Lecture 7



Substitution and validity

e FL[E'/V] means:

e the result of substituting £’

e for each free occurrence of V in F.

® The substitution is valid if

e no free variable in £’

e became bound in E[E'/V]

e In the definitions of a- and (#-conversion, it was

stipulated that the substitutions involved must
be valid

e for example (\V. E) E; 7 E [Ey/V]

e as long as the substitution F;[F,/V] valid

e Convenient to extend the meaning of E[FE'/V]
so that we don’t have to worry about validity

e i.e. arrange that all expressions I/, I/, and FE5 and all
variables V and V’:



Definition of substitution

e F[FE'/V] defined recursively on structure of E:

E E[E'/V]

|4 E'

%4 (where V #£ V') V!

FE1 E, E\[E'/V] ES[E'[V]
AV. Ey AV. Ey

AV'. E; (where V # V' and |AV'. E1[E'/V]
V' is not free in E')

AV'. E; (where V #V and |AV". E1[V"/V']1[E'/V]
V' is free in E') where V" is a variable
not free in F' or I}

(Ay. y z)ly/a] = Az (y 2)Lz/y] Ly/x]
= \z. (z ) Lly/x]
=)\z. 2 ¥y



De Bruijn terms

® De Bruijn’s idea:

e variables are ‘pointers’ to the As that bind them

e Can point to the appropriate A\ by giving the
number of levels ‘upwards’ needed to reach it

® )\r. \y. x y is represented by A2 1

e Diagram shows number of levels separating a

variable from the )\ that binds it
3

A

2

——

Ar. Ay.xy (A\y. zy y)

_—

1 1

e represented by A2 1 A3 11



Representation of free variables

e Free variables represented by numbers bigger
than the depth of A\s above them

e different free variables assigned different numbers

o )\z. (\y.yz z) xywrepresented by \(A\123) 124

e only two As above the occurrence of 3

e this number must denote a free variable

e similarly there is only one A above the second occur-
rence of 2 and the occurrence of 4

e so these too must be free variables

e 2 could not be used to represent w

e since this had already been used to represent the free y

e chose the first available number bigger than 2

e 3 was already in use representing z



More on free variables

Must assign big enough numbers to free vari-
ables

e the first occurrence of z in Azx. z (Ay. 2z) could be
represented by 2

e but the second occurrence requires 3

e since they are the same variable must use 3

Hence A\z. z (\y. z) represented by A3A3

Ar. © (Ay. ¢ y y) represented by A1(A2 1 1)



The M-calculus in ML

e Datatype lam to represent \-expressions

datatype lam = Var of string
| App of (lam * lam)
| Abs of (string * lam);

e (\zy. fxy)zrepresented by:

App
(AbS ("X",

AbS (nyn’
App (App (Var "f", Var "x"), Var "y"))),

Var nzn)




Computing free variables

® Some set-theoretic functions:

fun Member x [] = false
| Member x (x’::8) = (x=x’) orelse Member x s;

fun Union [] 1 =1
| Union (x::11) 12 =
1f Member x 12 then Union 11 12
else x::(Union 11 12);

fun Subtract [] 1 = []
| Subtract (x::11) 12 =
1f Member x 12 then Subtract 11 12
else x::(Subtract 11 12);

e Computing the set of free variables

fun Frees (Var x) = [x]
| Frees (App(el,e2)) = Union (Frees el) (Frees e2)
| Frees (Abs(x,e)) = Subtract (Frees e) [x];

> val Frees = fn : lam -> string list

Frees(Abs ("x",App (App (Var "f",Var "x"),Var "y")));
> val it = ["f","y"] : string list




Functions for renaming variables:

e Adding a prime to a variable name

~noiryn.
X ’

fun Prime x
> val Prime = fn : string -> string

Prime "foo'";
> val it = "foo’" : string

e Priming a variable until it is distinct from all
variables in a given list

fun Variant x1 x =
if Member x x1 then Variant x1 (Prime x) else x;
> val Variant = fn : string list -> string -> string

Variant [] "foo";
> val it = "foo" : string

Variant ["bas","foo","mumble"] "foo";
> val it = "foo’" : string

Variant ["bas","foo","mumble","foo’"] "foo";
> val it = "foo’’" : string




Substitution in ML

E ELE' V]

v E

%4 (where V #£ V') %4

Eyi By E\[E'/V] E[E')V]
AV. By AV, Ey

AV'. Ey (where V # V' and | \V'. B [E'/V]
V'’ is not free in £')

AV'. Ey (where V #V'and | AV". Ey[V"/V']1[E'/V]
V' is free in E') where V" is a variable
not free in £’ or E;

fun Subst (e as Var v’) e’ v = if v=v’ then e’ else e
| Subst (App(el, e2)) e’ v =
App(Subst el e’ v, Subst e2 e’ v)
| Subst (e as Abs(v’,el)) e’ v =

if v=v’
then e
else
if Member v’ (Frees e’)
then
let val v’’ = Variant (Frees e’ @ Frees el) v’
in Abs(v’’, Subst(Subst el (Var v’’) v’) e’ v)
end

else Abs(v’, Subst el e’ v);




Representing Things in the A-calculus

e )\-calculus appears to be very primitive

e however, it can represent most of the objects and
structures needed for programming

e Goal: represent objects and structures so they
have required properties

e For example, to represent
e constants true and false

e Boolean function — (‘not’)

e define )\-expressions

e true, false and not

e So that:
not true = false

not false = true

10



Repesenting A (‘and’) & V (‘or’)

e To represent Boolean function A (‘and’)

® Define \-expression and such that:

and true true = true
and true false = false
and false true = false
and false false = false

e To represent V (‘or’)

® Define or such that:

or true true = true

or true false = true
or false true = true
or false false = false

11



Notation for definitions

® )-expressions used to represent things may ap-
pear completely unmotivated

e they are chosen so that they work

e Notation: write
LET ~ = A\-expression

to introduce ~ as a new notation

e Usually ~ is a name like true or and

e such names are written in this font or underlined

e true is a variable, but true is A\z. \y. z
e 2 is a number, but 2 is A\f z. f(f z)

e explanation coming ... !

® Sometimes ~ will be more complicated

e like the conditional notation (F — F; | E»)

12



Representing truth-values (Booleans)

® Define true, false and not so that:

not true — false
not false = true

(true — E1 ‘ Ez) = El
(false — El ‘ Eg) = E2

e LET true = A\z. \y. x
e LET false = \x. \y. y
e LET not = At. t false true

® Rules of A-conversion verify this works:

not true = (At. t false true) true (defn of not)

= true false true (f-conversion)
= (Az. \y. x) false true (defn of true)
= (Ay. false) true (S-conversion)
— false (S-conversion)

e Similarly not false = true

13



Representing conditionals

e Conditionals (F — F; | F,) defined by

o LET (E—) F | Eg) = (E F Eg)

e For any M-expressions F/, F; and Es

e (K — FE\ | Ey) stands for (F E; E)

e The conditional notation behaves as it should:
(true — F) | E5) = true F; Fj
o
and
(false — Fj ‘ Ez) — false E;| F»
= (\r y. y) E1 B
— £,

14



