The Tookan device API analyser

Graham Steel

LSV, INRIA & CNRS & ENS-Cachan

(joint work with Riccardo Focardi, Matteo Bortolozzo & Matteo Centenaro, Università Ca' Foscari, Venezia)

RSA Public Key Cryptography Standard (PKCS) 11

PKCS #1 describes the RSA encryption algorithm, padding etc.

PKCS#11 Describes 'cryptoki': cryptographic token interface

Ubiquitous in industry for authentication tokens, smartcards (and HSMs, other devices, ...)

Authentication token market alone estimated at 5 billion USD annually (InfoSecurity Magazine Feb 2010)

Generating keys

A key template is a partial specification of key attributes

Templates are used for creating, manipulating, and searching for objects

 $C_{\text{-}}GenerateKey:$ $\mathcal{T} \quad \xrightarrow{new \ n,k} \quad h(n,k); T$

Setting Key Attributes

 $C_SetAttributeValue :$

 $\mathcal{T}, h(n, k) \rightarrow h(n, k); T$

T can specify new values for any attributes, but may cause CKR_TEMPLATE_INCONSISTENT, CKR_ATTRIBUTE_READ_ONLY

Wrap and Unwrap

$$\begin{array}{ll} \text{Wrap}: & \\ & h(x_1,y_1), h(x_2,y_2); \, \text{wrap}(x_1), & \rightarrow & \{y_2\}_{y_1} \\ & & \\ & \text{extract}(x_2) \end{array}$$

Unwrap :

 $h(x_2,y_2), \{y_1\}_{y_2}, \mathcal{T}; \text{ unwrap}(x_2) \xrightarrow{new \ n_1} h(n_1,y_1); \text{ extract}(n_1), \ \mathsf{T}$

Key Usage

Encrypt : $h(x_1,y_1),y_2;\, encrypt(x_1) \ \rightarrow \ \{y_2\}_{y_1}$

Decrypt :

 $h(x_1,y_1),\{y_2\}_{y_1};\,decrypt(x_1) \ \ \rightarrow \ \ y_2$

PKCS#11 Security

Section 7 of standard:

"1. Access to private objects on the token, and possibly to cryptographic functions and/or certificates on the token as well, requires a PIN.

2. Additional protection can be given to private keys and secret keys by marking them as "sensitive" or "unextractable". Sensitive keys cannot be revealed in plaintext off the token, and unextractable keys cannot be revealed off the token even when encrypted"

"Rogue applications and devices may also change the commands sent to the cryptographic device to obtain services other than what the application requested [but cannot] compromise keys marked "sensitive," since a key that is sensitive will always remain sensitive. Similarly, a key that is unextractable cannot be modified to be extractable."

Clulow, CHES 2003

'Tool for cryptoKi Analysis'

Device		Supported Functionality						Attacks found				
Brand	Model	S	as	cobj	chan	W	WS	wd	rs	ru	su	Tookan
Aladdin	eToken PRO	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				wd
Athena	ASEKey	\checkmark	\checkmark	\checkmark								
Bull	Trustway RCI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				wd
Eutron	Crypto Id. ITSEC		\checkmark	\checkmark								
Feitian	StorePass2000	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	 ✓ 	\checkmark	\checkmark		rs
Feitian	ePass2000	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	 ✓ 	\checkmark	\checkmark		rs
Feitian	ePass3003Auto	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		rs
Gemalto	SEG		\checkmark		\checkmark							
MXI	Stealth MXP Bio	\checkmark	\checkmark		\checkmark							
RSA	SecurID 800	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	rs
SafeNet	iKey 2032	\checkmark	\checkmark	\checkmark		\checkmark						
Sata	DKey	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	rs
ACS	ACOS5	\checkmark	\checkmark	\checkmark	\checkmark							
Athena	ASE Smartcard	\checkmark	\checkmark	\checkmark								
Gemalto	Cyberflex V2	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark				wd
Gemalto	SafeSite V1		\checkmark		\checkmark							
Gemalto	SafeSite V2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	rs
Siemens	CardOS V4.3 B	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark		ru 15/1

Manufacturer Reaction

All 7 received notification at least 5 months before publication.

We offered to publish responses on project website

RSA sent response, registered vulnerability with Mitre (CVE-2010-3321), issued security advisory 6 Oct 2010

Aladdin (now Safenet) sent a 2-page response for website

Minimal response from anyone else (e.g. requests to know who else is vulnerable)

Since the first presentation of Tookan (CCS Chicago Oct '10), Tookan licenced to Boeing and a major UK bank.

Summary and Conclusions

Tookan: an effective tool for formal analysis of PKCS#11 configurations State of art of tokens not great (10/18 vulnerable, the rest very limited functionality)

Some manufacturers patching, no reaction from others

Recently: testing on HSMs. Interesting results.

Project webpage:

http://tookan.gforge.inria.fr/