Lecture 7

Substitution and validity

- E[E'/V] means:
 - the result of substituting E'
 - for each *free* occurrence of V in E.
- The substitution is valid if
 - no free variable in E'
 - became bound in E[E'/V]
- In the definitions of α- and β-conversion, it was stipulated that the substitutions involved must be valid
 - for example $(\lambda V. E_1) E_2 \xrightarrow{\beta} E_1 [E_2/V]$
 - as long as the substitution $E_1[E_2/V]$ valid
- Convenient to extend the meaning of E[E'/V] so that we don't have to worry about validity
 - i.e. arrange that all expressions E, E_1 and E_2 and all variables V and V': $(\lambda V. E_1) E_2 \longrightarrow E_1[E_2/V]$ and $\lambda V. E \longrightarrow \lambda V'. E[V'/V]$

Definition of substitution

• E[E'/V] defined recursively on structure of E:

E	E[E'/V]
V	E'
V' (where $V \neq V'$)	V'
$E_1 E_2$	$E_1[E'/V] E_2[E'/V]$
$\lambda V. E_1$	$\lambda V. E_1$
$\lambda V'$. E_1 (where $V \neq V'$ and V' is not free in E')	$\lambda V'. E_1[E'/V]$
$\lambda V'$. E_1 (where $V \neq V'$ and V' is free in E')	$\lambda V''$. $E_1[V''/V'][E'/V]$ where V'' is a variable not free in E' or E_1

$$\begin{aligned} (\lambda y. \ y \ x) \llbracket y/x \rrbracket &\equiv \lambda z. \ (y \ x) \llbracket z/y \rrbracket \llbracket y/x \rrbracket \\ &\equiv \lambda z. \ (z \ x) \llbracket y/x \rrbracket \\ &\equiv \lambda z. \ z \ y \end{aligned}$$

De Bruijn terms

- De Bruijn's idea:
 - variables are 'pointers' to the λ s that bind them
- Can point to the appropriate λ by giving the number of levels 'upwards' needed to reach it
- λx . λy . x y is represented by $\lambda \lambda 2$ 1
- Diagram shows number of levels separating a variable from the λ that binds it

• represented by $\lambda\lambda2$ 1 $\lambda3$ 1 1

Representation of free variables

- Free variables represented by numbers bigger than the depth of λ s above them
 - different free variables assigned different numbers
- $\lambda x. (\lambda y. y x z) x y w$ represented by $\lambda(\lambda 1 2 3) 1 2 4$
 - only two λs above the occurrence of 3
 - this number must denote a free variable
 - similarly there is only one λ above the second occurrence of 2 and the occurrence of 4
 - so these too must be free variables
 - 2 could not be used to represent w
 - since this had already been used to represent the free y
 - chose the first available number bigger than 2
 - 3 was already in use representing z

More on free variables

- Must assign big enough numbers to free variables
 - the first occurrence of z in $\lambda x.\ z\ (\lambda y.\ z)$ could be represented by 2
 - but the second occurrence requires 3
 - since they are the same variable must use 3
- Hence $\lambda x. z (\lambda y. z)$ represented by $\lambda 3\lambda 3$
- $\lambda x. x (\lambda y. x y y)$ represented by $\lambda 1(\lambda 2 1 1)$

The λ -calculus in ML

• Datatype lam to represent λ -expressions

• $(\lambda x \ y. \ f \ x \ y) \ z$ represented by:

App (Abs ("x", Abs ("y", App (App (Var "f", Var "x"), Var "y"))), Var "z")

Computing free variables

• Some set-theoretic functions:

• Computing the *set* of free variables

```
fun Frees (Var x) = [x]
  | Frees (App(e1,e2)) = Union (Frees e1) (Frees e2)
  | Frees (Abs(x,e)) = Subtract (Frees e) [x];
> val Frees = fn : lam -> string list
Frees(Abs ("x",App (App (Var "f",Var "x"),Var "y")));
> val it = ["f","y"] : string list
```

Functions for renaming variables:

• Adding a prime to a variable name

```
fun Prime x = x^"'";
> val Prime = fn : string -> string
Prime "foo";
> val it = "foo'" : string
```

• Priming a variable until it is distinct from all variables in a given list

```
fun Variant xl x =
  if Member x xl then Variant xl (Prime x) else x;
 > val Variant = fn : string list -> string -> string
 Variant [] "foo";
 > val it = "foo" : string
 Variant ["bas","foo","mumble"] "foo";
 > val it = "foo'" : string
 Variant ["bas","foo","mumble","foo'"] "foo";
 > val it = "foo''" : string
```

Substitution in ML

E	E[E'/V]
V	E'
V' (where $V \neq V'$)	V'
$E_1 E_2$	$E_1[E'/V] E_2[E'/V]$
$\lambda V. E_1$	$\lambda V. E_1$
$\lambda V'$. E_1 (where $V \neq V'$ and V' is not free in E')	$\lambda V'$. $E_1 [E'/V]$
$\lambda V'$. E_1 (where $V \neq V'$ and V' is free in E')	$\lambda V''$. $E_1[V''/V'][E'/V]$ where V'' is a variable not free in E' or E_1

```
fun Subst (e as Var v') e' v = if v=v' then e' else e
| Subst (App(e1, e2)) e' v =
    App(Subst e1 e' v, Subst e2 e' v)
| Subst (e as Abs(v',e1)) e' v =
    if v=v'
    then e
    else
    if Member v' (Frees e')
    then
    let val v'' = Variant (Frees e' @ Frees e1) v'
    in Abs(v'', Subst(Subst e1 (Var v'') v') e' v)
    end
    else Abs(v', Subst e1 e' v);
```

Representing Things in the λ -calculus

- λ -calculus appears to be very primitive
 - however, it can represent most of the objects and structures needed for programming
- Goal: represent objects and structures so they have required properties
- For example, to represent
 - constants true and false
 - Boolean function ¬ ('not')
- define λ -expressions
 - true, false and not
- So that:

not true = false not false = true **Repeating** \land ('and') & \lor ('or')

- To represent Boolean function \land ('and')
- Define λ -expression and such that:

and true true = true
and true false = false
and false true = false
and false false = false

- To represent \lor ('or')
- Define or such that:

or true true = true
or true false = true
or false true = true
or false false = false

Notation for definitions

- λ -expressions used to represent things may appear completely unmotivated
 - they are chosen so that they work
- Notation: write

LET $\sim = \lambda$ -expression

to introduce \sim as a new notation

- Usually \sim is a name like true or and
 - such names are written in this font or underlined
 - true is a variable, but true is λx . λy . x
 - 2 is a number, but $\underline{2}$ is $\lambda f x$. f(f x)
 - explanation coming ... !
- Sometimes \sim will be more complicated
 - like the conditional notation $(E \rightarrow E_1 \mid E_2)$

Representing truth-values (Booleans)

• Define true, false and not so that:

not true = falsenot false = true

$$(\texttt{true} \to E_1 \mid E_2) = E_1$$
$$(\texttt{false} \to E_1 \mid E_2) = E_2$$

- LET true = λx . λy . x
- LET false = $\lambda x. \ \lambda y. \ y$
- LET not = $\lambda t. t$ false true

• Rules of λ -conversion verify this works:

not true =
$$(\lambda t. t \text{ false true})$$
 true (defn of not)
= true false true (β -conversion)
= $(\lambda x. \lambda y. x)$ false true (defn of true)
= $(\lambda y. \text{ false})$ true (β -conversion)
= false (β -conversion)

• Similarly not false = true

Representing conditionals

- Conditionals $(E \to E_1 \mid E_2)$ defined by
 - LET $(E \to E_1 \mid E_2) = (E \ E_1 \ E_2)$
- For any λ -expressions E, E_1 and E_2
 - $(E \rightarrow E_1 \mid E_2)$ stands for $(E \mid E_1 \mid E_2)$
- The conditional notation behaves as it should: $(true \rightarrow E_1 \mid E_2) = true \ E_1 \ E_2$ $= (\lambda x \ y. \ x) \ E_1 \ E_2$ $= E_1$

and

$$\begin{array}{l} (\texttt{false} \rightarrow E_1 \mid E_2) \ = \texttt{false} \ E_1 \ E_2 \\ &= (\lambda x \ y. \ y) \ E_1 \ E_2 \\ &= E_2 \end{array} \end{array}$$