Limitations of the Method

Formal proof can’t guarantee actual chips will work:

design models are not always accurate
there may be fabrication defects

Specifications may not capture requirements:

large specifications may be unreadable
some input conditions may be ignored

Modelling Hardware: TFM/MN/MJCG - p.3/32

Modelling Hardware in Higher Order Logic

Original slides by Tom Melham and Michael Norrish
(edited by Mike Gordon)

Modelling Hardware: TFM/MN/MJCG - p.1/32

Why Formal Specification?

Consider this device (J. Herbert's example):

datain — L, dataout

Lt

out

sample]

This can be specifieahformally by

The input linedatain accepts a stream of bits, and the
output linedataout emits the same stream delayed
by four cycles. The busut is four bits wide. If the
inputsample s false then the 4-bit word att is the
last four bits input atatain. Otherwise, the output
word is all zeros.

Modelling Hardware: TFM/MN/MJCG - p.4/32

Hardware Verification Method

Classical method of hardware verification:

1. write a specification of intended behaviour
Spec

2. write specifications of the design components
Part-1, ...Part-n

3. define a formal model of the design

+ Design = Part-1 + --- + Part-n
4. formulate and prove correctness

I Design satisfies Spec

This general verification approach
underlies various specific formal methods
requires mechanized support for large designs
is usually applied hierarchically

Modelling Hardware: TFM/MN/MJCG - p.2/32

Specification Examples

Simple combinational behaviour:

i “ .
o >,

F Xor(il,ig, O) = (0 = _‘(il = 22))

Bidirectional wires:
g

|

s —I L _4
- Ntran(g, s,d) = (g = (d = s))

Modelling Hardware: TFM/MN/MJCG - p.7/32

Why Formal Specification?

The informal specification is

vague: does ‘the last four bits input’ include the currett? bi

incomplete: what is the
three cycles?

value dataout during the first

unusable: a natural language specification can't be

simulated or compiled!

Modelling Hardware: TFM/MN/MJCG - p.5/32

Specification Examples

Sequential (time-dependent) behaviour:

Dtype
g yp L,

ck —>

- Dtype(ck, d, q) = Vt.q(t+1) = (ifRise ck tthend t else ¢ t)
F Rise ck t = —ck(t) A ck(t+1)

Modelling Hardware: TFM/MN/MJCG - p.8/32

Formal Specification in HOL

Consider the following device:

a—

b—

Dev |—c
—d

This is specified by a boolean terfiia, b, ¢, d| with free

variablesa, b, ¢, andd.
The idea is that

a, b, ¢, d model externally-observable values

(T

Sla, b, c,d]| =

if a, b, ¢, andd could occur
simultaneously on the
corresponding external wires of the

deviceDev
otherwise

Modelling Hardware: TFM/MN/MJCG - p.6/32

Composing Behaviours

Consider the following two devices:

D1 D2 —

Si|a, z] S|z, b]

Logical conjunction {) models the effect of connecting
components together:

Dy

[B

D, |_,

Sila, x] A S|z, b]

Modelling Hardware: TFM/MN/MJCG - p.10/32

Specification of the Sampler

We can specify the sampler formally by

Vt:time.
(dataout(t) = datain(t—4))
A
(out(t) = if sample(t)

then [F; F; F; F
else [datain(t—4); datain(t—3);
datain(t—2); datain(t—1))

Modelling Hardware: TFM/MN/MJCG - p.9/32

Hiding Internal Structure

Consider the composite device

Sila,] A S, b]

Existential quantification{) models the effect of making
wires internal to the design:

dz. Sya, x| A S|z, b]

Existential quantification is calledrading operator—it
‘hides’ internal wires.

Modelling Hardware: TFM/MN/MJCG - p.11/32

Specification of the Sampler

We can specify the sampler formally by

Vt:time.
(dataout(t) = datain(t—4))
A
(out(t) = if sample(t)

then [F; F; F; F
else [datain(t—4); datain(t—3);
datain(t—2); datain(t—1))
The formal specification is

precise: ‘last four bits input’ doesn't include current bit

complete: can infer thatataout equalsdatain(0) during
the first three cycles.

usable: logic notation can be processed by machine

Modelling Hardware: TFM/MN/MJCG - p.9/32

Hiererchical Verification
The hierarchical verification method:

Level O
Model: |Nl ————— I
FM =325 A% |zj
Correctness: T _T_ T
—_——f
=M sbgt S
Level 1
Models:
F M =32.Py AP,]:Jl _____ |]:JE _____ |
N 2 L1 S [7 L
Correctness: T T
F My sat S, Pﬁ Pﬁ
F Mo sgt S

Modelling Hardware: TFM/MN/MJCG - p.14/32

Shallow embedding of Verilog

Some typical structural Verilog

nodul e COWP (p1, ... ,pm;
wre wl, ..., wn;

COVWPL ML (...):
cowp2 M2 (...);

endnodul e
Assume formulas fo€COMP1, COVP2 already defined

Logical representation:
COMP(p1,...,pm) = Jwl ... wn. COMP1(...) A COMP2(...)

Modelling Hardware: TFM/MN/MJCG - p.12/32

Hierarchical Design—Advantages

Each type of module verified only once

the statement of its correctness will be reused
many times

Controls complexity through abstraction

each verification is done at the appropriate
level of complexity

Modelling Hardware: TFM/MN/MJCG - p.15/32

Formulating Correctness

A key part of formal hardware verification is formalizing
what ‘correctnessneans.

The strongest formulation equivalence:

F Yo .o v, Moy, o] = Slog, . o)
For partial specifications, usimplication:

F Yo .. v M[og,.o u] = Sog, . o)

In general, the satisfaction relationship
= Mlvy, ..., v,] sat Slabs(vq),...,abs(v,)]
abs
must be one oébstraction. The specification will be an

abstraction of the design model. Various kinds of
abstractions on signalsi{s) will be discussed later.

Modelling Hardware: TFM/MN/MJCG - p.13/32

Design Model and Correctness

We define the design model using composition
and hiding, as follows:

FInv(z,0) =
(i-0) X
dgp. Pwrp AGnd g A
Ntran(i, g, 0) A Ptran(i, p, o) i 0
Correctness is formulated by the equivalence: 9]

FVio.Inv(i,0) = (0o = —i)

This follows by purely logical inference. ..

Modelling Hardware: TFM/MN/MJCG - p.18/32

A Simple Correctness Proof

Here is the design of a CMOS inverter: pO
Suppose we wish to verify that= —i. [
There are three steps: ; .

define a model of the circuit in logic

formulate the correctness of the circuit
prove the correctness of the circuit

||ICQ

Modelling Hardware: TFM/MN/MJCG - p.16/32

The Correctness Proof

Definition of Inv:

- Inv(i, 0) =
Jgp. Pwrp AGnd g A
Ntran(i, g, o) A Ptran(i, p, o)

Expanding with definitions:

F1Inv(i,0) =
Jgp. p=T)A(g=F) A
(i=(0=9)) A (mi= (0=Dp))

By simple logical reasoning:

FInv(i,0) = (i= (0 =F) A (=i = (0=T))

Modelling Hardware: TFM/MN/MJCG - p.19/32

CMOS Primitives

Formal specifications of primitives:

9
) b p F Ptran(g, s,d) = (-g = (d = s))

9
. 1 J F Ntran(g, s,d) = (g = (d = s))

g
J:_ FGndg=(g=F)

E FPwrp=(p=T)

This is the so-calledwitch model of CMOS.

Modelling Hardware: TFM/MN/MJCG - p.17/32

Another Example
An (n+1)-bit ripple-carry adder:

an bn az b a1 by ag bo
[| [| | | | |
cout —Addl}— ... —Add Add Addl}— cin
| | | |
Sn 52 81 S0

We wish to prove that:
(2" X cout) + s =a+ b+ cin

There are, as usual, three steps:

define a model of the circuit in logic
formulate the correctness of the circuit
prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG - p.22/32

The Correctness Proof continued
Simplifying gives:

FInv(i,0) = (i = —0) A (—i = o)
By the law of the contrapositive:
F1nv(i,0) = (0o = —i) A (—i = 0)
By the definition of boolean equality:
FInv(i,0) = (0o = i)
Generalizing the free variables gives:

FYio.Inv(i,0) = (0 = —)

Modelling Hardware: TFM/MN/MJCG - p.20/32

Defining the Model: types

Specification uses numbers, i.e. values of type:

Implementation uses words — values of type-d
M bit of w denoted byw| 1]
w[m : n] denotes bitsn to n of w
Bv(b) is the number represented by bit
V(w) is the natural number represented by werd

Abstraction from words to numbers (data abstraction):

FBvb =ifbthen1else 0
=V wl0: 0] = Bv w[0]
FVawn+1:0] = 2""Y(Bvwn+1]) + Vwln: 0

Modelling Hardware: TFM/MN/MJCG - p.23/32

Scope of the Method

The inverter example is, of course, trivial!
But the same method has been applied to

a commercial CMOS cell library

several complete microprocessors (e.g. ARM)
floating point algorithms and hardware

Features of the approach:
the specification language is just logic
x logic can mimic HDL constructs

the rules of reasoning are also pure logic
* gpecial-purpose derived rules are possible
big formal proofs require machine assistance

Modelling Hardware: TFM/MN/MJCG - p.21/32

Defining the Model

Recursive view of am-+1-bit adder:

a[npln] a[n—1:0] b[n—1:0]
| | L L
cout —JAdd1l_< | Adderimp(n—1) | — cin
|
s[n] s[n—1:0]

Primitive recursive definition in logic:
Adderlmp(0)(a, b, cin, s, cout) =
Add1(a[0], b[0], cin, s[0], cout)

Adderlmp n (a, b, cin, s, cout) =
de. Add1(a[n], b[n], ¢, s[n], cout) A
Adderimp(n—1)(a[n—1:0], bjn—1:0], cin, s[n—1:0], ¢)

Modelling Hardware: TFM/MN/MJCG - p.26/32

Defining the Model: recursive definition

If n > 0 an(n+1)-bit adder is built from am-bit adder

a[np[n] a[n—1:0] b[n—1:0]
[| {4 L3
cout —|Add1l | Adderimp(n—1) |— cin
|
s[n] s[n—1:0]

Modelling Hardware: TFM/MN/MJCG - p.24/32

Formulation of Correctness
Logical formulation of correctness:

Spec n (a, b, cin, s, cout) = (2" cout)+s = a+b+cin)

Vnabcin s cout.
Adderlmp n (a, b, cin, s, cout)

=
Spec n (V a[n:0],V b[n:0], Bv cin,V s[n:0], Bv cout)
Note the data abstractionts in an earlier slide)

This is easy to prove (done later in the course)

Modelling Hardware: TFM/MN/MJCG - p.27/32

Defining the Model: Add1

Diagram of a 1-bit full adder:

cout—— Add1 —c¢i n

Linesa, b, ci n, sumandcout carry boolean values

Specification (note data abstraction frénal to num):
Addl(a,b, cin, sum, cout) =
(2xBv(cout) + Bv(sum) = Bv(a) + Bv(b) + Bv(cin))

Modelling Hardware: TFM/MN/MJCG - p.25/32

Formulating Correctness

Then correctness is stated by:

F Vck. Inf(Rise ck) =
Vd q. Dtype(ck,d, q) =
Del(d when (Rise ck), ¢ when (Rise ck))

Note the formabalidity condition:

FInNfP=Vt. 3t t >t N Pt

Modelling Hardware: TFM/MN/MJCG - p.30/32

Temporal Abstraction

Example—abstracting to unit delay:

Del
i —°7% L—0o FDel(i,0) = Vt.o(t41) = i ¢

I

Dtype

4 7 Rise ck t = ~ck(t) A ck(t+1)

ck —> + Dtype(ck,d,q) =
Vt.q(t+1) = ifRise ck t thend telse g t

Notions of time involved:

coarse grain of time— unit time = 1 clock cycle
fine grain of time—unit timex 1 gate delay

Modelling Hardware: TFM/MN/MJCG - p.28/32

Industry use of theorem proving
Intel

floating point algorithms (uses HOL Light system)
hardware (uses internal tools Fort&/f&ct
AMD
floating point (uses ACL2 prover)
Sun
high level architecture verification (PVS)
Rockwell Collins
low level code verification (ACL2)

Use of model checking widespread
discussed in latter part of the course

Modelling Hardware: TFM/MN/MJCG - p.31/32

Formulating Correctness

A mapping between time-scales:

abstract,,: >
I

concretet..: >

clock ck: l—l l—l l_l >

Define the temporal abstraction functions:

+ Timeof P n = thetime on ¢. such that P true for nth time

- signal when P = signal o (Timeof P)

where (fog)r = f(gx) [ois function composition]

Modelling Hardware: TFM/MN/MJCG - p.29/32

Summary
Specifying behaviour:
predicates—&., b, ¢, d |
Specifying structure:
composition—39[a, z| A S[z, b
hiding—3z. S [a, z] A Sy, b]
Formulating correctness:
F Yo ... vp. Mog, ..o o,] = Slog, ... o)
FYvr ... vp. Mog, ..o o] = Sog, .., o)
FYv ... v, Mug,. .. v,] = Slabs vy, ..., abs vy,]
Abstraction
data:w — V(w)
temporal:sig — sig when (Rise clk)

Modelling Hardware: TFM/MN/MJCG - p.32/32

	Hardware Verification Method
	Limitations of the Method
	Why Formal Specification?
	Why Formal Specification?
	Formal Specification in HOL
	Specification Examples
	Specification Examples
	Specification of the Sampler
	Composing Behaviours
	Hiding Internal Structure
	Shallow embedding of Verilog
	Formulating Correctness
	Hiererchical Verification
	Hierarchical Design---Advantages
	A Simple Correctness Proof
	CMOS Primitives
	Design Model and Correctness
	The Correctness Proof
	The Correctness Proof continued
	Scope of the Method
	Another Example
	Defining the Model: types
	Defining the Model: recursive definition
	Defining the Model: ${sf �lack Add1}$
	Defining the Model
	Formulation of Correctness
	Temporal Abstraction
	Formulating Correctness
	Formulating Correctness
	Industry use of theorem proving
	Summary

