
Using HOL to study Sugar 2.0 semantics

Michael J. C. Gordon

University of Cambridge Computer Laboratory
William Gates Building, JJ Thomson Avenue, Cambridge CB3 0FD, U.K.
Email: mjcg@cl.cam.ac.uk Web: http://www.cl.cam.ac.uk/~mjcg

July 5, 2002

Abstract. The Accellera standards-promoting organisation has selected
Sugar 2.0, IBM’s formal specification language, as a standard that it
says will drive assertion-based verification. Sugar 2.0 combines aspects
of Interval Temporal Logic (ITL), Linear Temporal Logic (LTL) and
Computation Tree Logic (CTL) into a property language suitable for
both formal verification and use with simulation test benchs. As indus-
trial strength languages go it is remarkably elegant, consisting of a small
kernel conservatively extended by numerous definitions.
We are constructing a semantic embedding of Sugar 2.0 in the version of
higher order logic supported by the HOL system. To ‘sanity check’ the
semantics we tried to prove some simple properties and as a result a few
bugs were discovered. Further analysis may well reveal more.
We are contemplating a variety of applications of the mechanised seman-
tics, including the exploitation of existing work to build a Sugar model
checker inside HOL. In the longer term we want to investigate the use
of theorem proving to reason about models with infinite state spaces,
which might involve developing extensions of Sugar 2.0.

1 Background on Accellera and Sugar

The Accellera organisation’s website has their mission statement:

To improve designers’ productivity, the electronic design industry needs

a methodology based on both worldwide standards and open interfaces.

Accellera was formed in 2000 through the unification of Open Verilog

International and VHDL International to focus on identifying new stan-

dards, development of standards and formats, and to foster the adoption

of new methodologies.

Accellera’s mission is to drive worldwide development and use of stan-

dards required by systems, semiconductor and design tools companies,

which enhance a language-based design automation process. Its Board

of Directors guides all the operations and activities of the organisation

and is comprised of representatives from ASIC manufacturers, systems

companies and design tool vendors.

Faced with a plethora of syntactically and semantically incompatible formal
property languages, Accellera initiated a process of selecting a standard property
language to “drive assertion-based verification”.



2

Four contributions were initially considered

– Motorola’s CBV language;
– IBM’s Sugar (the language of its RuleBase FV toolset);
– Intel’s ForSpec;
– Verisity’s e language (the language of the Specman Elite testbench).

After a combination of discussion and voting, some details of which can be viewed
on the web1, attention was narrowed down to Sugar and CBV, and then in April
2002 a vote2 selected IBM’s submission, Sugar 2.0.

Sugar 2.0 is primarily an LTL-based language that is a successor to the CTL-
based Sugar 1 [1]. A key idea of both languages is the use of ITL-like [3] con-
structs called Sugar Extended Regular Expressions. Sugar 2.0 retains CTL con-
structs in its Optional Branching Extension (OBE), but this is de-emphasised in
the defining document.

Besides moving from CTL to LTL, Sugar 2.0 supports clocking and finite paths.
Clocking allows one to specify on which clock edges signals are sampled at (i.e.
it defines the ‘next event’ for each signal). The finite path semantics allows prop-
erties to be interpreted on simulation runs, as in test-bench tools like Specman
and Vera.

The addition of clocking and finite path semantics makes the Sugar 2.0 semantics
more than twice as complicated as the Sugar 1 semantics. However, for a real
‘industry standard’ language Sugar 2.0 is still remarkably simple, and it was
routine to define the abstract syntax and semantics of the whole language in
HOL [2].

In the rest of this paper we start by discussing the point of embedding Sugar in
HOL. Next we briefly review semantic embedding, illustrating the ideas on sim-
plified semantics of fragments of Sugar 2.0. We then give the complete semantics
of Sugar 2.0, and finally we discuss our small achievements so far in analysing
the semantics using the HOL system, including a discussion of the bugs found.

2 Why embed Sugar in HOL?

There are several justifications for the work described here. This project has only
just started and its goals are still being defined. Current motivations include the
following.

2.1 Sanity checking and proving meta-theorems

By formalising the semantics and passing it through a parser and type-checker
one achieves a first level of sanity checking of the definition. One also exposes
possible ambiguities, fuzzy corner cases etc (e.g. see Section 4.2). The process is
also very educational for the formaliser and a good learning exercise.

There are a number of meta-theorems one might expect to be true, and proving
them with a theorem prover provides a further and deeper kind of sanity check-
ing. In the case of Sugar 2.0, such meta-theorems include showing that expected
1 http://www.eda.org/vfv/hm/
2 http://www.eda.org/vfv/hm/0795.html



3

simplifications to the semantics occur if there is no non-trivial clocking, that
different semantics of clocking are equivalent and that if finite paths are ignored
then the standard ‘text-book semantics’ results. Such meta-theorems are gener-
ally mathematically shallow, but full of tedious details – i.e. ideal for automated
theorem proving. See Section 5 for what we have proved so far. It’s not much,
but we have already found minor bugs in the semantics!

A key feature of the Sugar approach is to have a small kernel and a large num-
ber of definitions. Using a theorem prover, the definitions can be validated by
proving that they achieve the correct semantics. See, for example, the analysis
of FirstRise and NextRise in Section 5 (these are not official Sugar definitions,
but the analysis here illustrates the idea of validating definitions).

2.2 Develop a machine readable semantics

The current Sugar 2.0 document is admirably clear, but it is informal math-
ematics presented as typeset text. Tool developers could benefit from a ma-
chine readable version. One might think of using some standard representation
of mathematical content, like MathML3, however there is currently not much
mathematically sophisticated tool support for such XML-based representations.

Higher order logic is a widely used formalisation medium (versions of higher
order logic are used by HOL, Isabelle/HOL, PVS, NuPrl and Coq) and the
semantic embedding of model-checkable logics in HOL is standard [5, 4]. Once
one has a representation in it then representations in other formats should be
straightforward to derive.

2.3 Research using our local tools

We are contemplating developing semantically-based reasoning and checking in-
frastructure in HOL to support Sugar 2.0, and a prerequisite for this is to have a
‘golden semantics’ to which application specific semantics can be proved equiv-
alent.

One area of research that we have an interest in is the development of prop-
erty languages that support data operations and can have variables ranging over
infinite data-types like numbers (e.g. including reals and complex numbers for
DSP applications). Some sort of mixture of Hoare Logic and Sugar 2.0 is being
contemplated (rather vaguely, it must be admitted). Developing the language
by extending an existing semantics is a way to ensure some ‘backward compat-
ibility’. Also, we might wish to prove sanity checking meta-theorem about our
extended language, e.g. that it collapses to Sugar 2.0 when there are no infinite
types.

2.4 Education

Both semantic embedding and property specification are taught as part of the
Computer Science undergraduate course at Cambridge4, and being able to illus-
trate the ideas on a real example like Sugar 2.0 is pedagogically valuable.
3 http://www.w3.org/Math/
4 http://www.cl.cam.ac.uk/users/mjcg/Teaching/SpecVer2/SpecVer2.html



4

The semantic embadding of Sugar 2.0 in the HOL system is an interesting case
study. It nicely illustrates some issues in making total functional definitions,
and the formal challenges attempted so far provide insight into how to perform
structural induction using the built-in tools. Thus Sugar 2.0 has educational
potential for training HOL users. In fact, the semantics described in this paper
is an example distributed with HOL.5

3 Review of semantic embedding in higher order logic

Higher order logic is an extension of first-order predicate calculus that allows
quantification over functions and relations. It is a natural language for formalis-
ing informal set theoretic specifications (indeed, it is usually more natural than
formal first-order set theories, like ZF). We hope that the HOL notation that
follows is sufficiently close to standard informal notation that it needs no sys-
tematic explanation.

We use Church’s λ-notation for denoting functions: a ‘lambda-term’ like λx. t,
where x is a variable and t a term, denotes the function that maps a value v

to the result of substituting v for the variable x in t (the infix notation x 7→ t

is sometimes used instead of λx. t). If P is a function that returns a truth-
value (i.e. a predicate), then P can be thought of a set, and we write x ∈ P

to mean P (x) is true. Note that λx. · · ·x · · · corresponds to the set abstraction
{x | · · ·x · · ·}. We write ∀x ∈ P. Q(x), ∃x ∈ P. Q(x) to mean ∀x. P (x) ⇒ Q(x),
∃x. P (x) ∧ Q(x), respectively.

To embed6 a language in HOL one first defines constructors for all the syntactic
constructs of the language. This is the ‘abstract syntax’ and provides a represen-
tation of parse trees as terms in the logic. The semantics is then given by defining
a semantic function that recursively maps each construct to a representation of
its meaning.

For Sugar 2.0, a model M is a quintuple (SM, S0M, RM, PM, LM), where SM is a set of
states, S0M is the subset of initial states, RM is a transition relation (so RM(s, s′)
means s′ is a possible successor state to s), PM is a set of atomic propositions,
and LM is a valuation that maps a state to the set of atomic propositions that
hold at the state (so L s p is true iff atomic proposition p is true in state s).

The syntax of boolean expressions b built from atomic propositions (ranged over
by p) using negation (¬) and conjunction (∧) is given by:

b ::= p (Atomic formula)
| ¬b (Negation)
| b1 ∧ b2 (Conjunction)

in HOL this is defined by a recursive type definition of a syntactic type of boolean
expressions.

5 http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/hol/hol98/examples/Sugar2/
6 We shall only be concerned with so called ‘deep embeddings’ here.



5

Let l range over predicates on PM, called “truth assignments” in the Sugar docu-
mentation. The semantics of boolean expressions is given by defining a semantic
function B SEM such that B SEM M l b if true iff b is built from propositions in
PM and it is true with respect to the truth assignment l.

If we write (M, l |= b) for B SEM M l b then the semantics is given by

((M, l |= p) = p ∈ PM ∧ p ∈ l)

∧
((M, l |= T) = T)

∧
((M, l |= ¬b) = ¬(M, l |= b))

∧
((M, l |= b1 ∧ b2) = (M, l |= b1) ∧ (M, l |= b2))

Before looking at the full official semantics of Sugar 2.0, we first consider a
simplified semantics in which there is no clocking, and paths are always infinite.
We consider separately the parts of Sugar 2.0 corresponding to Interval Temporal
Logic (ITL), Linear Temporal Logic (LTL) and Computation Tree Logic (CTL).

3.1 ITL: Sugar Extended Regular Expressions (SEREs)

Interval Temporal Logic (ITL) provides formulas that are true or false of inter-
vals of states. Here we just consider finite intervals, though recent formulations
of ITL7 allow intervals to be infinite. For Sugar we only need to consider ITL
formulas, as there are no constructs corresponding to ITL expressions (expres-
sions map intervals to values). Providing more elaborate ITL constructs in Sugar
strikes us as an interesting research topic.

The Sugar subset corresponding to ITL is called Sugar Extended Regular Ex-

pressions (SEREs). If r ranges over SEREs and p ranges over a set PM of atomic
propositions, then the syntax is given by:

r ::= p (Atomic formula)
| {r1} | {r2} (Disjunction)
| r1 ; r2 (Concatenation)
| r1 : r2 (Fusion: ITL’s chop)
| {r1} && {r2} (Length matching conjunction)
| {r1} & {r2} (Flexible matching conjunction)
| r[∗] (Repeat)

The semantics of SEREs is given by defining a semantic function S SEM such that
S SEM M w r if true iff w is in the language of the extended regular expression r.

We write (M, w |= r) for S SEM M w r.

If wlist is a list of lists then Concat wlist is the concatenation of the lists in
wlist and if P is some predicate then Every P wlist means that P (w) holds
for every w in wlist.
7 http://www.cms.dmu.ac.uk/˜cau/itlhomepage/



6

((M, w |= b) =

∃l. (w = [l]) ∧ (M, l |= b))

∧
((M, w |= r1;r2) =

∃w1 w2. (w = w1w2) ∧ (M, w1 |= r1) ∧ (M, w2 |= r2))

∧
((M, w |= r1:r2) =

∃w1 w2 l. (w = w1[l]w2) ∧
(M, (w1[l]) |= r1) ∧ (M, ([l]w2) |= r2))

∧
((M, w |= {r1}|{r2}) =

(M, w |= r1) ∨ (M, w |= r2))

∧
((M, w |= {r1}&&{r2}) =

(M, w |= r1) ∧ (M, w |= r2))

∧
((M, w |= {r1}&{r2}) =

∃w1 w2. (w = w1w2) ∧
(((M, w |= r1) ∧ (M, w1 |= r2))

∨
((M, w |= r2) ∧ (M, w1 |= r1))))

∧
((M, w |= r[*]) =

∃wlist. (w = Concat wlist) ∧ Every (λw. (M, w |= r)) wlist)

3.2 LTL: Sugar Foundation Language (FL)

Sugar 2.0 has a kernel combining standard LTL notation with a less standard
abort operation and some constructs using SEREs. The suffix “!” found on some
constructs indicates that these are ‘strong’ (i.e. liveness-enforcing) operators.
The distinction between strong and weak operators is given in the semantics
of full Sugar 2.0 in Section 4. Numerous additional notations are introduced
by definitions (which are conservative extensions of the language, and can be
formalised as definitions in HOL).

f ::= p (Atomic formula)
| ¬f (Negation)
| f1 ∧ f2 (Conjunction)
| X!f (Successor)
| [f1 U f2] (Until)
| {r}(f) (Suffix implication)
| {r1} |-> {r2}! (Strong suffix implication)
| {r1} |-> {r2} (Weak suffix implication)
| f abort b (Abort)

Being LTL, the semantics of FL formulas is defined with respect to a path π,
which (in the simplified semantics here) is a function from the natural numbers
to states.



7

We define a semantic function F SEM such that F SEM M π f means FL formula f

is true of path π. We write (M, π |= r) for F SEM M π f.

Note that in the semantics below it is not assumed that paths π are necessarily
computations (i.e. satisfy Path M π, as defined in Section 4.6). This is important
for the abort construct (where the ∃π ′ quantifies over all paths).

The notation πi denotes the i-th state in the path (i.e. π(i)); πi denotes the
‘i-th tail’ of π – the path obtained by chopping i elements off the front of π

(i.e. πi = λn. π(n+i)). π(i,j) denotes the finite sequence of states from i to j

in π, i.e. πiπi+1 · · ·πj . The juxtaposition π(i,j)π′ denotes the path obtained by
concatenating the finite sequence π(i,j) on to the front of the path π′.

The function L̂M denotes the point-wise extension of LM to finite sequences of
states (i.e. MAP LM in HOL and functional programming notation).

((M, π |= b) = (M, LM(π0) |= b))

∧
((M, π |= ¬f) = ¬(M, π |= f))

∧
((M, π |= f1 ∧ f2) = (M, π |= f1) ∧ (M, π |= f2))

∧
((M, π |= X! f) = (M, π1 |= f))

∧
((M, π |= [f1 U f2]) =

∃k. (M, πk |= f2) ∧ ∀j. j < k ⇒ (M, πj |= f1))

∧
((M, π |= {r}(f)) =

∀j. (M, (L̂M (π(0,j))) |= r) ⇒ (M, πj |= f))

∧
((M, π |= {r1}|->{r2}!) =

∀j. (M, (L̂M (π(0,j))) |= r1)

⇒ ∃k. j ≤ k ∧ (M, (L̂M (π(j,k))) |= r2))

∧
((M, π |= {r1}|->{r2}) =

∀j. (M, (L̂M (π(0,j))) |= r1)

⇒ (∃k. j ≤ k ∧ (M, (L̂M (π(j,k))) |= r2))

∨
∀k. j ≤ k ⇒ ∃w. (M, (L̂M (π(j,k)))w |= r2))

∧
((M, π |= f abort b) =

((M, π |= f )

∨
∃j π’. (M, πj |= b) ∧ (M, π(0,j−1) π′ |= f)))



8

3.3 CTL: Sugar Optional Branching Extension (OBE)

The syntax of the Sugar 2.0 OBE is completely standard. The syntax of the
OBE formulas is:

f ::= p (Atom)
| ¬f (Negation)
| f1 ∧ f2 (Conjunction)
| EXf (Some successors)
| E[f1 U f2] (Until – along some path)
| EGf (Always on some path)

For the semantics, define Path M π to be true iff π is a computation of M:

Path M π = ∀n. RM(πn, πn+1)

The semantic function O SEM is defined so that O SEM M s f is true iff f is true
of M at state s. Write (M, s |= f) for O SEM M s f, and then the semantics of
the OBE is defined by:

((M, s |= b) = (M, LM(s) |= b))

∧
((M, s |= ¬f) = ¬((M, s |= f)))

∧
((M, s |= f1 ∧ f2) = (M, s |= f1) ∧ (M, s |= f2))

∧
((M, s |= EX f) =

∃π. Path M π ∧ (π0 = s) ∧ (M, π1 |= f))

∧
((M, s |= [f1 U f2]) =

∃π. Path M π ∧ (π0 = s) ∧
(M, πk |= f2) ∧ ∀j. j < k ⇒ (M, πj |= f1))

∧
((M, s |= EG f) =

∃π. Path M π ∧ (π0 = s) ∧ ∀j. (M, πj |= f))

4 Full Sugar 2.0 semantics in higher order logic

The semantics that follows is derived from of a deep semantic embedding of Sugar

2.0 in higher order logic (HOL-4 version). The official Sugar 2.0 semantics can
be found in the Accellera submission document [6]

http://www.haifa.il.ibm.com/projects/verification/sugar/literature.html

Corresponding to Appendix A.1 of the Sugar documentation we have defined
types bexp, sere, fl and obe in the HOL logic to represent the syntax of
Boolean Expressions, Sugar Extended Regular Expressions (SEREs), formulas



9

of the Sugar Foundation Language (FL) and formulas of the Optional Branching
Extension (OBE), respectively.

Corresponding to Appendix A.2 of the Sugar documentation we have defined
semantic functions B SEM, S SEM, F SEM and O SEM that interpret boolean ex-
pressions, SEREs, FL formulas and OBE formulas, respectively.

The HOL definitions can be seen in

http://www.cl.cam.ac.uk/˜mjcg/Sugar

In the next two sub-sections we discuss clocking and finite paths. In the remain-
ing four sub-sections we give manually typeset versions of the HOL definitions of
the semantic functions. The typesetting was done as algorithmically as I could by
editing the HOL sources. I hope to have avoided transcription errors, but this
cannot be guaranteed. Following some proof activity, changes to the original
HOL semantics have been made, as discussed in Section 5.

4.1 Clocking

If b is a boolean expression, then the SERE b@clk recognises a sequence of
states in which b is true on the next rising edge of clk. Thus b@clk behaves like
{¬clk[*]; clk ∧ b}.

One can also clock formulas (f@clk), and there may be several clocks. Consider: 8

G(req in -> X(req out@clkb))@clka

this means that the entire formula is clocked on clock clka, except that signal
req out is clocked on clkb. Clocks do not “accumulate”, so the signal req out

is only clocked by clkb, not by both clocks. Thus clkb “protects” req out from
the main clock, clka, i.e.:

req out@clkb@clka = req out@clkb

This meaning of clocking prevents us simply defining:

req out@clkb = [¬clkb U (clkb ∧ req out)]

since if this were the definition of req out@clkb then we would be forced to
have:

req out@clkb@clka = [¬clkb U (clkb ∧ req out)]@clka

when we actually want

req out@clkb@clka = req out@clkb

Thus we cannot just rewrite away clocking annotations using equational rea-
soning. However, if one starts at the outside and works inwards, then one can
systematically compile away clocking. The rules for doing this are given in the
Sugar 2.0 documentation as part of the implementation of formal verification.

8 The discussion of clocking here is based on email communication with Cindy Eisner.



10

The official semantics uses a different approach in which the currently active
clock is an argument of the semantic function used to interpret SEREs and
formulas. Proving this approach equivalent to compiling away clocks, followed
by a simpler unclocked semantics, is one of the formal challenges to which we
hope to submit the semantics.

4.2 Finite paths

Sugar 2.0 gives a semantics to formulas for both finite and infinite paths. To
represent this, we model a path as being either a non-empty9 finite list of states
or a function from natural numbers to states and define a predicate finite to
test if a path is a finite list. The function length gives the length of a finite path
(it is not defined on paths for which finite is not true).

We interpret the official semantics locution

“for every j < length(π): · · · j · · ·”

as meaning

“for every j: (finite π implies j < length π) implies · · · j · · ·”

and we interpret the official semantics locution

“there exists j < length(π) s.t. · · · j · · ·”

as meaning

“there exists j s.t. (finite π implies j < length π) and · · · j · · ·”

Define pl π n to mean that if π is finite then n is less than the length of π,
i.e. the predicate pl is defined by

pl π n = finite π ⇒ n < length π

We can then write “∀i ∈ pl π. · · · i · · ·” and “∃i ∈ pl π. · · · i · · ·” for the
locutions above. The name “pl” is short for “path length”

Here is a version of the unclocked FL semantics that allows paths to be finite.

((M, π |= b) = (M, LM(π0) |= b))

∧
((M, π |= ¬f) = ¬(M, π |= f)))

∧
((M, π |= f1 ∧ f2) = (M, π |= f1) ∧ (M, π |= f2))

∧
((M, π |= X! f) = pl π 1 ∧ (M, π1 |= f))

∧
((M, π |= [f1 U f2]) =

∃k ∈ plπ.

(M, πk |= f2) ∧ ∀j ∈ plπ. j < k ⇒ (M, πj |= f1))

∧
((M, π |= {r}(f)) =

∀j ∈ plπ. (M, (L̂M (π(0,j))) |= r) ⇒ (M, πj |= f))

9 The need for finite paths to be non-empty arose when trying to prove some proper-
ties. This requirement does not seem to be explicit in the Accellera specification.



11

∧
((M, π |= {r1}|->{r2}!) =

∀j ∈ plπ. (M, (L̂M (π(0,j))) |= r1)

⇒ ∃k ∈ plπ. j ≤ k ∧ (M, (L̂M (π(j,k))) |= r2))

∧
((M, π |= {r1}|->{r2}) =

∀j ∈ plπ. (M, (L̂M (π(0,j))) |= r1)

⇒ (∃k ∈ plπ. j ≤ k ∧ (M, (L̂M (π(j,k))) |= r2))

∨
∀k ∈ plπ. j ≤ k ⇒ ∃w. (M, (L̂M (π(j,k)))w |= r2))

∧
((M, π |= f abort b) =

((M, π |= f )

∨
∃j ∈ plπ.

0 < j ∧ ∃π’. (M, πj |= b) ∧ (M, π(0,j−1) π′ |= f)))

This semantics was initially derived from an existing unpublished semantics of
unclocked FL formulas10.

The following four sub-sections are the manually typeset HOL semantics of
Sugar 2.0.

4.3 Boolean expressions

The semantics below is identical to that given earlier in Section 3.

((M, l |= p) = p ∈ PM ∧ p ∈ l)

∧
((M, l |= T) = T)

∧
((M, l |= ¬b) = ¬(M, l |= b))

∧
((M, l |= b1 ∧ b2) = (M, l |= b1) ∧ (M, l |= b2))

4.4 Sugar Extended Regular Expressions

The semantics of SEREs expressions is given by defining a semantic function
S SEM such that S SEM M w c r if true iff w is in the language of the extended
regular expression r clocked with c.

We write (M, w |=
c

r) for S SEM M w c r.

If wlist is a list of lists then Concat wlist is the concatenation of the lists in
wlist and if P is some predicate then Every P wlist means that P (w) holds
for every w in wlist.
10 Personal communication from Cindy Eisner.



12

((M, w |=
c

b) =

∃n. n ≥ 1 ∧
(length w = n) ∧
(∀i. 1 ≤ i ∧ i < n ⇒ (M, wi−1 |= ¬c) ∧
(M, wn−1 |= c ∧ b))

∧
((M, w |=

c
r1;r2) =

∃w1 w2. (w = w1w2) ∧ (M, w1 |=
c

r1) ∧ (M, w2 |=
c

r2))

∧
((M, w |=

c
r1:r2) =

∃w1 w2 l. (w = w1[l]w2) ∧
(M, (w1[l]) |=

c
r1) ∧ (M, ([l]w2) |=

c
r2))

∧
((M, w |=

c
{r1}|{r2}) =

(M, w |=
c

r1) ∨ (M, w |=
c

r2))

∧
((M, w |=

c
{r1}&&{r2}) =

(M, w |=
c

r1) ∧ (M, w |=
c

r2))

∧
((M, w |=

c
{r1}&{r2}) =

∃w1 w2. (w = w1w2) ∧
(((M, w |=

c
r1) ∧ (M, w1 |=

c
r2))

∨
((M, w |=

c
r2) ∧ (M, w1 |=

c
r1))))

∧
((M, w |=

c
r[*]) =

∃wlist. (w = Concat wlist) ∧ Every (λw. (M, w |=
c

r)) wlist)

∧
((M, w |=

c
r@c1) =

(M, w |=
c1

r))

4.5 Foundation Language

We define a semantic function F SEM such that F SEM M π c f means FL formula
f is true of path π if the current clock is c. The cases for weak (c) and strong
(c!) clocks are considered separately.

We write (M, π |=
c

r) for F SEM M π c f and use the following two definitions:

FirstRise M π c i = (M, (L̂M (π(0,i))) |=
T

¬c[*];c)

NextRise M π c (i,j) = (M, ( L̂M (π(i,j))) |=
T

¬c[*];c)

The semantic clauses are then:



13

((M, π |=
c!

b) =

∃i ∈ plπ. FirstRise M π c i ∧ (M, LM(πi) |= b))

∧

((M, π |=
c!

¬f) =

¬(M, π |=
c

f))

∧

((M, π |=
c!

f1 ∧ f2) =

∃i ∈ plπ. FirstRise M π c i ∧

(M, πi |=
c!

f1) ∧

(M, πi |=
c!

f2))

∧

((M, π |=
c!

X! f) =

∃i ∈ plπ. FirstRise M π c i ∧
∃j ∈ plπ.

i < j ∧ NextRise M π c (i+1,j) ∧ (M, π j |=
c!

f))

∧

((M, π |=
c!

[f1 U f2]) =

∃i k ∈ plπ. k ≥ i ∧
FirstRise M π c i ∧

(M, πk |=
T

c) ∧

(M, πk |=
c!

f2) ∧
∀j ∈ plπ.

i ≤ j ∧ j < k ∧

(M, πj |=
T

c)

⇒

(M, πj |=
c!

f1))

∧

((M, π |=
c!

{r}(f)) =

∃i ∈ plπ. FirstRise M π c i ∧

∀j ∈ plπ. i ≤ j ∧ (M, (L̂M (π(i,j))) |=
c

r)

⇒

(M, πj |=
c!

f))

∧

((M, π |=
c!

{r1}|->{r2}!) =

∃i ∈ plπ. FirstRise M π c i ∧
∀j ∈ plπ.

i ≤ j ∧ (M, (L̂M (π(i,j))) |=
c

r1)

⇒
∃k ∈ plπ. j ≤ k ∧ (M, (L̂M (π(j,k))) |=

c
r2))

∧



14

((M, π |=
c!

{r1}|->{r2}) =

(M, π |=
c!

{r1}|->{r2}!)
∨
((M, π |=

c
{r1}|->{r2}) ∧

∀j ∈ plπ. ∃k ∈ plπ. j ≤ k ∧ NextRise M π c (j,k)))

∧

((M, π |=
c!

f abort b) =

∃i ∈ plπ. FirstRise M π c i ∧

((M, πi |=
c!

f )

∨
∃j ∈ plπ. i < j ∧

∃π’.

(M, πj |=
T

c ∧ b) ∧ (M, π(i,j−1) π′ |=
c!

f)))

∧

((M, π |=
c!

f@c1) =

(M, π |=
c1

f))
∧

((M, π |=
c!

f@c1!) =

(M, π |=
c1!

f))

∧
((M, π |=

c
b) =

∀i ∈ plπ. FirstRise M π c i ⇒ (M, LM(πi) |= b))

∧
((M, π |=

c
¬f) =

¬(M, π |=
c!

f))

∧
((M, π |=

c
f1 ∧ f2) =

∀i ∈ plπ. FirstRise M π c i

⇒
((M, πi |=

c
f1) ∧ (M, πi |=

c
f2)))

∧
((M, π |=

c
X! f) =

∀i ∈ plπ. FirstRise M π c i ⇒
∃j ∈ plπ.

i < j ∧ NextRise M π c (i+1,j) ∧ (M, π j |=
c!

f))

∧



15

((M, π |=
c

[f1 U f2]) =

(M, π |=
c!

[f1 U f2])

∨
(∃k ∈ plπ.

∀l ∈ plπ.

l ≥ k ⇒ (M, πl |=
T

¬c)
∧
∀j ∈ plπ.

j ≤ k ⇒ (M, πj |=
T

c) ⇒ (M, πj |=
c

f1)))

∧
((M, π |=

c
{r}(f)) =

∀i ∈ plπ. FirstRise M π c i ⇒

∀j ∈ plπ. i ≤ j ∧ (M, (L̂M (π(i,j))) |=
c

r)

⇒
(M, πj |=

c
f))

∧
((M, π |=

c
{r1}|->{r2}!) =

(M, π |=
c!

{r1}|->{r2}!)
∨
((M, π |=

c
{r1}|->{r2})

∧

∃k ∈ plπ. ∀l ∈ plπ. l ≥ k ⇒ (M, πl |=
T

¬c)))
∧
((M, π |=

c
{r1}|->{r2}) =

∀i ∈ plπ. FirstRise M π c i

⇒
∀j ∈ plπ. i ≤ j ∧ (M, (L̂M (π(i,j))) |=

c
r1)

⇒
((∃k ∈ plπ. j ≤ k ∧ (M, (L̂M (π(j,k))) |=

c
r2))

∨
∀k ∈ plπ. j ≤ k ⇒ ∃w. (M, (L̂M (π(j,k))w) |=

c
r2)))

∧
((M, π |=

c
f abort b) =

∀i ∈ plπ. FirstRise M π c i

⇒
((M, πi |=

c
f)

∨
∃j ∈ plπ. i < j ∧

∃π’∈sim π. (M, πj |=
T

c ∧ b) ∧ (M, π(i,j−1) π′ |=
c

f)))

∧
((M, π |=

c
f@c1) =

(M, π |=
c1

f))

∧



16

((M, π |=
c

f@c1!) =

(M, π |=
c1!

f))

This semantics of FL formulas differs from the one we originally transcribed
from the Accellera submission document [6]. See the Appendix for the original
semantics and Section 5 for a discussion of the differences between it and the
current semantics in Section 4.5.

4.6 Optional Branching Extension

The semantic function O SEM is defined so that O SEM M s f is true iff f is true
of M at state s.

The semantics here differs from the simpler one in Section 3.3 in that it handles
both finite and infinite paths.

Write (M, s |= f) for O SEM M s f, and then the semantics of the OBE is defined
by:

((M, s |= b) = (M, LM(s) |= b))

∧
((M, s |= ¬f) = ¬((M, s |= f)))

∧
((M, s |= f1 ∧ f2) = (M, s |= f1) ∧ (M, s |= f2))

∧
((M, s |= EX f) =

∃π. Path M π ∧ pl π 1 ∧ (π0 = s) ∧ (M, π1 |= f))

∧
((M, s |= [f1 U f2]) =

∃π. Path M π ∧ (π0 = s)

∧
∃k ∈ plπ.

(M, πk |= f2) ∧ ∀j ∈ plπ. j < k ⇒ (M, πj |= f1))

∧
((M, s |= EG f) =

∃π. Path M π ∧ (π0 = s) ∧ ∀j ∈ plπ. (M, πj |= f))

5 Progress on analysing the semantics

We have established a number of properties of the semantics using the HOL
system. Some of these went through first time without any problems, but others
revealed bugs both in the Sugar 2.0 semantics and original HOL representation
of the semantics.

5.1 Properties of FirstRise and NextRise

Recall the definitions:



17

FirstRise M π c i = (M, (L̂M (π(0,i))) |=
T

¬c[*];c)

NextRise M π c (i,j) = (M, ( L̂M (π(i,j))) |=
T

¬c[*];c)

We have proved that the definitions of FirstRise and NextRise give them the
correct meaning, namely FirstRise M π c i is true iff i is the time of the first
rising edge of c, and NextRise M π c (i,j) is true iff j is the time of the first
rising edge of c after i.

` FirstRise M π c i =
(∀j. j < i ⇒ ¬(M, LM(πj) |= c)) ∧ (M, LM(πi) |= c)

` i ≤ j

⇒
(NextRise M π c (i,j) =

(∀k. i ≤ k ∧ k < j ⇒ ¬(M, LM(πk) |= c)) ∧ (M, LM(πj) |= c))

The proof of these were essentially routine, though quite a bit more tricky than
expected. Immediate corollaries are

` FirstRise M π T i = (i = 0)
` i ≤ j ⇒ (NextRise M π T (i,j) = (i = j))

5.2 Relating the clocked and unclocked semantics

If we define ClockFree r to mean that r contains no clocking constructs (a
simple recursion over the syntax of SEREs), then clocking with T is equivalent
to the unclocked SERE semantics.

` ∀r. ClockFree r ⇒ ((M, w |=
T

r) = (M, w |= r))

The proof of this is an easy structural induction, and shows that the semantics
in Section 4.4 collapses to that in Section 3.1 when the clock is T.

We tried to prove a similar result for FL formulas, but this turned out to be
impossible. The reason is that the proof required first showing

∀f π. (M, π |=
T

f) = (M, π |=
T!

f))

However, the original semantics had the following:

(M, π |=
c!

b) = ∃i. FirstRise M π c i ∧ (M, LM(πi) |= b)

(M, π |=
c

b) = ∃i. FirstRise M π c i ⇒ (M, LM(πi) |= b)

Instantiating c to T and using the corollary about FirstRise yields

(M, π |=
T!

b) = ∃i. (i=0) ∧ (M, LM(πi) |= b)

(M, π |=
T

b) = ∃i. (i=0) ⇒ (M, LM(πi) |= b)



18

With this, clearly (M, π |=
T

b) is not equal to (M, π |=
T!

b)). The solution,
suggested by Cindy Eisner, is to replace the weak semantics by

(M, π |=
c

b) = ∀i. FirstRise M π c i ⇒ (M, LM(πi) |= b)

so that we get

(M, π |=
T!

b) = ∃i. (i=0) ∧ (M, LM(πi) |= b)

(M, π |=
T

b) = ∀i. (i=0) ⇒ (M, LM(πi) |= b)

which makes (M, π |=
T

b) equal to (M, π |=
T!

b)). The same change of ∃ to
∀ is also needed for the semantics of weak clocking for f1 ∧ f2, X! f, {r}(f),
{r1}|->{r2} and f abort b. With these changes, a structural induction proves:

` ∀f π. (M, π |=
T

f) = (M, π |=
T!

f))

However, we were still unable to prove

` ∀f. ClockFree f ⇒ ((M, w |=
T

f) = (M, w |= f))

where here ClockFree f means that f contains no clocked FL formulas or
SEREs, the semantics on the left of the equation is the one in Section 4.5 and
the semantics on the right of the equation is the one in Section 4.2. The proof
attempt failed because the unclocked semantics for [f1 U f2] had a path length
check, but the strongly clocked semantics didn’t. After restricting the quantifi-
cation of k in the strongly clocked semantics to values satisfying pl π the proof
went through.

5.3 Further analysis

The original semantics specifies that some of the quantifications over the vari-
ables i, j, k etc. be restricted to range over values the are smaller than the
length of the current path π (we represent this using plπ). Our initial attempts
to relate the clocked and unclocked semantics needed additional quantifier re-
strictions to be added, as discussed at the end of Section 5.2 above. However,
during email discussions with the Sugar 2.0 designers it became clear that in
fact all quantifications should be restricted, for otherwise the semantics would
rely on the HOL logic’s default interpretions of terms like πj when π is finite
and j ≥ length π.11 With HOL’s default interpretation of ‘meaningless’ terms,
it is unclear whether the semantics accurately reflects the designers intentions.

11 The logical treatment of ‘undefined’ terms like 1/0 or hd[] has been much discussed.
HOL uses a simple and consistent approach based on Hilbert’s ε-operator. Other
approaches include ‘free logics’ (i.e. logics with non-denoting terms) and three-valued
logics in which formulas can evaluate to true, false and undefined.



19

Thus the semantics was modified so that all quantifications are suitably re-
stricted. In addition, and in the same spirit, we added the requirement that all
terms π(m,n) occured in a context where m ≤ n, so that the arbitrary value of
π(m,n) when m > n was not invoked. Unfortunately these changes broke the
existing proof of

` ∀f π. (M, π |=
T

f) = (M, π |=
T!

f))

and hence the proof relating the clocked and unclocked semantics.

Further discussion with the Sugar 2.0 designers at first suggested that in fact
this property should not be expected to hold after all. What we thought had
happened was that our semantics, following the Accellera submission semantics,
was imprecise about certain details, and this imprecision conspired to make
the property true. When we sharpened the semantics (to eliminate meaningless
terms), the property became false. However, in the end it turned out that there
was just a bug in the semantics: “l > k” should be “l ≥ k” in the weakly clocked
semantics of until and strong suffix implication, and when this change was made
the proof of the above property, and the equivalence between the unclocked and
true-clocked semantics, went through. However, just as we thought everything
was sorted out, the Sugar 2.0 designers announced they had discovered a bug
and pointed out that we should not have been able to prove what we had without
a tweak. Careful analysis showed that a discrepancy between the semantics in
this paper and what was defined in HOL had crept in. The bug in the HOL
semantics allowed a proof to succeed when it shouldn’t have. After fixing the
discrepancy the proofs failed, as they should, and after the correct fix was made
they went through.

6 Conclusions

It was quite straightforward to use the informal semantics in the Sugar 2.0 docu-
mentation to create a deep embedding of the whole Sugar 2.0 kernel. Attempting
to prove some simple ‘sanity checking’ lemmas with a proof assistant quickly re-
vealed bugs in the translated semantics (and possibly in the original). Further
probing revealed more bugs.

It is hoped that the semantics in Section 4 is correct, but until further properties
are proved we cannot be sure, and the experience so far suggests caution!

7 Acknowledgements

Cindy Eisner and Dana Fisman patiently answered numerous email questions in
great detail. They also supplied valuable comments and corrections to an earlier
version of this paper, and suggested ways of modifying the HOL semantics to
get the proofs described in Section 5 to go through.



20

References

1. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The tem-
poral logic Sugar. In G. Berry, H. Comon, and A. Finkel, editors, Proc. 13th Inter-
national Conference on Computer Aided Verification (CAV), LNCS 2102. Springer-
Verlag, 2001.

2. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a theorem-proving
environment for higher-order logic. Cambridge University Press, 1993.

3. J. Halpern, Z. Manna, and B. Moszkowski. A hardware semantics based on tempo-
ral intervals. In J. Diaz, editor, Proceedings of the 10-th International Colloquium
on Automata, Languages and Programming, volume 154 of LNCS, pages 278–291.
Springer Verlag, 1983.

4. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

5. S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-checking with
automated proof checking. In Pierre Wolper, editor, Computer-Aided Verification,
CAV ’95, volume 939 of Lecture Notes in Computer Science, pages 84–97, Liege,
Belgium, June 1995. Springer-Verlag.

6. www.haifa.il.ibm.com/projects/verification/sugar/literature.html.



21

APPENDIX: Initial HOL semantics

This appendix consists of a typeset version of our initial transcription into higher
order logic of the semantics in the Sugar documentation

http://www.haifa.il.ibm.com/projects/verification/sugar/literature.html

This semantics turned out to be inadequate for the reasons discussed in Section 5.

8 Boolean expressions

((M, l |= p) = p ∈ PM ∧ p ∈ l) ∧
((M, l |= T) = T) ∧
((M, l |= ¬b) = ¬(M, l |= b)) ∧
((M, l |= b1 ∧ b2) = (M, l |= b1) ∧ (M, l |= b2))

9 Sugar Extended Regular Expressions

If wlist is a list of lists then Concat wlist is the concatenation of the lists in
wlist and if P is some predicate then Every P wlist means that P (w) holds
for every w in wlist.

((M, w |=
c

b) =

∃n. n ≥ 1 ∧
(length w = n) ∧
(∀i. 1 ≤ i ∧ i < n ⇒ (M, wi−1 |= ¬c) ∧
(M, wn−1 |= c ∧ b))

∧
((M, w |=

c
r1;r2) =

∃w1 w2. (w = w1w2) ∧ (M, w1 |=
c

r1) ∧ (M, w2 |=
c

r2))

∧
((M, w |=

c
r1:r2) =

∃w1 w2 l. (w = w1[l]w2) ∧
(M, (w1[l]) |=

c
r1) ∧ (M, ([l]w2) |=

c
r2))

∧
((M, w |=

c
{r1}|{r2}) =

(M, w |=
c

r1) ∨ (M, w |=
c

r2))

∧
((M, w |=

c
{r1}&&{r2}) =

(M, w |=
c

r1) ∧ (M, w |=
c

r2))

∧
((M, w |=

c
{r1}&{r2}) =

∃w1 w2. (w = w1w2) ∧
(((M, w |=

c
r1) ∧ (M, w1 |=

c
r2))

∨
((M, w |=

c
r2) ∧ (M, w1 |=

c
r1))))



22

∧
((M, w |=

c
r[*]) =

∃wlist. (w = Concat wlist) ∧ Every (λw. (M, w |=
c

r)) wlist)

∧
((M, w |=

c
r@c1) =

(M, w |=
c1

r))

10 Foundation Language

The following two constants are defined:

FirstRise M π c i = (M, (L̂M (π(0,i))) |=
T

¬c[*];c)

NextRise M π c (i,j) = (M, ( L̂M (π(i,j))) |=
T

¬c[*];c)

The semantic clauses are then:

((M, π |=
c!

b) =

∃i. FirstRise M π c i ∧ (M, LM(πi) |= b)

∧

((M, π |=
c!

¬f) =

¬((M, π |=
c

f)))

∧

((M, π |=
c!

f1 ∧ f2) =

∃i. FirstRise M π c i ∧

(M, πi |=
c!

f1) ∧

(M, πi |=
c!

f2))

∧

((M, π |=
c!

X! f) =

∃i. FirstRise M π c i ∧
(finite π ⇒ i < length π - 1) ∧

(M, πi+1 |=
c!

f))
∧

((M, π |=
c!

[f1 U f2]) =

∃i k. k ≥ i ∧
FirstRise M π c i ∧

(M, πk |=
T

c) ∧

(M, πk |=
c!

f2) ∧
∀j. i ≤ j ∧ j < k ∧

(M, πj |=
T

c)

⇒

(M, πj |=
c!

f1))

∧



23

((M, π |=
c!

{r}(f)) =

∃i. FirstRise M π c i ∧
∀j. (M, (L̂M (π(i,j))) |=

c
r)

⇒

(M, πj |=
c!

f))

∧

((M, π |=
c!

{r1}|->{r2}!) =

∃i. FirstRise M π c i ∧
∀j. (M, (L̂M (π(i,j))) |=

c
r1)

⇒
∃k. (M, (L̂M (π(j,k))) |=

c
r2))

∧

((M, π |=
c!

{r1}|->{r2}) =

(M, π |=
c!

{r1}|->{r2}!)
∨

((M, π |=
c

{r1}|->{r2})
∧
∀j. (finite π ⇒ j < length π)

⇒
∃k. NextRise M π c (j,k)))

∧

((M, π |=
c!

f abort b) =

∃i. FirstRise M π c i ∧

((M, πi |=
c!

f )

∨
∃j π’.

(M, πj |=
T

c ∧ b) ∧

(M, π(i,j−1) π′ |=
c!

f)))

∧

((M, π |=
c!

f@c1) =

(M, π |=
c1

f))
∧

((M, π |=
c!

f@c1!) =

(M, π |=
c1!

f))

∧
((M, π |=

c
b) =

∃i. FirstRise M π c i

⇒
(M, LM(πi) |= b))

∧
((M, π |=

c
¬f) =

¬((M, π |=
c!

f)))



24

∧
((M, π |=

c
f1 ∧ f2) =

∃i. FirstRise M π c i

⇒
((M, πi |=

c
f1)

∧
(M, πi |=

c
f2)))

∧
((M, π |=

c
X! f) =

∃i. (FirstRise M π c i

∧
(finite π ⇒ i < length π - 1))

⇒
(M, πi+1 |=

c
f))

∧
((M, π |=

c
[f1 U f2]) =

(M, π |=
c!

[f1 U f2])

∨
(∃k. ∀l. l > k

⇒

(M, πl |=
T

¬c)
∧
∀j. j ≤ k

⇒

(M, πj |=
T

c)

⇒
(M, πj |=

c
f1)))

∧
((M, π |=

c
{r}(f)) =

∃i. FirstRise M π c i ⇒
∀j. (M, (L̂M (π(i,j))) |=

c
r)

⇒
(M, πj |=

c
f))

∧

((M, π |=
c

{r1}|->{r2}!) =

(M, π |=
c!

{r1}|->{r2}!)
∨
((M, π |=

c
{r1}|->{r2})

∧
∃k. ∀l. l > k

⇒

(M, πl |=
T

¬c)))
∧



25

((M, π |=
c

{r1}|->{r2}) =

∃i. FirstRise M π c i

⇒
∀j. (M, (L̂M (π(i,j))) |=

c
r1)

⇒
((∃k. (M, (L̂M (π(j,k))) |=

c
r2))

∨
∀k. (finite π ⇒ k < length π)

⇒
∃w. (M, (L̂M (π(j,k))w) |=

c
r2)))

∧
((M, π |=

c
f abort b) =

∃i. FirstRise M π c i

⇒
((M, πi |=

c
f)

∨

∃j π’. (M, πj |=
T

c ∧ b)

∧
(M, π(i,j−1) π′ |=

c
f)))

∧
((M, π |=

c
f@c1) =

(M, π |=
c1

f))

∧
((M, π |=

c
f@c1!) =

(M, π |=
c1!

f))

11 Optional Branching Extension

The following predicate is defined

Path M π = ∀n. RM(πn, πn+1)

The semantic clauses are then:

((M, s |= b) = (M, LM(s) |= b))

∧
((M, s |= ¬f) = ¬((M, s |= f)))

∧
((M, s |= f1 ∧ f2) = (M, s |= f1) ∧ (M, s |= f2))

∧
((M, s |= EX f) =

∃π. Path M π ∧
(finite π ⇒ 1 < length π) ∧
(π0 = s) ∧ (M, π1 |= f))



26

∧
((M, s |= [f1 U f2]) =

∃π. Path M π ∧
(π0 = s) ∧
∃k. (finite π ⇒ k < length π) ∧

(M, πk |= f2) ∧
∀j. j < k ⇒ (M, πj |= f1))

∧
((M, s |= EG f) =

∃π. Path M π ∧
(π0 = s) ∧
∀j. (finite π ⇒ j < length π) ⇒ (M, πj |= f))


