
The MAC In The Box (MITB) Project
Mike Gordon, Robert Künnemann, Graham Steel1

Abstract

The �Mac in the Box� (MITB) project was conceived at a workshop [3] where Graham
Steel gave a talk showing that API insecurities in crypto tokens could be found using
the Tookan tool [2] (this work built on earlier research by Clulow, Bond and others [4]).
At the workshop Steel and Gordon started a research collaboration to see if would be
feasible to design token implementations that could be formally veri�ed to have secu-
rity properties establishing their trustworthiness (in particular, to be unbreakable using
Tookan-like tools). The project aims to complement research on breaking existing tokens
by designing, verifying and building a family of simple, low cost, open source hardware
devices for hashing passwords and other data. The research goal is to explore removing
the assumption �that the implementation is correct with respect to the documentation�
[15]. Such a device can be used, for example, to store passwords more securely. By
protecting a secret that is used in the computation of password hashes, a so-called local

parameter, an attacker performing a brute-force on the password database is considerably
slowed down, being only able to compute hashes at a rate the device dictates. A proof-of-
concept toy prototype MITB speci�cation and implementation have been formalised and
the implementation veri�ed to meet the speci�cation using the HOL4 proof assistant [1].

1 Introduction to the MITB device

MITB is a standalone device that computes a MAC using the Keccak sponge function [5].
It has two 1-bit control inputs skip_inp, move_inp, two data inputs block_inp and size_inp,
a 1-bit control output ready_out and a data output digest_out.

|-----------------------------------|
1 | | 1

skip_inp ---/-->| |---/--> ready_out
| |

1 | |
move_inp ---/-->| |

| MITB (r, c, n) f |
r | |

block_inp --/-->| |
| |

dlog2re | | n
size_inp ---/-->| |---/--> digest_out

MITB is parametrised on three numbers (r, c, n) and a permutation function f . These are
part of the Keccak speci�cation (see Section 3). An actual device would be manufactured
with speci�c values for the parameters.

The input block_inp is r-bits wide and the output digest_out is n-bits wide. The input
size_inp has su�cient bits to represent a number of size r or less. For convenience it is
modelled as a number rather than a bitstring. Truth-values T, F model bits 1, 0, respectively.

MITB runs continuously after being switched on . It is implemented as a state-machine using
combinational logic and registers (see Section 5). All a user can observe (assuming tamper-
resistant manufacture) are the sequences of values appearing on the outputs ready_out and
digest_out, which depend on the values input via skip_inp, move_inp, block_inp and size_inp.

From a user's point of view MITB can be in either of two states: ready or absorbing. It
powers up into state ready. The 1-bit output ready_out indicates whether the state is ready
(T output) or absorbing (F output).

1Listed in alphabetical order.

1

The input skip_inp `freezes' MITB: holding it T stops the state changing on successive cycles.
The input move_inp causes the state to change on the next cycle; in particular it is used to
signal that MITB should start absorbing a message.

The MAC of a message M is speci�ed as the Keccak hash of the result of concatenating a
secret key onto the front of the message, i. e. the hash of key‖M , where ‖ denotes bitstring
concatenation. The hash algorithm is de�ned in Section 3.2. The protocol for using MITB
to compute the MAC of a message is described below. The main correctness property of the
device is that if the speci�ed protocol is used to input a message then its MAC will appear on
digest_out. The main security property is that no matter what inputs are supplied, the secret
key cannot be revealed. These properties will be expressed as constraints on what sequences
of inputs and outputs are possible using a temporal logic notation.

MITB has a permanent memory for holding an r-bit secret key. The key can be set or
changed by holding both skip_inp and move_inp F in the ready state. The data being input
on block_inp then overwrites the stored key. As long a skip_inp and move_inp are held F, the
stored key is updated on each cycle (discussed in Section 6).

MITB is ready to compute the MAC of a message in state ready. The protocol for computing
the MAC of M is as follows (|B| denotes the number of bits in B):

1. The user splits M into a sequence of blocks, M = B1‖B2‖ · · · ‖Bm−1‖Bm, such that all
blocks except the last one are r-bits wide, i. e. |Bi| = r for 1 ≤ i < m and |Bm| < r. If
r divides exactly into |M |, then Bn is taken to be the empty block (so |Bm| = 0).

2. When ready_out is T the user puts MITB into the absorbing state by inputting F on
skip_inp and T on move_inp (block_inp and size_inp are ignored during this step).

3. Starting on the next cycle, and continuing for m cycles, the user inputs F on both
move_inp and skip_inp, Bi on block_inp and |Bi| on size_inp, where 1 ≤ i ≤ m.
During this time F will be output on ready_out.

4. After inputting Bm, the user keeps inputting F on skip_inp and move_inp until ready_out
becomes T. On the cycle when this happens the hash of key‖M will appear on digest_out.
The number of cycles taken depends on |Bm|. If |Bm| 6= r−1 then ready_out will become
T on the cycle after Bm is input. If |Bm| = r−1 then ready_out will become T the cycle
after the cycle after Bm is input.

The timing diagrams below illustrate this protocol. The MAC computation starts at cycle t
and X means `don't care' (if skip_inp is T then other inputs are ignored). The �rst line shows
the cycle count. The message M is split by the user into blocks B1,. . .,Bm as described above.
When MITB is started the volatile memory holds zeros, so digest_out is all zeros too.

If the size of the last block Bm is not r−1 (i. e. |M | MOD r 6= r−1).
Cycles: 0 1 2 ... t t+1 t+2 ... t+m t+(m+1)

skip_inp T T T ... F F F ... F X

move_inp X X X ... T F F ... F X

block_inp X X X ... X B1 B2 ... Bm X

size_inp X X X ... X r r ... |Bm| X

ready_out T T T ... T F F ... F T

digest_out 0 0 0 ... 0 0 0 ... 0 Hash(key‖M)

2

If the last block has size r−1.
Cycles: 0 1 2 ... t t+1 t+2 ... t+m t+(m+1) t+(m+2)

skip_inp T T T ... F F F ... F F F

move_inp X X X ... T F F ... F F F

block_inp X X X ... X B1 B2 ... Bn X X

size_inp X X X ... X r r ... r-1 X X

ready_out T T T ... T F F ... F F T

digest_out 0 0 0 ... 0 0 0 ... 0 0 Hash(key‖M)

Once the MAC, Hash(key‖M), has been computed, it can be forced to persist on the output
digest_out by holding T on skip_inp.

The security property that MITB guarantees is that no matter what inputs are supplied, the
value output on digest_out is always either an n-bit bitstring representing 0 or the hash of
some message. Assuming Keccak is secure, then MITB does not reveal any information
about the stored key.

2 Formal speci�cation using temporal logic

An implementation of MITB is modelled with a next-state function MITB (de�ned in Section 5)
that gives the next state s′ when input i is received in state s. The observable outputs are
determined by the current state, so the model is a Moore machine. MITB is parametrised on
the Keccak parameters (r, c, n) and permutation function f , so the next-state function MITB

takes these as arguments, hence s′ = MITB (r, c, n) f (i, s).2

A user of MITB can supply inputs on skip_inp, move_inp, block_inp and size_inp and ob-
serve the resulting outputs on ready_out and digest_out, where ready_out is a boolean value
showing which state the device is in and digest_out is an n-bit word consisting of zeros in the
absorbing state and the bottom n bits of the volatile memory in the ready state.

Using a standard method [12], the implementation of MITB will be represented by a formula:

MITB_IMP key (r, c, n) f
(cntl_sig, pmem_sig, vmem_sig)
(skip_inp, move_inp, block_inp, size_inp, ready_out, digest_out)

where MITB_IMP is a predicate de�ned in terms of MITB.

The 6-tuple (skip_inp, move_inp, block_inp, size_inp, ready_out, digest_out) has components
that are functions from time to values representing the sequence of values on the four user-
supplied inputs and two device-generated outputs. The triple (cntl_sig, pmem_sig, vmem_sig)
contains the function cntl_sig representing a sequence of values that the control register can
take, pmem_sig representing values of the permanent memory and vmem_sig representing the
values of the volatile memory. The notation MITB_IMP (r, c, n) f |= φ means that all runs of
MITB satisfy the property φ.

MITB_IMP (r, c, n) f |= φ ⇔ ∀σ1 σ2. MITB_IMP (r, c, n) f σ1 σ2 ⇒ φ(σ1, σ2)

where the quanti�ed variable σ1 ranges of triples of state functions and σ2 ranges over 6-tuples
of port functions. Properties φ are expressed as Linear Temporal Logic (LTL) formulas. The
speci�cation given in Section 4 consists of a conjunction of temporal logic formulas that all
executions of MITB are required to satisfy.

2Following standard λ-calculus notation, functions may be curried and brackets around arguments omitted.

3

2.1 Atomic formulas

The atomic formulas skipInp(b), moveInp(b), blockInp(bs), sizeInp(len), readyOut(b), digestOut(bs)
are true of an execution σ if and only if the argument is the value of the corresponding input
or output at cycle 0 of σ. Here b ranges over bits (modelled as truth-values), bs ranges
over bitstrings (modelled as lists of truth-values) and len ranges over natural numbers. For
example, MITB_IMP (r, c, n) f |= readyOut T speci�es that any execution of MITB must output
T on ready_out during the �rst cycle.

Non-atomic properties specify relationships between values input and output at times other
than the �rst cycle; for this the following temporal operators are used.

2.2 Temporal speci�cation operators

The operators below are mostly standard concepts from LTL, though sometimes with di�erent
names from those commonly used. Syntactically these operators combine temporal formulas
φ, φ1, φ2 etc. Semantically they are predicates on pairs of tuples of functions as in φ(σ1, σ2)
as occurring in the de�nition of MITB_IMP (r, c, n) f |= φ.

The �rst table de�nes `lifted' logical operators that are useful for combining temporal formulas
built using the temporal operator in the later tables.

Lifted logical operators

Bool b = λσ. b
Not φ = λσ. ¬(φ σ)
(φ1 And φ2) = λσ. (φ1 σ) ∧ (φ2 σ)
(φ1 Or φ2) = λσ. (φ1 σ) ∨ (φ2 σ)
(φ1 Implies φ2) = λσ. (φ1 σ)⇒ (φ2 σ)
(Forall x. φ) = λσ. ∀x. φ σ
(Exists x. φ) = λσ. ∃x. φ σ

If π is a function representing a sequence of values, then π↓n = λt. π(t+ n), which is π with
n elements chopped o� the front. If σ is a tuple of functions, then σ↓n is de�ned recursively
through its tuple structure: (σ1, . . . , σm)↓n = (σ1↓n, . . . , σm↓n). Next (see below) uses this.

Standard LTL operators

Next φ = λσ. φ(σ↓1)
Always φ = λσ. ∀t. φ(σ↓t)
Sometime φ = λσ. ∃t. φ(σ↓t)
φ1 Until φ2 = λσ. ∃t1. φ2(σ↓t1) ∧ ∀t2. t2 < t1 ⇒ φ1(σ↓t2)

An additional operator UntilN(t), parametrised on a number t, is de�ned recursively in terms
of the standard operators above: φ1 UntilN(t) φ2 is like φ1 Until φ2, but with t specifying the
exact number of cycles taken to reach a state in which φ2 is true.

Cycle counting Until operator

φ1 UntilN(0) φ2 = φ2
φ1 UntilN(t+1) φ2 = φ1 And Next(φ1 UntilN(t) φ2)

It is easy to show by induction on t that φ1 Until φ2 = Exists t. φ1 UntilN(t) φ2.

4

3 The Keccak sponge function

In this section relevant parts of the Keccak algorithm are described and then formalised (see
Section 3.2). In order to make it easy to check that the Keccak algorithm is being correctly
formalised, extracts from the speci�cation will be cut-and-pasted from the o�cial Keccak
reference document [5]. These, and other imported extracts, are included in boxes such as:

������ ��	
�
���� � �� �� � ������
� ��
��� �����
�� ��� ���� ��� �� � �������� ��
� �
��	������
� �	
� � ���
� ��	������
��! "� ���� �����	# $� ���	
���
�	
�%����
�� ���
�
����
�# ������ ��� ��	������
�� ����	����� ������ ��� ��� ������ ��
��� �����
��!
&� ���
 ��%�
�%����
�� �
	 ������ ��	��
� ��� ������ �����!

Note that the citation �[8]� in the box above refers to the citations in the Keccak reference
document, not to the references at the end of this paper.

Keccak is based on a `sponge construction' in which an arbitrary length message is iteratively
`absorbed' into a �nite state. The number of iterations depend on the length of the message.
Once all of the message has been absorbed, the resulting state can be `squeezed' to extract
a digest. For the general Keccak algorithm this squeezing can also iterative; the number of
iterations depending on the desired length of the digest. However, for the SHA-3 application,
the digest length is such that no squeeze iterations are actually needed (see also Section 3.2.4).

Keccak is a family of algorithms. Each algorithm in the family corresponds to a choice of
values for parameters r, called the bitrate and c, called the capacity. Keccak[r, c] denotes the
speci�c algorithm for the indicated parameter values. SHA-3 recognises four instances of Kec-
cak, namelyKeccak[1152, 448],Keccak[1088, 512],Keccak[832, 768],Keccak[576, 1024].
For each of these instances, a length n of digest is speci�ed, namely: 224, 256, 384, 512, re-
spectively. bKeccak[r, c]cn denotes Keccak[r, c] with a digest of length n. Thus:

(r, c, n) ∈ { (1152, 448, 224), (1088, 512, 256), (832, 768, 384), (576, 1024, 512) }
SHA-3 recommends using the strongest parameter values; smaller values of the parameters are
for testing and, possibly, lightweight hashing. The state of the SHA-3 sponge algorithm thus
consists of r+c = 1600 bits, which is called the width and denoted by b. Note that b = 25×26.
More generally, the width b is de�ned to be 25 × 2l, where l is another parameter that can
take on one of the seven values in {0, 1, 2, 3, 4, 5, 6}. The seven choices for l correspond to
the �7 permutations� mentioned in the box above. The SHA-3 instance of Keccak �xes the
value of l to be 6. The initial value of the state before a message has been absorbed by the
sponge algorithm is 0b, i.e. each of the 1600 state bits is 0.

3.1 The sponge algorithm

Keccak is based on a function f : Zb
2 → Zb

2 that permutes the state, where Z2 = {0, 1} is the
set of the two bits 0 and 1, and Zb

2 is the set of bitstrings of length b (b = 1600 for SHA-3).

The sponge algorithm applies the state permutation f on each iteration of absorbing a message
M into the state. The absorption algorithm is outlined below. A detailed formal speci�cation
of f is not given here; f is treated as an uninterpreted parameter in the speci�cation and
proofs. This is discussed in Section 6.

5

3.1.1 Padding

The algorithm is parametrised on numbers r and c, as discussed above. The �rst step is to
pad the message so that it can be split into an exact number, k say, of blocks of length r. This
is done by appending �a single bit 1 followed by the minimum number of bits 0 followed by a
single bit 1 such that the length of the result is a multiple of the block length�. If the message
length is already a multiple of the block length r, then it is still padded by appending 10r−21,
where 0p denotes a bitstring of length p with each bit being 0. If the message needs only one
bit added to make its length a multiple of r, then 10r−11, which has length r+1, is appended.
Thus padding appends �at least 2 bits and at most the number of bits in a block plus one�.

In the Keccak reference, the result of padding a message M using a block size x is denoted
by M ||pad[x](|M |) and the speci�c padding described above is called multi-rate padding and
denoted by pad10∗1. Here is the actual text from the reference:

������� ŗ

ђѐѐюј �����ę�������

ђѐѐюј ǻ���������� ǽNǡWȉDNǾǼ �� � �����¢ �� ������ ��������� ǽŞǾ ���� ��� �� � �������� ����� �
����������� ���� � ��� �� ŝ ������������ǯ �� ���� �������ǰ � ��������� ��� ����������� ���
��������ǰ ������¢ ��� ŝ ������������ ������¢��� ђѐѐюј ��� ��� ђѐѐюј ������ ���������ǯ
�� ���� ���� ����������� ��� ������ ����� �� ��� ђѐѐюј �����ǯ

ŗǯŗ ����������� ��� ��������

�� ������ ��� �������� ����� �� � ���� ������ x �� ������� �¢ |x|ǯ

ŗǯŗǯŗ ����������

�� ������ ��� ������ �� ���� �� � ��������� M �¢ |M|ǯ � ��������� M ��� �� ���������� �� �
�������� �� ������ �� ���� ę¡�� ������ xǰ ���� ��� ���� ����� ��¢ �� �������ǯ ��� ������
�� ������ �� M �� ������� �¢ |M|xǯ ��� ������ �� M ��� ������� �¢ Mi ��� ��� ����¡ ������
���� 0 �� |M|x − 1ǯ

�� ������ ��� ��� �� ��� ���������� ��������� ��� ����¢ ������ �¢ Z∗2 ��� �¡������� ���
����¢ ������ �¢ Z+

2 ǯ ��� ��� �� ��ę����Ȭ������ ���������� �� ������� �¢ Z∞
2 ǯ

ŗǯŗǯŘ ������� �����

��� ��� ������� ���� � ��� ��� ����� ��� ��������Ǳ ��� ������� �� � ������� M �� � ��Ȭ
������ �� xȬ��� ������ �� ������� �¢ M||pad[x](|M|)ǯ ���� �������� ���������� ���� � ���¢
�������� ������� ����� ���� ������ � ��������� ���� �� ����¢ ���������� �¢ ��� ��������� �� M
��� ��� ����� ������ xǯ ����¢ ���� [x]ǰ (|M|) �� ���� �� ����� ����� �� ����� ���� ��� �����¡�ǯ

ђѐѐюј ����� ��� �� ��� �����Ȭ���� �������ǯ

��ę������ ŗǯ �����Ȭ���� �������ǰ ������� �¢ pad10∗1ǰ ������� � ������ ��� ŗ ����� �� �¢ ���
������� ������ �� ���� Ŗ ����� �� �¢ � ������ ��� ŗ ���� ���� ��� ������ �� ��� ������ �� � �������� ��
��� ����� ������ǯ

�����Ȭ���� ������� ������� �� ����� Ř ���� ��� �� ���� ��� ������ �� ���� �� � ����� ����
���ǯ

ŗǯŘ ��� ђѐѐюјȬ f ������������

����� ��� ŝ ђѐѐюјȬ f ������������ǰ ��������� �¢ ђѐѐюјȬ f [b]ǰ ���� b = 25 × 2! ��� !
������ ���� Ŗ �� Ŝǯ ђѐѐюјȬ f [b] �� � ����������� ���� Zb

2ǰ ���� ��� ���� �� s ��� ��������

ŝ Ȧ Ŝş

3.1.2 Absorbing

The absorption algorithm takes a message M as input and returns a digest h. It consists of
three steps: padding the input, iteratively computing a sequence of b-bit states s0 . . . sm
(b = 1600), extracting the digest from the �nal state sm. In more details the three steps are:

1. Apply padding to M . Let the resulting blocks be B1, . . . , Bm; each of length r.

2. s0 = 0b and for i = 1, . . . ,m iteratively compute si ← f(si−1⊕(Bi||0b−r)), where || is
bitstring concatenation, ⊕ is bitwise XOR and f is the permutation function.

3. Output h = bsmcn, where bsmcn is the �rst n bits of sm and it is guaranteed that n < b
as b = 1600 and n ∈ { 224, 256, 384, 512 }.

The Keccak-reference [5] description of the algorithm is in the box below, where the parameters
for the sponge construction are the permutation f of width b, a padding rule �pad� and the
bitrate r < b. The input is M and the output (h in step 3 of the pseudo-code above) is bZcl.

6

The individual blocks are named Pi in the box below, rather than Bi as above.ŗǯ ђѐѐюј �����ę������� ��� ђѐѐюј ���������

��������� ŗ ��� ������ ������������ Ѡѝќћєђ[f , pad, r]
�������Ǳ r < b

���������Ǳ Z = sponge(M, !) ��� M ∈ Z∗2 ǰ ������� ! > 0 ��� Z ∈ Z!
2

P = M||pad[r](|M|)
s = 0b

��� i = 0 �� |P|r − 1 ��
s = s⊕ (Pi||0b−r)
s = f (s)

��� ���
Z = %s&r
 ���� |Z|rr < ! ��

s = f (s)
Z = Z||%s&r

��� ����
������ %Z&!

ŗǯŚ ��� ђѐѐюј ������ ���������

�� ��ę�� ��� ������ �������� ������� �¢ ђѐѐюј[r, c] �¢ ����¢��� ��� ������ ������������
�� �����ę�� �� ��������� ŗ ��� ђѐѐюјȬ f [r + c]ǰ �����Ȭ���� ������� ��� ��� ������� rǯ

ђѐѐюј[r, c] ! Ѡѝќћєђ[ђѐѐюјȬ f [r + c], pad10∗1, r].

���� �����ę�� ђѐѐюј[r, c] ��� ��¢ ����������� �� r > 0 ��� c ���� ���� r + c �� � ����
��������� �¢ ��� ђѐѐюјȬ f ������������ǯ

��� ������� ����� ��� r �� 1600− c ��� ��� ������� ����� ��� c �� śŝŜǱ

ђѐѐюј[c] !ђѐѐюј[r = 1600− c, c],

ђѐѐюј[] !ђѐѐюј[c = 576].

ŗǯś �������¢ ����� ��� ��� ђѐѐюј ������ ���������

��� ���� �� ��� ��������� ��������� ������ǰ � ���� � Ě�� ������ ����� ǽŞǰ ������� ȃ��� Ě��
������ �����ȄǾǯ

����� ŗǯ ��� �¡������ ������� ����������¢ �� ��¢ �Ĵ��� ������� ђѐѐюј[r, c] ��� � ������� �����Ȭ
����� �� N ����� �� ђѐѐюјȬ f [r + c] �� ��� ������� ����� �� ������� ���� �� ����� �� ���� ��� � ������
������ ����

1− exp
(
−N(N + 1)2−(c+1)

)
.

�� �¡����� ���� ��������� ��� �� ��� ���� ���� ���� ђѐѐюјȬ f [r + c] ��� �� ��������� ���Ȭ
�����¢ ��� ��� �� �Ĝ������¢ �¡������ǰ �ǯ�ǯǰ ��� ��Ȭ������ ������ ������ �������������� ������������¢
ǽŞǰ ������� ȃ��� ������������¢ �� ������������ � ������ ������ȄǾǯ

���� ���� ��� ������� �������¢ �� ����� �� ��� �������¢ ���� �¢ ��� ������ ������������ǯ

ş Ȧ Ŝş

3.2 Padding and absorbing

MITB (r, c, n) f is designed to compute Hash (r, c, n) f s0 (key‖M), where s0 is the initial state,
M is the message whose MAC is required and Hash is the Keccak hash function:

Hash (r, c, n) f s m = Squeeze n (Absorb f c s (Split r (Pad r m)))

The function Hash is de�ned for arbitrary values of the parameters r, c, n, f and arbitrary states
s and bitstrings m (representing messages). The auxiliary functions Pad, Split, Absorb and
Squeeze are de�ned below. The notation [b1, . . . , bn] denotes a bitstring consisting of the n bits
b1, . . ., bn. In particular [T] is the bitstring consisting of exactly on bit (T representing 0). The
function Zeros u maps a number to a bitstring consisting of u zeros, e. g. Zeros 3 = [F, F, F].
Zeros u is another notation for 0u.

3.2.1 Pad

Pad r m pads bitstring m, using the Keccak rules described in Section 3.1.1. It can be
concisely de�ned by:

Pad r m = m‖[T]‖Zeros((r − (|m|+ 2) MOD r) MOD r)‖[T]
Whilst it is clear that Pad r m appends a bitstring [T]‖Zeros(x)‖[T] to m, it may not be
obvious that x should be (r − (|m|+ 2) MOD r) MOD r. However, for all r > 1:

(r − (|m|+ 2) MOD r) MOD r =
if |m| MOD r = r−1 then r−1 else r − (|m| MOD r)− 2

so the complicated formula x is correct.

7

3.2.2 Split

Split r m splits m into a list of blocks of length r, except for the last one, which has length
|m| MOD r. This has already been described in Section 1. To de�ne it formally the list-processing
functions Cons, Take and Drop are used.

Cons e l adds an element e to the front of list l, for example Cons 0 [1, 2, 3] = [0, 1, 2, 3].
Take u l returns the �rst u elements of l, for example Take 3 [0, 1, 2, 3, 4, 5] = [0, 1, 2]. Take u l
is the same as the blcu, as used in Section 3.1.2. Drop u l removes the �rst u elements of l,
for example Drop 3 [0, 1, 2, 3, 4, 5] = [3, 4, 5]. If u ≤ |l| then |Take u l| = u, |Drop u l| = |l|−u
and Take u l‖Drop u l = l.

The function Split is then de�ned recursively by:

Split r m = if (r = 0) ∨ |m| ≤ r then [m] else Cons (Take r m) (Split r (Drop r m))

It is straightforward to verify that, if r > 0, then the result of concatenating all the blocks in
Split r m is m, that all blocks in Split r m, except the last one, have size r and that the last
block in Split r m has size |m| MOD r.

3.2.3 Absorb

Absorb f c s bkl absorbs the blocks in a list of blocks bkl starting from a state s as described
in Section 3.1.2. It is de�ned recursively on bkl by:

Absorb f c s [] = s
Absorb f c s (Cons bk bkl) = Absorb f c (f(s ⊕ (bk‖Zeros c))) bkl

An equivalent alternative de�nition of Absorb uses the standard iteration combinator Foldl

that is widely used in functional programming:

Absorb f c = Foldl (λs bk. f(s ⊕ (bk‖Zerosc)))
where: Foldl fn e [] = e and Foldl fn e (Cons x l) = Foldl fn (fn e x) l.

3.2.4 Squeeze

An unusual feature of the general Keccak hash algorithm is that it can generate output
digests of arbitrary length using an iterative `squeezing' algorithm. However, for SHA-3 the
recommended digest size n is 224. This is speci�ed to be the bottom n bits in the �nal state
after absorbing the message. Thus: Squeeze n s = Take n s or just Squeeze = Take.

3.3 MACs based on Keccak

The Keccak designers claim that a secure message authentication code (MAC) can be com-
puted by simply hashing the result of concatenating a key onto the front of a message. The
Keccak speci�cation [5] says:

Unlike SHA-1 and SHA-2, Keccak does not have the length-extension weakness,
hence does not need the HMAC nested construction. Instead, MAC computation
can be performed by simply prepending the message with the key.

This Keccak MAC of message M using key key is Hash (r, c, n) f (Zeros(r+c)) (key‖M).

8

4 Formal speci�cation of MITB

The speci�cation of MITB requires that MITB (r, c, n) f |= φ, where φ is a conjunction
of properties. The particular properties in the conjunction are given mnemonic names and
explained and de�ned separately in the boxes below. Some of these properties need to refer
to the secret key key which is stored as f(key‖Zeros(c)) in MITB's permanent memory. The
atomic property pmemState is used to state such properties: MITB (r, c, n) f |= pmemState(s)
is true if and only if MITB is storing s in its permanent memory.

4.1 Initialisation: Init

The property Init speci�es that the `power up' state of MITB is ready, that zeros are being
output on digest_out and that f(key‖Zeros(c)) is stored in permanent memory.

Init key c n f = readyOut(T) And digestOut(Zeros n) And pmemState(f(key‖Zeros(c)))

4.2 Freezing the state: Freeze

The property Freeze speci�es that the state and outputs of MITB remains unchanged as long
as T is input on skip_inp.

Freeze =
Always

(Forall s b1 b2.
skipInp(T) And pmemState(s) And readyOut(b1) And digestOut(b2)
Implies

Next(pmemState(s) And readyOut(b1) And digestOut(b2)))

4.3 Resetting: Reset

The property Reset speci�es that inputting T on moveInp and F on skipInp in an absorbing

state, i. e. when ready_out is F, results in a return to the ready state on the next cycle, with
permanent memory unchanged and Zeros n being output at ready_out.

Reset n =
Always

(Forall s.
(moveInp(T) And skipInp(F) And readyOut(F) And pmemState(s))
Implies

Next(readyOut(T) And pmemState(s) And digestOut(Zeros n)))

9

4.4 Installing a new key: KeyUpdate

The property KeyUpdate entails that when in state ready, inputting F on both skip_inp and
move_inp and inputting key (where |key| = r) on block_inp, results in f(key‖Zeros(c)) being
stored in the permanent memory and then remaining in the ready state on the next cycle.

KeyUpdate r c f =
Always

((readyOut(T) And skipInp(F) And moveInp(F))
Implies

(Forall key.
blockInp(key) And Bool(|key| = r)
Implies Next(readyOut(T) And pmemState(f(key‖Zeros(c))))))

The key installed by KeyUpdate overwrites the existing one in the permanent memory.

4.5 Computing a MAC: ComputeMAC

The de�nition of ComputeMAC below speci�es that if the user follows the correct protocol for
inputting a message then its MAC is computed.

The user is required to split the message into blocks and then input them and their lengths.

An individual block bk is input by putting it on block_inp and its size |bk| on size_inp

whilst holding both skip_inp and move_inp at F. This is represented by the temporal formula
InputBlock bk de�ned by:

InputBlock bk = blockInp(bk) And sizeInp |bk| And skipInp(F) And moveInp(F)

The recursively de�ned property InputBlocks r [bk1, . . . , bkm] uses InputBlock and speci�es
the procedure for inputting the sequence of blocks bk1, . . . , bkm. It is a temporal formula
which the user must ensure holds. The complexity in the de�nition is (i) to ensure that an
extra empty block is added when the last block has size r and (ii) to drive the device for an
extra cycle when the size of the last block is r−1.

InputBlocks r [] = Bool(F) (This case should not arise in practice.)

InputBlocks r (Cons bk bkl) =
if bkl = []
then if |bk| = r

then InputBlock r bk And Next(InputBlock r [])
else if |bk| = r − 1

then InputBlock r bk And Next(skipInp(F) And moveInp(F))
else InputBlock r bk

else InputBlock r bk And Next(InputBlocks r bkl) :

In the de�nition of ComputeMAC in the box below, the lines are numbered for use in the detailed
explanation given after the de�nition.

10

1 ComputeMAC (r, c, n) f =
2 Always

3 (Forall key m.
4 (readyOut(T) And skipInp(F) And moveInp(T)
5 And Bool(|key | = r) And pmemState(f(key‖Zeros(c))))
6 Implies

7 Next

8 (InputBlocks r (Split r m)
9 Implies

10 (readyOut(F) And digestOut(Zeros n))
11 UntilN(if |m| MOD r = r−1 then |m| DIV r + 2 else |m| DIV r + 1)
12 (readyOut(T) And digestOut(MAC key (r, c, n) m) And pmemState(f(key‖Zeros(c))))))

The de�nition of ComputeMAC should be compared to the informal description on page 2. The
following detailed description of the formula refers to the lines in the box above.

Line 1: The property ComputeMAC is parametrised on the Keccak parameters (r, c, n)
and a permutation function f (see Section 3).

Line 2: Always speci�es that the property holds at all times; without this ComputeMAC
would only be true at time 0.

Line 3: The Forall quanti�cation is inside the scope of the enclosing Always, therefore
it binds the key key and message m at the time the transaction holds.

Line 4: A MAC computation can only be started when MITB is in state ready. To start
the computation in this state the user inputs F on input skip_inp andT on input
move_inp. This causes MITB to go into the absorbing state on the next cycle.

Line 5: The key key used for the computation is assumed to be of size r (i. e. 1152 bits
for the SHA-3 recommended instance of Keccak); f(key‖Zeros(c)) is assumed
to be stored in the permanent memory of the device (see Section 4.4).

Lines 6-7: The body of the Forall is of the form `precondition Implies Next absorb' which
should be read `if precondition holds then on the next cycle absorb holds', where
absorb has the form `input Implies invariant UntilN(number−of−steps) result '.
and occupies lines 8-12.

Line 8: The message is split into blocks and these are input on successive cycles.

Line 10: During the computation ready_out shows F and 0s are output on digest_out.

Line 11: The computation takes |m| DIV r+2 steps if |m| MOD r is r−1, otherwise it takes
|m| DIV r + 1 steps.

Line 12: The output ready_out changes to T and the MAC appears on digest_out. The
value in the permanent memory is unchanged from the start of the computation.

11

4.6 All reachable state are secure: Secure

The property Secure entails that in all reachable states the value output at digestOut is either
Zeros n or Hash (r, c, n) f m for some message m. See Section 6 for a discussion of why this
may be too weak to be signi�cant.

Secure (r, c, n) f =
Always(digestOut(Zeros n) Or Exists m. digestOut(Hash (r, c, n) f (Zeros(r+c)) m))

4.7 Complete speci�cation

The speci�cation of MITB is the conjunction of the properties de�ned in the preceding sections.

(MITB (r, c, n) f, s0) |= Init key c n f And

Freeze And

Reset n And

KeyUpdate r c f And

ComputeMAC (r, c, n) f And

Secure (r, c, n) f

Whether or not this is either a correct or su�cient speci�cation is discussed in Section 6.

5 Implementation

Recall from Section 2 that for any temporal formula φ:

MITB_IMP (r, c, n) f |= φ ⇔ ∀σ1 σ2. MITB_IMP (r, c, n) f σ1 σ2 ⇒ φ(σ1, σ2)

where MITB_IMP is a predicate de�ned in terms of a next-state function MITB representing
a Moore machine and parametrised on the Keccak parameters (r, c, n) and the Keccak
permutation function f .

This section describes a concrete de�nition of MITB_IMP that has been proved to implement the
speci�cation given in Section 4.7.3 The description is presented in two stages: �rst a curried
function MITB_FUN speci�es the behaviour abstractly, and then MITB_FUN is re�ned to MITB,
which is then used to de�ne MITB_IMP that models a high level register transfer level (RTL)
implementation. A diagram of the states and transitions of MITB_FUN is on page 14.

5.1 Behavioural speci�cation: MITB_FUN

MITB_FUN takes an abstract state, which is a triple (cntl, pmem, vmem), and an input i (elabo-
rated below) and returns the next state (cntl′, pmem′, vmem′). The �rst component, cntl, can
have one of three values: Ready, Absorbing and AbsorbEnd. Ready corresponds to the ready

state described in Section 1 and both Absorbing and AbsorbEnd correspond to the absorbing

state. The second and third components of an abstract state, pmem and vmem, are bit-strings
of length r+c and represent the values of the permanent and volatile memory.

3See http://www.cl.cam.ac.uk/~mjcg/MITB/ for details.

12

An input i can either be Move, Skip or Input bk len, where bk is a bitstring of size r and len is
the number of bits of bk that constitutes the block being input (thus len ≤ r). The bitstring
bk and number len represent values being input on block_inp and size_inp.

The de�nition of MITB_FUN, and other functions that follow, have been cut-and-pasted from
the �les input to the HOL4 proof assistant4 used for the veri�cation and then lightly edited
to improve readability and to make them compatible with the notation used elsewhere in this
document. The de�nition of MITB_FUN uses ML-style pattern matching, so there are separate
equations for the various combinations of values of cntl and the input i. These equation are
numbered for easy reference (the numbers are not in the original source).

1: (MITB_FUN (r,c,n) f (cntl,pmem,vmem) Skip =

(cntl,pmem,vmem))

∧
2: (MITB_FUN (r,c,n) f (Ready,pmem,vmem) (Input key len) =

(Ready,f(key ‖ Zeros c),Zeros(r+c)))

∧
3: (MITB_FUN (r,c,n) f (Ready,pmem,vmem) Move =

(Absorbing,pmem,pmem))

∧
4: (MITB_FUN (r,c,n) f (Absorbing,pmem,vmem) Move =

(Ready,pmem,Zeros(r+c)))

∧
5: (MITB_FUN (r,c,n) f (Absorbing,pmem,vmem) (Input blk len) =

if len ≤ r-2 then

(Ready,pmem,

f(vmem ⊕ (Take len blk ‖ [T] ‖ Zeros((r-len)-2) ‖ [T] ‖ Zeros c)))

else if len = r-1 then

(AbsorbEnd,pmem,f (vmem ⊕ (Take len blk ‖ [T] ‖ Zeros c)))

else (Absorbing,pmem,f(vmem ⊕ (blk ‖ Zeros c))))

∧
6: (MITB_FUN (r,c,n) f (AbsorbEnd,pmem,vmem) Move =

(Ready,pmem,Zeros(r+c)))

∧
7: (MITB_FUN (r,c,n) f (AbsorbEnd,pmem,vmem) (Input blk len) =

(Ready,pmem,f (vmem ⊕ (Zeros(r-1) ‖ [T] ‖ Zeros c))))

Equation 1 says that if Skip is input, then the state stays the same. Equations 2 and 3

describe what happens in the ready state (i. e. cntl = Ready). If the input is Input key len
then the permanent memory pmem is set to f(key‖Zeros c), the volatile memory vmem is set to
Zeros(r+c), and the state remains ready. If the input is Move then the next state is absorbing
(cntl = Absorbing) with the permanent memory unchanged and the volatile memory set to
the value of the permanent memory. Equations 4 and 6 specify that if Move is input whilst
absorbing, then the volatile memory is reset to zeros and the device returns to the ready state.

The most complex equation is 5, which speci�es the state transition corresponding to absorbing
a block. What happens depends on whether the block is the last one, which is signalled by the
input length being less than r and corresponds to the �rst two branches of the conditional.
The complexity here is because the devices does the padding, as described in Section 3.1.1.
If the last block is one bit short of being a full block of length r (len = r−1) then one bit

4http://hol.sourceforge.net/

13

is added and the device enters the sub-state of absorbing with cntl = AbsorbEnd, then on
the next cycle, described in equation 7, the remaining padding (i. e. r−1 zeros and a �nal
T) is added and the permutation f applied before transitioning back to the ready state. The
�nal else-clause in equation 5 speci�es the absorption of a non-�nal block, as described in
Section 3.1.2. Such a block must have size exactly r and is absorbed by: (i) appending c zeros
to it, (ii) then XOR-ing the result with the current value, vmem, of the volatile memory, then
(iii) applying the Keccak permutation f to the result of the XOR-ing, and �nally (iv) the
volatile memory is updated to the result of this application of f .

Here is an overview of MITB_FUN in the form of an ASCII art state transition diagram.

-----------		-----------
	Move	
	<-------------->	

+---| | | |---+
| | | | | |

Input key len | | Ready | | Absorbing | | Input blk len
| | | Input blk len | | | (len = r)
|-->| | (len < r-1) | |<--|

	<---------------	
-----+-----		-----------

↑ |
| | Input blk len
| | (len = r-1)
| ↓
	-----+-----
----------------------	AbsorbEnd

| |
| |
| |
| |
|-----+-----|

The function MITB is similar MITB_FUN except that it decodes the inputs into abstract commands
Skip, Move and Input bk len.

MITB (r,c,n) f ((skip,move,block,size),(cntl,pmem,vmem)) =

MITB_FUN (r,c,n) f (cntl,pmem,vmem)

(if skip = [T] then Skip

else if move = [T] then Move

else Input block size)

5.2 Register transfer behaviour and structure: MITB and MITB_DEV

To make a concrete device based on the behaviour speci�ed in MITB, a hardware structure
implementing the state transitions needs to be designed and veri�ed. This will consist of reg-
isters for storing the state (cntl, pmem, vmem) � probably using di�erent memory technologies
for pmem and for cntl and vmem � and a speci�cation of the control logic.

The diagram that follows on page 15 shows such a design, albeit one that is still quite abstract
and missing many details (see Section 6 for some discussion). In this diagram the datapaths are
labelled with the names used in the formal speci�cation given later (e.g. cntl_sig, cntl_nxt)

14

and a number followed by �/� indicates the width of the labelled datapath in bits. Note,
however, that in the model the values on cntl_sig, cntl_nxt and size_inp have not been
coded as bitstring and, for simplicity, are kept abstract. The cntl component holds one of
three values Ready, Absorbing or AbsorbEnd, so two bit are su�cient to encode these. The
input size_inp is a number less than or equal to r, so can be encoded in dlog2re bits.

|------------------------------------|
| |----------------------| |
| | |--------| | |
| | | | | |

cntl_nxt | pmem_nxt | vmem_nxt | | | |
↓ ↓ ↓ | | |

-----------	-----------	-----------			
REGISTER	REGISTER	REGISTER			
(Ready)	(f(key‖0c))	(0r+c)			
-----------	-----------	-----------			

| | | | | |
2 / r+c / r+c / | | |

| | | | | |
cntl_sig | pmem_sig | vmem_sig | | | |

| | | | | |
↓ ↓ ↓ | | |

|-----------------------------------| | | |
1 | | | | | 1

skip_inp ---/-->| |--|-|-|--/--> ready_out
| | | | |

1 | | | | |
move_inp ---/-->| | | | |

| MITB_CONTROL_LOGIC (r, c, n) f | | | |
r | (combinational logic) | | | |

block_inp --/-->| | | | |
| | | | |

dlog2re | | | | | n
size_inp ---/-->| |--|-|-|--/--> digest_out

| | | | |
|-----------------------------------| | | |

| | | | | |
2 / r+c / r+c / | | |

| | | | | |
| | |--------| | |
| |----------------------| |
|------------------------------------|

This diagram is expressed in logic in a standard way using relations.5 Melham's book is a
comprehensive reference [12]. The de�nition of MITB below uses the relation REGISTER to model
registers as a unit delay:

REGISTER init_state (inp,out) ⇔
(out 0 = init_state)

∧
∀t. out (t+1) = inp t

Three instances of REGISTER are used in the de�nition of MITB: to store cntl, pmem and vmem.
Their initial values are indicated in brackets (using 0c to abbreviate Zeros c and 0r+c to
abbreviate Zeros(r + c)).

The relation MITB_CONTROL_LOGIC packages up MITB as a relation and adds some logic to drive
the outputs ready_out and digest_out.

5See http://www.cl.cam.ac.uk/~mjcg/WhyHOL.pdf.

15

MITB_CONTROL_LOGIC (r,c,n) f

(cntl_sig,pmem_sig,vmem_sig,skip_inp,move_inp,block_inp,size_inp,

cntl_nxt,pmem_nxt,vmem_nxt,ready_out,digest_out)

⇔
(∀t.

(cntl_nxt t,pmem_nxt t,vmem_nxt t) =

MITB (r,c,n) f

((skip_inp t,move_inp t,block_inp t,size_inp t),cntl_sig t,

pmem_sig t,vmem_sig t))

∧
(∀t. ready_out t = [cntl_sig t = Ready])

∧
(∀t. digest_out t =

if cntl_sig t = Ready then Take n (vmem_sig t) else Zeros n)

The diagram on page 15 shows widths of the various datapaths. In an HDL like Verilog these
would be expressed in the type system, but here the predicate WIDTH is used.

Width sig n ⇔ ∀t. |sig t| = n

Also the veri�cation requires the Keccak parameters to satisfy 2 < r, 0 < c and n ≤ r, which
is clearly satis�ed by the particular values used by SHA-3. This constraint is enforced using
the predicate GoodParameters.

GoodParameters (r,c,n) ⇔ 2 < r ∧ 0 < c ∧ n ≤ r

The implementation MITB_IMP combines the registers for holding the various state components
with the combinational logic MITB_CONTROL_LOGIC.

MITB_IMP key (r,c,n) f

(cntl_sig,pmem_sig,vmem_sig)

(skip_inp,move_inp,block_inp,size_inp,ready_out,digest_out) ⇔
∃cntl_nxt pmem_nxt vmem_nxt.

GoodParameters (r,c,n) ∧ (∀s. |f s| = |s| ∧
(|key| = r) ∧ Width pmem_sig (r+c) ∧
Width vmem_sig (r+c) ∧ Width pmem_nxt (r+c) ∧
Width vmem_nxt (r+c) ∧ Width skip_inp 1 ∧ Width move_inp 1 ∧
Width block_inp r ∧ (∀t. size_inp t ≤ r) ∧
Width ready_out 1 ∧ Width digest_out n ∧
REGISTER Ready (cntl_nxt,cntl_sig) ∧
REGISTER (f(key‖Zeros c)) (pmem_nxt,pmem_sig) ∧
REGISTER (Zeros(r+c)) (vmem_nxt,vmem_sig) ∧
MITB_CONTROL_LOGIC (r,c,n) f

(cntl_sig,pmem_sig,vmem_sig,skip_inp,move_inp,block_inp,

size_inp,cntl_nxt,pmem_nxt,vmem_nxt,ready_out,digest_out)

A non-vacuity theorem verifying that every sequence of inputs on skip_inp, move_inp, block_inp
and size_inp determines sequences of outputs on ready_out and digest_out has been proved:

16

` ∀key r c n f skip_inp move_inp block_inp size_inp.

(∀s. (|f s| = |s|) ∧ GoodParameters (r,c,n) ∧
(|key| = r) ∧ Width skip_inp 1 ∧ Width move_inp 1 ∧
Width block_inp r ∧ (∀t. size_inp t <= r)

⇒
∃cntl_sig pmem_sig vmem_sig ready_out digest_out.

MITB_IMP key (r,c,n) f

(cntl_sig,pmem_sig,vmem_sig)

(skip_inp,move_inp,block_inp,size_inp,ready_out,digest_out)

6 Discussion and further work

The methods used here, which combine temporal logic speci�cations with mechanised proofs
about state machines represented in higher order logic, are not new and date from the 1980s
[10, 12, 7]. The contribution of this case study is to show how these old ideas may possibly be
useful on a timely example. Although this study is both trivial and incomplete, it is hoped it
may be a �rst step towards something signi�cant.

In the rest of this section the incompleteness of the current work is described. Following that,
there is a �rst partial attempt at a security assessment of the MITB project. Finally, possible
future work is outlined.

6.1 Adequacy and incompleteness

The current speci�cation has not been validated as a usable API description. All that has been
done is to prove that an implementation of MITB as described in Section 5 implements this
speci�cation. The list of properties in Section 4 are ad hoc. Whilst they are consistent, since
the MITB implementation is a model, how can one know if they are adequate? For example,
the property Secure de�ned in Section 4.6 is weak because �Exists m� doesn't say anything
about what m might be and there might be a value in the range of the hash function that
reveals something about the secret key. Rather than an existential quanti�cation, perhaps the
speci�cation Secure should be more explicit, for example say that the digest output is either
zero or is the hash of some previously input message. Such security properties are subtle
and we are not sure what are the ones we should require of MITB. We are not even sure if
the temporal logic notation used here is a good choice of property language; understanding
exactly what the de�nition of ComputeMAC means is quite challenging.

The design of MITB is also ad hoc in that the e�ects of the various inputs may well be badly
designed. For example, having the stored key reset whenever move_inp is F in the ready state
may be dangerous (e. g. an attacker could surreptitiously reset the key). Adjusting the API
would be easy (e. g. just removing the ability to reset the key).

There are two major omissions in the work so far. The �rst major omission is that the
MITB design is not realistic hardware. The input block_inp is 1600-bits wide and the input
size_inp is a number. Whilst the latter is trivial to �x by encoding the numbers as bitstrings,
the former will require sequential bu�ering, say to accumulate blocks 16-bits at a time over a
100 cycles. Adapting the state machine to do this should be straightforward, and the temporal
logic speci�cations should be easy to adapt to work with the additional data acquisition cycles,

17

and most of the existing proofs should be reusable. The work involved is classical data and
temporal abstraction [12]. However, this is all work which has not been done.

The second major omission is that the multi-round Keccak-f permutation function has
not been implemented. It is treated as an uninterpreted function. This nicely separates
the API aspects of MITB from the cryptographic computation concerns, but a complete
implementation would need hardware implementing f , which might need several cycles (e.g.
one for each sub-round), so also requiring temporal re�nement as discussed in the previous
paragraph. There is a discussion in Chapter 4 (Hardware) of the Keccak implementation
overview [6]. Although the Keccak-f is quite complicated [5] creating a veri�ed hardware
designs implementing it should be straightforward, though possibly a lot of work due to all
the intricate details. An approach using verifying synthesis might be appropriate.

6.2 Security assessment

Imagine the MITB design and veri�cation have been completed, say down to synthesisable
RTL represented in logic, but resembling a standard HDL like Verilog. What would have been
achieved? All that would have been shown is that the API functionality speci�ed in LTL is
realised by the HDL model. However:

1. Maybe the veri�er is lying about having completed the proof?

• This could be mitigated by replaying the proof.

2. Maybe the proof tool (HOL4) is unsound?

• This could be mitigated by using another independent tool (e. g. HOL Light,
ProofPower, Isabelle/HOL) together with an expert audit of the tools used, which
should have a strong soundness pedigree.

3. How can the design model be securely manufactured?

• There are many challenges here ranging from unsound synthesis tools, to unsafe
implementation technologies [9].

4. What threats does the model ignore?

• It is assumed Keccak has good cryptographic properties. Being an NIST ap-
proved standard, and considering previous allegations of the NSA subverting NIST
standards[13, 14], this may raise `Snowden worries'. There is no modelling of side-
channels or tampering attacks which could extract f(key‖0c) from the permanent
memory.

Cohn [8] give an early discussion of issues related to some of those above that provoked a
controversy [11].

Finally, although MITB was conceived as part of a secure password secrecy system, it has not
been discussed how such a complete system would work, so there is no analysis of what actual
contribution to security an MITB device might make.

18

6.3 Next steps: short and long term

Completing the design and implementation would seem to be the essential �rst next step, but
maybe it would be better to step back now and decide where the MITB project is going and
what is most critical from a total system security perspective.

Careful thinking is needed to evaluate what contribution a formal veri�cation of MITB could
make to enhancing the security of using hashing in a real world setting.

References

[1] The MITB project. http://www.cl.cam.ac.uk/~mjcg/MITB/Autumn2013Summary.html.

[2] Graham Steel's talk on Tookan at FMATS1, 2011. http://www.cl.cam.ac.uk/~mjcg/
Meeting.SecurityTools.2011/papers/Steel-fmats-tookan.pdf.

[3] First workshop on Formal Methods And Tools for Security (FMATS1), Cambridge, 2011.
http://www.cl.cam.ac.uk/~mjcg/Meeting.SecurityTools.2011/FMATS1.html.

[4] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov. Cryptographic processors � a
survey. Technical Report UCAM-CL-TR-641, University of Cambridge, Computer Lab-
oratory, Aug. 2005. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-641.pdf.

[5] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Online keccak speci�cations, 2009.
http://keccak.noekeon.org/.

[6] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. V. Kleer. Keccak implementa-
tion overview, 2012. http://keccak.noekeon.org/Keccak-implementation-3.2.pdf.

[7] C.-T. Chou. Predicates, temporal logic, and simulations. In J. Joyce and C.-J. Seger,
editors, Higher Order Logic Theorem Proving and Its Applications, volume 780 of Lecture
Notes in Computer Science, pages 310�323. Springer Berlin Heidelberg, 1994.

[8] A. Cohn. The notion of proof in hardware veri�cation. J. Autom. Reasoning, 5(2):127�
139, 1989. http://www.cl.cam.ac.uk/~mjcg/papers/AvraProofPaper.pdf.

[9] S. Drimer. Security for volatile FPGAs. Technical Report UCAM-CL-TR-763, University
of Cambridge, Computer Laboratory, Nov. 2009.
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-763.pdf.

[10] J. J. Joyce. Formal speci�cation and veri�cation of asynchronous processes in higher-
order logic. Technical Report UCAM-CL-TR-136, University of Cambridge, Computer
Laboratory, June 1988.

[11] D. MacKenzie. The fangs of the VIPER. Nature, 352:467�468, 1991.

[12] T. Melham. Higher Order Logic and Hardware Veri�cation, volume 31 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1993.

[13] Perlroth, Nicole. Government Announces Steps to Restore Con�dence on Encryption
Standards. �internal memos leaked by a former N.S.A. contractor, Edward Snowden,
suggest that the N.S.A. generated one of the random number generators used in a 2006
N.I.S.T. standard �- called the Dual EC DRBG standard �- which contains a back door
for the N.S.A.�.

[14] D. Shumow and N. Ferguson. On the Possibility of a Back Door in the NIST SP800-90
Dual Ec Prng .

[15] Solar Designer. Password hashing at scale. Slides for a talk at YaC 2012 (see Slide 9).
http://www.openwall.com/presentations/YaC2012-Password-Hashing-At-Scale/.

19

