
Lecture 7

0

Substitution and validityx E[E 0=V] means:u the result of substituting E0u for each free occurrence of V in E.x The substitution is valid ifu no free variable in E0u became bound in E[E0=V]x In the de�nitions of �- and �-conversion, it wasstipulated that the substitutions involved mustbe validu for example (�V: E1) E2 �!� E1[E2=V]u as long as the substitution E1[E2=V] validx Convenient to extend the meaning of E[E 0=V]so that we don't have to worry about validityu i.e. arrange that all expressions E, E1 and E2 and allvariables V and V 0:(�V: E1) E2 �! E1[E2=V] and �V: E �! �V 0: E[V 0=V]

1

De�nition of substitutionx E[E 0=V] de�ned recursively on structure of E:
E E[E0=V]
V E0V 0 (where V 6= V 0) V 0E1 E2 E1[E0=V] E2[E0=V]�V: E1 �V: E1�V 0: E1 (where V 6= V 0 and �V 0: E1[E0=V]V 0 is not free in E0)�V 0: E1 (where V 6= V 0 and �V 00: E1[V 00=V 0][E0=V]V 0 is free in E0) where V 00 is a variablenot free in E0 or E1

(�y: y x)[y=x] � �z: (y x)[z=y][y=x]� �z: (z x)[y=x]� �z: z y

2

De Bruijn terms
x De Bruijn's idea:u variables are `pointers' to the �s that bind themx Can point to the appropriate � by giving thenumber of levels `upwards' needed to reach itx �x: �y: x y is represented by ��2 1x Diagram shows number of levels separating avariable from the � that binds it3z }| {2z }| {�x: �y: x y (�y: x y y)| {z }1 | {z }1u represented by ��2 1 �3 1 1

3

Representation of free variables
x Free variables represented by numbers biggerthan the depth of �s above themu di�erent free variables assigned di�erent numbersx �x: (�y: y x z) x y w represented by �(�1 2 3) 1 2 4u only two �s above the occurrence of 3u this number must denote a free variableu similarly there is only one � above the second occur-rence of 2 and the occurrence of 4u so these too must be free variablesu 2 could not be used to represent wu since this had already been used to represent the free yu chose the �rst available number bigger than 2u 3 was already in use representing z

4

More on free variables
x Must assign big enough numbers to free vari-ablesu the �rst occurrence of z in �x: z (�y: z) could berepresented by 2u but the second occurrence requires 3u since they are the same variable must use 3x Hence �x: z (�y: z) represented by �3�3x �x: x (�y: x y y) represented by �1(�2 1 1)

5

The �-calculus in ML
x Datatype lam to represent �-expressionsdatatype lam = Var of string| App of (lam * lam)| Abs of (string * lam);x (�x y: f x y) z represented by:App(Abs ("x",Abs ("y",App (App (Var "f", Var "x"), Var "y"))),Var "z")

6

Computing free variables
x Some set-theoretic functions:fun Member x [] = false| Member x (x'::s) = (x=x') orelse Member x s;fun Union [] l = l| Union (x::l1) l2 =if Member x l2 then Union l1 l2else x::(Union l1 l2);fun Subtract [] l = []| Subtract (x::l1) l2 =if Member x l2 then Subtract l1 l2else x::(Subtract l1 l2);x Computing the set of free variablesfun Frees (Var x) = [x]| Frees (App(e1,e2)) = Union (Frees e1) (Frees e2)| Frees (Abs(x,e)) = Subtract (Frees e) [x];> val Frees = fn : lam -> string listFrees(Abs ("x",App (App (Var "f",Var "x"),Var "y")));> val it = ["f","y"] : string list

7

Functions for renaming variables:
x Adding a prime to a variable namefun Prime x = x^"'";> val Prime = fn : string -> stringPrime "foo";> val it = "foo'" : stringx Priming a variable until it is distinct from allvariables in a given listfun Variant xl x =if Member x xl then Variant xl (Prime x) else x;> val Variant = fn : string list -> string -> stringVariant [] "foo";> val it = "foo" : stringVariant ["bas","foo","mumble"] "foo";> val it = "foo'" : stringVariant ["bas","foo","mumble","foo'"] "foo";> val it = "foo''" : string

8

Substitution in MLE E[E 0=V]V E 0V 0 (where V 6= V 0) V 0E1 E2 E1[E 0=V] E2[E 0=V]�V: E1 �V: E1�V 0: E1 (where V 6= V 0 and �V 0: E1[E 0=V]V 0 is not free in E 0)�V 0: E1 (where V 6= V 0 and �V 00: E1[V 00=V 0][E 0=V]V 0 is free in E 0) where V 00 is a variablenot free in E 0 or E1fun Subst (e as Var v') e' v = if v=v' then e' else e| Subst (App(e1, e2)) e' v =App(Subst e1 e' v, Subst e2 e' v)| Subst (e as Abs(v',e1)) e' v =if v=v'then eelseif Member v' (Frees e')thenlet val v'' = Variant (Frees e' @ Frees e1) v'in Abs(v'', Subst(Subst e1 (Var v'') v') e' v)endelse Abs(v', Subst e1 e' v);

9

Representing Things in the �-calculus
x �-calculus appears to be very primitiveu however, it can represent most of the objects andstructures needed for programmingx Goal: represent objects and structures so theyhave required propertiesx For example, to representu constants true and falseu Boolean function : (`not')x de�ne �-expressionsu true, false and notx So that: not true = falsenot false = true

10

Repesenting ^ (`and') & _ (`or')
x To represent Boolean function ^ (`and')x De�ne �-expression and such that:and true true = trueand true false = falseand false true = falseand false false = false
x To represent _ (`or')x De�ne or such that:or true true = trueor true false = trueor false true = trueor false false = false

11

Notation for de�nitions
x �-expressions used to represent things may ap-pear completely unmotivatedu they are chosen so that they workx Notation: writeLET � = �-expressionto introduce � as a new notationx Usually � is a name like true or andu such names are written in this font or underlinedu true is a variable, but true is �x: �y: xu 2 is a number, but 2 is �f x: f(f x)u explanation coming ... !x Sometimes � will be more complicatedu like the conditional notation (E ! E1 j E2)

12

Representing truth-values (Booleans)
x De�ne true, false and not so that:not true = falsenot false = true(true! E1 j E2) = E1(false! E1 j E2) = E2u LET true = �x: �y: xu LET false = �x: �y: yu LET not = �t: t false truex Rules of �-conversion verify this works:not true = (�t: t false true) true (defn of not)= true false true (�-conversion)= (�x: �y: x) false true (defn of true)= (�y: false) true (�-conversion)= false (�-conversion)x Similarly not false = true

13

Representing conditionals
x Conditionals (E ! E1 j E2) de�ned byu LET (E ! E1 j E2) = (E E1 E2)x For any �-expressions E, E1 and E2u (E ! E1 j E2) stands for (E E1 E2)x The conditional notation behaves as it should:(true! E1 j E2) = true E1 E2= (�x y: x) E1 E2= E1and (false! E1 j E2) = false E1 E2= (�x y: y) E1 E2= E2

14

