rewrites used
by EVAL to include:

` ∀w r1 r2 r3. w |= (r1; r2); r3 = w |= r1; (r2; r3)
` ∀w r . w |= r [∗]; r [∗] = w |= r [∗]

then this optimisation could be made to happen automatically.
If, using the definition of G f given earlier, we define:

[f1 W f2] = [f1 U f2] ∨G f1, f1 before f2 = [¬f2 W f1 ∧ ¬f2]

then AckInterleave ack1 ack2 defined below states that ack 2 is asserted between
any two ack1 assertions:

AckInterleave ack1 ack2 =
{(T[∗];¬ack1; ack1)}(¬ack2 ∧X! (ack2) before ¬ack1 ∧X! (ack1))

Checking that the conjunction below evaluates to T takes about 5 minutes.

SimRun |=T
AckInterleave BtoS ACK RtoB ACK ∧

SimRun |=T
AckInterleave RtoB ACK BtoS ACK

This corresponds to the vunit ack interleaving in the FoCs Manual example.

4 Compiling the formal semantics

In the last section we saw how to execute the formal semantics by deduction
in the theorem prover. In particular, SEREs are executed by constructing a
provably equivalent DFA. In the same way, some PSL formulas are equivalent
to DFAs, where a violation of the formula corresponds to the DFA entering an
accepting state. In this section, we show how to safely compile a subset of such
PSL formulas as ‘checker modules’ in a HDL. An off-the-shelf simulation tool is
then used to simulate the circuit together with the checker, and any violations
of the property are detected and reported to the user.

To illustrate the operation of the compiler, we will use part of the FourPhase
property (introduced in Section 3.3).

never(¬StoB REQ ∧ BtoS ACK ; StoB REQ)

This says that whenever StoB REQ is low and BtoS ACK is high, it is never the
case that StoB REQ will go high before BtoS ACK goes low. By the definition
of never (also in Section 3.3), this property holds if and only if the following
SERE does not hold for any initial segment of the trace:

T[∗];¬StoB REQ ∧ BtoS ACK ; StoB REQ

If we convert this SERE to an equivalent DFA, it is easy to check whether it
accepts any initial segment of a trace. We simply advance the DFA along the

13

trace according to its transition function, and if it ever reaches an accepting
state we report that the never property has been violated.

To summarise, compiling the property never(r) reduces to generating an
equivalent DFA to the SERE T[∗]; r , and replacing accepting states with an
error message reporting that the property has been violated.

Let us now look more closely at the compilation process, to see how the
semantics are preserved. We begin with the PSL formula never(r). We convert
the SERE T[∗]; r to an element of the HOL regular expression theory, and then
to a DFA with a set of states, a subset of accepting states and a transition
table. We intend to simulate this DFA concurrently with a circuit, and report
an error whenever the DFA enters an accepting state. We can consider the circuit
simulation to be producing an infinite trace, and the DFA effectively run on all
initial segments of this. The following theorem shows that this mode of operation
preserves the semantics of the original PSL formula never(r):

` ∀r w . ClockFree(r) ∧ (|w | =∞)⇒
(w |= never(r) = ∀n. ¬amatch (sere2regexp (T[∗]; r))(w 0,n))

The next step is the extraction of the DFA from HOL to an ML data-type,
ready for a compiler back end to output code for a particular HDL. We use proof
as much as possible in this function, because it increases our confidence in the
correctness of the extracted DFA while incurring relatively little cost. The ML
function that performs the extraction takes as input a list of atomic propositions
and a regular expression, and returns for each reachable state of the DFA: (i)
an integer state identifier, and the HOL term that represents the state, (ii) a
boolean that is true for accepting states, and a HOL theorem proving this, and
(iii) a ‘condition’ data-type that encodes a series of tests on the truth value of
atomic propositions followed by a transition to a new state, with HOL theorems
proving the conditional transitions correct.

Shown below is the ML output from applying the DFA extraction function
to our example: R := sere2regexp (T[∗];¬StoB REQ ∧ BtoS ACK ; StoB REQ).

[(0, ‘[6]‘, (false, |- eval_accepts R [6] = F),
Branch("StoB_REQ",
Leaf(1, |- !s. StoB_REQ IN s ==> (eval_transitions R [6] s = [4])),
Branch("BtoS_ACK",
Leaf(2, |- !s.

~(StoB_REQ IN s) /\ BtoS_ACK IN s ==>
(eval_transitions R [6] s = [2; 4])),

Leaf(1, |- !s.
~(StoB_REQ IN s) /\ ~(BtoS_ACK IN s) ==>
(eval_transitions R [6] s = [4]))))),

(1, ‘[4]‘, (false, |- eval_accepts R [4] = F), ...),
(2, ‘[2; 4]‘, (false, |- eval_accepts R [2; 4] = F), ...),
(3, ‘[0; 4]‘, (true, |- eval_accepts R [0; 4] = T), ...)]

For reasons of space only the transition function for state 0 (the initial state) is
shown. The term representing this state is [6]3, the false indicates that this
state is not accepting, and is followed by a theorem proving this.

3 The values of the HOL terms representing states are an artifact of the DFA subset
construction, and should be treated as arbitrary terms.

14

The condition first tests the atomic proposition StoB REQ, and if true moves
to state 1 (which as we see is represented in HOL as [4]). The conditional
theorem at this leaf reflects this transition.

From this language independent description of a DFA, it is a simple matter
to generate versions in a HDL. We have implemented a pretty-printer for Verilog
syntax. The resulting Verilog module for our example property is shown in Fig. 1,
and it has correctly reported errors during simulations of a buggy buffer circuit.

module Checker (StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK);

input StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK;
reg [1:0] state;

initial state = 0;

always @ (StoB_REQ or BtoS_ACK or BtoR_REQ or RtoB_ACK)
begin
$display ("Checker: state = %0d", state);
case (state)
0: if (StoB_REQ) state = 1; else if (BtoS_ACK) state = 2; else state = 1;
1: if (StoB_REQ) state = 1; else if (BtoS_ACK) state = 2; else state = 1;
2: if (StoB_REQ) state = 3; else if (BtoS_ACK) state = 2; else state = 1;
3: begin $display ("Checker: property violated!"); $finish; end
default: begin $display ("Checker: unknown state"); $finish; end
endcase
end

endmodule

Fig. 1. The Verilog state machine for the example property.

5 Conclusions and future work

The main point of this paper is that a formal semantics is not just documen-
tation. Current theorem provers are powerful enough to be programmed to ex-
ecute semantics in interesting ways, though a major challenge is to engineer
the deductions to be fast enough to be useful. We have illustrated this with
two prototype tools. The first one could be useful for property developers and
teachers and learners of PSL. The second one illustrates a novel way of imple-
menting an EDA tool that guarantees conformance to the standard. We think
such semantics-based tools could eventually be made efficient enough for indus-
trial scale use, but one needs to choose applications where semantic accuracy is
more critical than performance. The times (minutes) quoted in Section 3.3 will
not impress members of the model checking community, but this doesn’t neces-
sarily mean they are unacceptable, given the correct-by-construction benefits of
the implementation method.

The work described here illustrates a convergence of computation and deduc-
tion, in which the execution of theorem proving strategies becomes a powerful
method of implementation. We plan to extend, package and ruggedise our pro-
totypes into standalone tools that automatically invoke HOL (currently they are

15

invoked from HOL via ML functions). The interpreter is complete excepts for
aborts, but the checker only handles a subset of formulas. Our goal is to cover
the whole of PSL.

6 Acknowledgements

Thanks to Cindy Eisner, Dana Fisman and Hasan Amjad for help with our
research, and Keith Wansbrough for help preparing the paper. Additional thanks
to Cindy Eisner for comments on an earlier version of this paper.

References

1. Yael Abarbanel, Ilan Beer, Leonid Gluhovsky, Sharon Keidar, and Yaron
Wolfsthal. FoCs: Automatic Generation of Simulation Checkers from For-
mal Specifications. In Computer Aided Verification, pages 538–542, 2000.
www.haifa.il.ibm.com/projects/verification/RB Homepage/ps/checkers.ps.

2. Accellera home page: www.accellera.org.
3. Accellera Property Specification Lanuage Reference Manual, Version 1.0.

www.eda.org/vfv/docs/psl lrm-1.0.pdf.
4. H. Amjad. Programming a symbolic model checker in a fully expansive theorem

prover. In Proceedings of the 16th International Conference on Theorem Proving
in Higher Order Logic, LNCS. Springer-Verlag, 2003. To appear.

5. Bruno Barras. Programming and computing in HOL. In J. Harrison and M. Aa-
gaard, editors, Theorem Proving in Higher Order Logics: 13th International Con-
ference, TPHOLs 2000, number 1869 in Lecture Notes in Computer Science, pages
17–37. Springer-Verlag, 2000.

6. Thomas H. Cormen, Charles Eric Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. MIT Press/McGraw-Hill, Cambridge, Massachusetts, 1990.

7. L. A. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind, G. Robinson, M. Gor-
don, and T. Melham. The prosper toolkit. In S. Graf and M. Schwartbach, editors,
Tools and Algorithms for Constructing Systems (TACAS 2000), number 1785 in
Lecture Notes in Computer Science, pages 78–92. Springer-Verlag, 2000.

8. The Accellera Formal Property Language Technical Committee home page:
www.eda.org/vfv.

9. Comment on Ex 2, p 34, PSL RM v1.0: /www.eda.org/vfv/hm/1017.html.
10. Reply to Comment on Ex 2, p 34, PSL RM v1.0: /www.eda.org/vfv/hm/1019.html.
11. Michael J. C. Gordon. Validating the PSL/Sugar semantics using automated rea-

soning. Formal Aspects of Computing. Special issue on Semantic Foundations of
Engineering Design Languages (to appear).

12. Michael J. C. Gordon. Using HOL to study Sugar 2.0 semantics. In Victor A.
Carreño, Cesar A. Muñoz, and Sofieǹe Tahar, editors, Track B Proceedings of
the 15th International Conference on Theorem Proving in Higher Order Logics,
TPHOLs2002, volume CP-2002-211736 of NASA Conference Proceedings, pages
87–100, 2002. http://shemesh.larc.nasa.gov/tphols2002/proceedings.html.

13. Tobias Nipkow. Verified lexical analysis. In Jim Grundy and Malcolm C. Newey,
editors, Theorem Proving in Higher Order Logics, 11th International Conference,
TPHOLs’98, Canberra, Australia, volume 1479 of LNCS. Springer, 1998.

14. Proposal Presented to the Accellera Formal Verification Technical Committee
www.haifa.il.ibm.com/projects/verification/sugar/Sugar 2.0 Accellera.ps.

