<table>
<thead>
<tr>
<th>Previous notation</th>
<th>PSL ASCII notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P \land Q$</td>
<td>$P & Q$</td>
</tr>
<tr>
<td>$P \Rightarrow Q$</td>
<td>$P \rightarrow Q$</td>
</tr>
<tr>
<td>$\neg P$</td>
<td>${\neg P}$</td>
</tr>
<tr>
<td>XP</td>
<td>next P</td>
</tr>
<tr>
<td>FP</td>
<td>eventually P</td>
</tr>
<tr>
<td>GP</td>
<td>always P</td>
</tr>
<tr>
<td>$[P \cup Q]$</td>
<td>P until Q</td>
</tr>
<tr>
<td>$[P \cap Q]$</td>
<td>P until Q</td>
</tr>
<tr>
<td>R^*</td>
<td>true</td>
</tr>
<tr>
<td>$R_1; R_2$</td>
<td>$R_1 : R_2$</td>
</tr>
<tr>
<td>$R_1; \text{skip}; R_2$</td>
<td>$R_1 ; R_2$</td>
</tr>
</tbody>
</table>

Semantics:
- $r := \text{Atom}(p)$ (Atomic formula)
- $f := \neg f$ (Negation)
- $f \lor f_2$ (Disjunction)
- $\text{next } f$ (successor)
- $(r)|-> (r_2)$ (Suffix implication)
- $[f]$ (Unit)

SEREs in HOL

- **Syntax:**
 - $r := \text{Atom}(p)$ (Atomic formula)
 - $f := \neg f$ (Negation)
 - $f \lor f_2$ (Disjunction)
 - $\text{next } f$ (successor)
 - $(r)|-> (r_2)$ (Suffix implication)
 - $[f]$ (Unit)

- **Semantics:**
 - $\text{Atom}(p) = \lambda \sigma. p(\sigma(0))$
 - $\neg f = \lambda \sigma. \neg f(\sigma)$
 - $f_1 \lor f_2 = \lambda \sigma. f_1(\sigma) \lor f_2(\sigma)$
 - $\text{next } f = \lambda \sigma. f(\text{next } 1(\sigma))$
Combining SEREs with LTL formulas

- Formula $[r]$ means LTL formula f true after SERE r
- Example
 After a sequence in which req is asserted, followed four cycles later by an assertion of $grant$, followed by a cycle in which $abortin$ is not asserted, we expect to see an assertion of ack some time in the future.
 - Can represent by
 \[
 \text{always } (\text{req};[\ast 3];\text{grant};\text{!abortin})(\text{eventually!} \text{ } \text{ack})
 \]
 where eventually! is LTL future operator F, so:
 $\text{eventually! } f = [T \cup f] = [\text{true until! } f]$
 - N.B. suffix ! denotes “strong”
 - strong/weak distinction not covered here – important for dynamic checking
 - gives semantics when simulator halts before an expected event occurs

Examples of defined notations: consecutive repetition

- Define
 \[
 \begin{align*}
 r[\ast] &= \{r; r[\ast]\} \\
 r[\ast i] &= \{f; r[r]; \ldots ; r\} \quad \text{otherwise (i repetitions of r)} \\
 r[\ast i..j] &= \{r[\ast i]\} \cup \{r[\ast (i+1)]\} \cup \ldots \cup \{r[\ast j]\} \\
 [\ast] &= \text{true}[\ast] \\
 [\ast i] &= \text{true}[\ast]
 \end{align*}
 \]
- Example
 Whenever we have a sequence of req followed by ack, we should see a full transaction starting the following cycle. A full transaction starts with an assertion of the signal $\text{start} \text{ } \text{trans}$, followed by one to eight consecutive data transfers, followed by the assertion of signal $\text{end} \text{ } \text{trans}$. A data transfer is indicated by the assertion of signal data
 \[
 \text{always } (\text{req};\text{ack}) \Rightarrow \{\text{start} \text{ } \text{trans};\{\{\text{!data}[\ast];\text{data}[\ast]\}\times 8;\{\text{data}[\ast]\};\text{end} \text{ } \text{trans}\}
 \]

Fixed number of non-consecutive repetitions

- Example
 Whenever we have a sequence of req followed by ack, we should see a full transaction starting the following cycle. A full transaction starts with an assertion of the signal $\text{start} \text{ } \text{trans}$, followed by eight not necessarily consecutive data transfers, followed by the assertion of signal $\text{end} \text{ } \text{trans}$. A data transfer is indicated by the assertion of signal data
 - Can represent by
 \[
 \text{always } (\text{req};\text{ack}) \Rightarrow \{\text{start} \text{ } \text{trans};\{\{\text{data}[\ast];\text{data}[\ast]\}\times 8;\{\text{data}[\ast]\};\text{end} \text{ } \text{trans}\}
 \]
 - Define
 \[
 b[= i] = \{\text{!b}[\ast];b[\ast]\times i;\text{!b}[\ast]
 \]
 - Then have a nicer representation
 \[
 \text{always } (\text{req};\text{ack}) \Rightarrow \{\text{start} \text{ } \text{trans};\{\text{data}[= 8];\text{end} \text{ } \text{trans}\}
 \]
Variable number of non-consecutive repetitions

- Example
 Whenever we have a sequence of req followed by ack, we should see a full transaction starting the following cycle. A full transaction starts with an assertion of the signal start_trans, followed by one to eight not necessarily consecutive data transfers, followed by the assertion of signal end_trans. A data transfer is indicated by the assertion of signal data.

- Define
 \[b[i..j] = \{b[i]\} | \{b[i+1]\} | \ldots | \{b[j]\} \]

- Then
 \[\text{always(req;ack)} \implies \{\text{start_trans;data[1..8];end_trans}\} \]

- These examples are meant to illustrate how PSL/Sugar is much more readable than raw CTL or LTL.

Clocking

- Basic idea: \(b@clk \) abstracts \(b \) on rising edges of \(clk \)
- Can clock SEREs (\(r@clk \)) and formulas (\(f@clk \))
- Can have several clocks
- Official semantics messy due to clocking
- Can ‘translate away’ clocks by pushing \(@clk \) inwards
 - rules given in PSL manual
 - roughly: \(b@clk \rightarrow \{ !clk[*]; clk & b \} \)
- Same idea as temporal abstraction: \(b \) at \(clk \)

Model checking PSL

- SEREs checked by generating a finite automaton
 - recall: regular expressions can be recognised by finite automata
 - these automata are called “satellites”
- FL checked using standard LTL methods
- OBE checked by standard CTL methods
- Can also check formula for runs of a simulator
 - this is dynamic verification
 - semantics handles possibility of finite paths – messy!

PSL layer structure

- **Boolean layer** has atomic predicates
- **Temporal layer** has LTL (FL) and CTL (OBE) properties
- **Verification layer** has commands for how to use properties
 - e.g. assert, assume
 - \[\text{assert always (!en1 & en2)} \]
 - \[\implies \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
 - \[| \]
PSL/Sugar summary

- Combines together LTL, ITL and CTL
- Regular expressions – SEREs
- LTL – Foundation Language formulas
- CTL – Optional Branching Extension
- Relatively simple set of primitives + definitional extension
- Boolean, temporal, verification, modelling layers
- Semantics for static and dynamic verification (needs strong/weak distinction)

New Topic: Simulation or Event semantics

- HDLs use discrete event simulation
 - changes to variables ⇒ threads enabled
 - enabled threads executed non-deterministically
 - execution of threads ⇒ more events
- Combinational thread:
 \[
 \text{always } @ (v_1 \text{ or } \cdots \text{ or } v_n) \ v := E
 \]
 - enabled by any change to \(v_1, \ldots, v_n \)
- Positive edge triggered sequential threads:
 \[
 \text{always } @ (\text{posedge } clk) \ v := E
 \]
 - enabled by \(clk \) changing to \(T \)
- Negative edge triggered sequential threads:
 \[
 \text{always } @ (\text{negedge } clk) \ v := E
 \]
 - enabled by \(clk \) changing to \(F \)

Simulation

- Given
 - a set of threads
 - initial values for variables read or written by threads
 - a sequence of input values (inputs are variables not in LHS of assignments)
- simulation algorithm ⇒ a sequence of states

- Simulation is non-deterministic

Combinational threads in series

- HDL-like specification:
 \[
 \begin{align*}
 &\text{always } @ (in) \ l_1 := f(in) \quad \ldots \quad \text{thread T1} \\
 &\text{always } @ (l_1) \ l_2 := g(l_1) \quad \ldots \quad \text{thread T2} \\
 &\text{always } @ (l_2) \ out := h(l_2) \quad \ldots \quad \text{thread T3}
 \end{align*}
 \]
- Suppose \(in \) changes to \(v \) at simulation time \(t \)
 - \(T1 \) will become enabled and assign \(f(v) \) to \(l_1 \)
 - \(l_1 \)'s value changes then \(T2 \) will become enabled (still simulation time \(t \))
 - \(T2 \) will assign \(g(f(v)) \) to \(l_2 \)
 - \(l_2 \)'s value changes then \(T \) will become enabled (still simulation time \(t \))
 - \(T3 \) will assign \(h(g(f(v))) \) to \(out \)
 - simulation quiesces (still simulation time \(t \))
- Steps at same simulation time happen in \(\delta \)-time
 (VHDL jargon)
Semantic gap

- Designers use HDLs and verify via simulation
- Formal verifiers use logic and verify via proof
 - trace semantics
- Problem: show consistency between semantics
- Goal:
 - traces = sequences of quiescent simulation states

Outline (see Section 4.4 of Notes for details):
- first analyse sets of combinational threads
- identify conditions for "non-looping"
- simulation terminates → trace semantics (partial correctness)
- simulation always terminates "quiesces" (total correctness)
- extend to sequential threads

Trace defined by a simulation run

- Simulation defines a tree of states

Sequential threads – event semantics

- Consider two Dtypes in series:
 - always @(posedge clk) l := in
 - always @(posedge clk) out := l

- If possedg clk:
 - both threads become enabled
 - race condition
 - Right thread executed first:
 - out gets previous value of l
 - then left thread executed
 - so l gets value input at in
 - Left thread executed first:
 - l gets input value at in
 - then right thread executed
 - so out gets input value at in

Sequential threads – trace semantics

- Trace semantics:
 \[\forall t. l(t+1) = (\text{Rise } clk t \rightarrow in t \mid l(t)) \land \]
 \[\forall t. out(t+1) = (\text{Rise } clk t \rightarrow l(t) \mid out(t)) \]
 - Corresponds to right thread executed first
 - How to ensure event and trace semantics agree?
 - Method 1: use non-blocking assignments:
 - always @(posedge clk) l <= in;
 - always @(posedge clk) out <= l;
 - non-blocking assignments (<=) in Verilog
 - RHS of all non-blocking assignments first computed
 - assignments done at end of simulation cycle
 - Method 2: make simulation cycle VHDL-like
Verilog versus VHDL simulation cycles

- **Verilog-like simulation cycle:**
 1. Choose an enabled thread
 2. Execute the chosen thread
 3. Fire event controls to enable new threads
 4. Execute until quiescent then advance simulation time

- **VHDL-like simulation cycle:**
 1. Execute all enabled threads in parallel
 2. Fire event controls to enable new threads
 3. Execute until quiescent then advance simulation time

VHDL event semantics

- Recall HDL:

  ```
  always @(posedge clk) l := in
  always @(posedge clk) out := l
  ```

- If `posedge clk`:
 - both threads become enabled

- **VHDL semantics:**
 - both threads executed in parallel
 - `out` gets previous value of `l` in parallel
 - `in` gets value input at `in`

- **Now no race**

- Event semantics matches trace semantics

Summary of dynamic versus static semantics

- Simulation (event) semantics different from trace semantics
- No standard event semantics (Verilog versus VHDL)
- Verilog: need non-blocking assignments
- VHDL semantics closer trace semantics

Summary of Specification I and II

- **Software specification and verification**
 - Hoare logic: partial and total correctness
 - proof by invariants and variants
 - mechanisation via VCs (WP or SP)
 - only nice for simple languages
 - can apply Hoare logic to behavioral view of hardware

- **Higher order logic (HOL)**
 - unifying general logic
 - supports Hoare logic via embedding
 - supports temporal logics via embedding
 - can directly represent hardware behavior and structure \((\exists, \forall)\)
 - hardware verification as pure logic proof
 - relating models: event vs trace vs RTL vs cycles

- **Hardware specification and verification**
 - automatic FV uses state machine models, fit nicely into HOL
 - reachable states calculated by iteration (fixed point)
 - symbolic representations: BDDs
 - model checking of properties (CTL, LTL, ITL, PSL)
 - event simulation used in industry

THE END - HAVE A GOOD VACATION!