Lecture 9
λ-reduction as evaluation

- If $E_1 \rightarrow E_2$
 - E_2 got from E_1 by ‘evaluation’
 - If no (β- or η-) redexes in E_2 then it’s ‘fully evaluated’

- A λ-expression is said to be *in normal form* if it contains no β- or η-redexes
 - i.e. if the only conversion rule that can be applied is α-conversion
 - A λ-expression in normal form is ‘fully evaluated’

- **Examples:**
 - Church numerals are all in normal form
 - $(\lambda x. x) \, 0$ is not in normal form

- Can also define ‘δ-normal form’
Church Rosser Theorem

• **Statement of the Church-Rosser theorem:**

 If $E_1 = E_2$ then there exists an E such that $E_1 \rightarrow E$ and $E_2 \rightarrow E$

• **Suppose normal forms E_1 and E_2 are obtained from E by sequences of conversions**

 • hence $E = E_1$ and $E = E_2$

 • hence $E_1 = E_2$

 • By Church-Rosser theorem there exists an expression E'

 • $E_1 \rightarrow E'$ and $E_2 \rightarrow E'$

 • the only redexes E_1 and E_2 can contain are α-redexes

 • so only way that E_1 and E_2 can be reduced to E' is by α-conversion

 • so E_1 and E_2 must be the same up to renaming of bound variables
Parallel evaluation

- Suppose E is ‘evaluated’ in two different ways by applying different sequences of reductions until normal forms E_1 and E_2 are obtained.

- The Church-Rosser theorem shows that E_1 and E_2 will be the same:
 - up to α-conversion
 - i.e. except for having possibly different names of bound variables

- Because the results of reductions do not depend on the order in which they are done, separate redexes can be evaluated in parallel:
 - suggests multiprocessor architectures
 - distributing redexes to processors and collecting results may cancel out theoretical advantages
Church numerals are not equal

- Suppose \(m \neq n \) but \(m = n \)

- By the Church-Rosser theorem \(m \rightarrow E \) and \(n \rightarrow E \) for some \(E \)

- Consider definitions of \(m \) and \(n \)
 \[
 m = \lambda f \, x. \, f^m x \\
 n = \lambda f \, x. \, f^n x
 \]

- no such \(E \) can exist

- only conversions applicable to \(m \) and \(n \) are \(\alpha \)-conversions

- these cannot change the number of function applications in an expression
 (\(m \) contains \(m \) applications and \(n \) contains \(n \) applications)
Corollaries to Church-Rosser Theorem

• **Definition:** \(E \) has a normal form if \(E = E' \) for some \(E' \) in normal form

• If \(E \) has a normal form then \(E \rightarrow E' \) for some \(E' \) in normal form

 • If \(E \) has a normal form then \(E = E' \) for some \(E' \) in normal form

 • by Church-Rosser theorem there exists \(E'' \) such that \(E \rightarrow E'' \) and \(E' \rightarrow E'' \)

 • as \(E' \) in normal form only redexes in it are \(\alpha \)-redexes

 • so reduction \(E' \rightarrow E'' \) must consist only of of \(\alpha \)-conversions

 • thus \(E'' \) must be identical to \(E' \) except for renaming of bound variables

 • it must thus be in normal form as \(E' \) is
• If E has a normal form and $E = E'$ then E' has a normal form
 - suppose E has a normal form and $E = E'$
 - As E has a normal form, $E = E''$ where E'' is in normal form
 - hence $E' = E''$ by the transitivity of =
 - so E' has a normal form

• If $E = E'$ and E and E' are both in normal form, then E and E' are identical up to α-conversion
 - by Church-Rosser there exists E'' such that $E \rightarrow E''$ and $E' \rightarrow E''$
 - if E and E' are in normal form, then reductions to E'' must be α-reductions
 - so E and E' are convertible to each other via α-conversions
Exercises

• For each of the following *either* find its normal form *or* show that it has no normal form:

 (i) add 3

 (ii) add $3 5$

 (iii) $(\lambda x. x x) (\lambda x. x)$

 (iv) $(\lambda x. x x) (\lambda x. x x)$

 (v) Y

 (vi) $Y (\lambda y. y)$

 (vii) $Y (\lambda f x. (\text{iszero} x \rightarrow 0 \mid f (\text{pre} x)))$
Non-termination

- A λ-expression E can have a normal form
 - even if there’s an infinite sequence $E \rightarrow E_1 \rightarrow E_2 \cdots$

- Example:
 - $(\lambda x. \bot) (Y f)$ has a normal form \bot
 - even though:
 $$(\lambda x. \bot) (Y f) \rightarrow (\lambda x. \bot) (f (Y f)) \rightarrow \cdots (\lambda x. \bot) (f^n (Y f)) \rightarrow \cdots$$
Normalisation theorem

- If E has a normal form, then
 - repeatedly reducing the leftmost β- or η-redex will terminate with an expression in normal form

- Normalisation theorem gives an algorithm for computing normal forms (when they exist)

- A sequence of reductions in which the leftmost redex is always reduced is called a normal order reduction sequence

- Normalization theorem says that
 - if E has a normal form
 - then it is got by normal order reduction
Inefficiencies

• Normal order reduction often inefficient

• Example: by normal order reduction:

\[
(\lambda x. x \ x \ x) \ E
\]

is reduced to

\[
E \ E \ E
\]

• suppose \(E \) is not in normal form

• more efficient to first reduce \(E \) to normal form \(E' \)

• then reduce

\[
(\lambda x. x \ x \ x) \ E'
\]

to

\[
E' \ E' \ E'
\]

• avoid reducing \(E \) twice

• this is what ML does
Call-by-Value

- ML reduces arguments before substituting
 - disastrous in cases like \((\lambda x. \bot) ((\lambda x. x x) (\lambda x. x x))\)

- Difficult problem to find an optimal algorithm for choosing the next redex to reduce

- Call-by-value is appropriate when the language has constructs with side effects
 - e.g. assignments, as in ML

- Normal order evaluation is not as inefficient as one might think
 - cunning implementation tricks like graph reduction

- Whether functional programming languages should use normal order or call by value is still a controversial issue
On ‘undefined’ λ-expressions

- E_1 may not have a normal form even though $E_1 \ E_2$ does have one

- Example
 - Y has no normal form,
 - but $Y \ (\lambda x. \ 1) \rightarrow \ 1$

- λ-expressions without a normal form are not ‘undefined’ functions
 - Y has no normal form but it denotes a perfectly well defined function
Head normal form

- A λ-expression denotes an undefined function if and only if it cannot be converted to an expression in head normal form.

- E is in head normal form if it has the form
 $$\lambda V_1 \cdots V_m. V \ E_1 \cdots E_n$$
 - where V_1, \ldots, V_m and V are variables
 - and E_1, \ldots, E_n are λ-expressions
 - V can either be equal to V_i, for some i, or it can be distinct from all of them
Definedness of \(Y \)

- \(Y \) is not undefined because it can be converted to
 \[
 \lambda f. f ((\lambda x. f(x x)) (\lambda x. f(x x)))
 \]
 - this is in head normal form

- Can be shown that an expression \(E \) has a head normal form
 - if and only if there exist expressions \(E_1, \ldots, E_n \)
 - such that \(E E_1 \ldots E_n \) has a normal form

- This supports the interpretation of expressions without head normal forms as denoting undefined functions
 - \(E \) being undefined means that \(E E_1 \ldots E_n \) never terminates for any \(E_1, \ldots, E_n \)
Programming reduction in ML

• Recall

```datatype lam = Var of string
  | App of (lam * lam)
  | Abs of (string * lam);```

• $E[E'/V]$ computed by Subst $E$ $E'$ $V$

• Normal order reduction in ML

```fun EvalN (e as Var _) = e
 | EvalN (Abs(x,e)) = Abs(x, EvalN e)
 | EvalN (App(e1,e2)) =
 case EvalN e1
 of (Abs(x,e3)) => EvalN(Subst e3 e2 x)
 | e1' => App(e1', EvalN e2);
> val EvalN = fn : lam -> lam```
Applicative (call-by-value) order

- With call-by-value, function bodies are not evaluated

```ocaml
fun EvalV (e as Var _)  = e
  | EvalV (e as Abs(_,_))  = e
  | EvalV (App(e1,e2))    =
    let val e2' = EvalV e2
    in
      (case EvalV e1
         of (Abs(x,e3)) => EvalV(Subst e3 e2' x)
            | e1'          => App(e1',e2'))
    end;
>
EvalV = fn : lam -> lam
```