Lecture 6

Examples

- $(\lambda x. x)$ denotes the 'identity function'
 - $((\lambda x. x) E) = E$
 - "=" defined later
- $(\lambda x. (\lambda f. (f x)))$ denotes the function:
 - which when applied to E
 - yields $(\lambda f. (f x))[E/x] = (\lambda f. (f E))$
- $(\lambda f. (f E))$ is the function
 - which when applied to E'
 - yields $(f \ E) [E'/f] = (E' \ E)$
- Thus

 $((\lambda x. \ (\lambda f. \ (f \ x))) \ E) = (\lambda f. \ (f \ E))$

and

$$((\lambda f.~(f~E))~E')=(E'~E)$$

Notational conventions

- Function application associates to the left
 - $E_1 E_2$ means $(E_1 E_2)$
 - $E_1 \ E_2 \ E_3$ means $((E_1 \ E_2)E_3)$
 - $E_1 \ E_2 \ E_3 \ E_4$ means $(((E_1 \ E_2)E_3)E_4)$
 - $E_1 E_2 \cdots E_n$ means $((\cdots (E_1 E_2) \cdots) E_n)$
- $\lambda V. E_1 E_2 \ldots E_n$ means $(\lambda V. (E_1 E_2 \ldots E_n))$
 - Scope of ' λV ' extends as far right as possible
- $\lambda V_1 \cdots V_n$. E means $(\lambda V_1. (\cdots . (\lambda V_n. E) \cdots))$
 - $\lambda x \ y. \ E \ \mathbf{means} \ (\lambda x. \ (\lambda y. \ E))$
 - $\lambda x \ y \ z. \ E \ means \ (\lambda x. \ (\lambda y. \ (\lambda z. \ E)))$
 - $\lambda x \ y \ z \ w. \ E \ means \ (\lambda x. \ (\lambda y. \ (\lambda z. \ (\lambda w. \ E))))$

Free and bound variables

- Occurrence of V is free if
 - it is not within the scope of a ' λV '
 - otherwise it is bound
- Example:

- E is closed if it contains no free variables
- Convention: will use bold names for particular closed terms

- λ -expressions can represent data objects like numbers, strings etc
 - $(2+3) \times 5$ can be represented as a λ -expression
 - its 'value' 25 can also be represented
 - details later
- Notation: underlining denotes representation as λ -expression
 - $\underline{3}$ is λ -expression denoting 3
- The process of 'simplifying' (2+3) × 5 to 25 will be represented by a process called *conversion* (or *reduction*)
- Rules of λ -conversion are very general:
 - when applied to λ -expressions representing arithmetic expressions they do arithmetical evaluation

Kinds of λ -conversion

- Three kinds of λ -conversion;
 - α -conversion renaming bound variables
 - β -conversion function application rule
 - η -conversion extensionality
- Notation: E[E'/V] denotes
 - the result of substituting E'
 - for each *free* occurrence of V in E
- The substitution is *valid* if and only if:
 - no free variable in E' becomes bound in E[E'/V]
- Substitution is described in more detail later

Rules of λ -conversion

- α -conversion
 - $\lambda V. E$ can be converted to $\lambda V'. E[V'/V]$
 - provided the substitution of V' for V in E is valid
 - $E_1 \xrightarrow{\alpha} E_2$ means $E_1 \alpha$ -converts to E_2
- β -conversion
 - $(\lambda V. E_1) E_2$ can be converted to $E_1[E_2/V]$
 - provided the substitution of E_2 for V in E_1 is valid
 - $E_1 \xrightarrow{\beta} E_2$ means $E_1 \beta$ -converts to E_2
- η -conversion
 - λV . $(E \ V)$ can be converted to E
 - provided V has no free occurrence in E
 - $E_1 \xrightarrow{\eta} E_2$ means $E_1 \eta$ -converts to E_2

Remarks on conversion rules

- β -conversion is most important
 - it can simulate arbitrary evaluation mechanisms
 - $(2+3) \times 5 \longrightarrow \frac{25}{\beta}$
 - details later
- α -conversion concerns the technical manipulation of bound variables
- η -conversion forces functions that always give the same results on the same arguments to be equal
 - this is called "extensionality"
- N.B. "conversion" and "reduction" are used interchangeably

- A λ -expression to which α -reduction can be applied is called an α -redex
 - necessarily an abstraction
- The term "redex" abbreviates "reducible expression"
- α -conversion says that bound variables can be renamed
 - provided no 'name-clashes' occur

- $\lambda x. \ x \longrightarrow \lambda y. \ y$
- $\lambda x. f x \longrightarrow \lambda y. f y$
- It is not the case that

$$\lambda x. \ \lambda y. \ f \ x \ y \longrightarrow \lambda y. \ \lambda y. \ f \ y \ y$$

- the substitution $(\lambda y. f x y)[y/x]$ is not valid
- since the y that replaces x becomes bound

eta-conversion

- A λ -expression to which β -reduction can be applied is called a β -redex
 - necessarily an application
- β -conversion is like the evaluation of a function call in a programming language
 - $(\lambda V. E_1) E_2 \xrightarrow{\beta} E_1 [E_2/V]$
 - the body E_1 of the function $\lambda V_{\cdot} E_1$ is evaluated
 - with V is bound to E_2

Examples of β -conversion

- $(\lambda x. f x) E \xrightarrow{\beta} f E$
- $(\lambda x. \ (\lambda y. \texttt{f} x y)) \xrightarrow{3} \xrightarrow{\beta} \lambda y. \texttt{f} \xrightarrow{3} y$
- $(\lambda y. f \underline{3} y) \underline{4} \xrightarrow{\beta} f \underline{3} \underline{4}$
- It is not the case that $(\lambda x. \ (\lambda y. f x y)) \ (g y) \xrightarrow{\beta} \lambda y. f \ (g y) y$
 - the substition $(\lambda y. f x y)[(g y)/x]$ is not valid
 - y is free in (g y)
 - becomes bound after substitution for x in $(\lambda y. f x y)$

Identifying β -redexes

• Consider the application:

 $(\lambda x. \ \lambda y. \ \mathbf{f} \ x \ y) \ \underline{3} \ \underline{4}$

- bracketting according to conventions yields: $(((\lambda x. (\lambda y. ((f x) y))) \underline{3}) \underline{4})$
- which has the form:

 $((\lambda x. E) \underline{3}) \underline{4}$

where

 $E = (\lambda y. f x y)$

 $(\lambda x. \ E) \ \underline{3}$ is a $\beta\text{-redex}$ and could be reduced to $E \left[\underline{3} / x \right]$

η -conversion

- A λ -expression to which η -reduction can be applied is called an η -redex
 - necessarily an abstraction
- η -conversion expresses extensionality
 - two functions are equal if they give the same results when applied to the same arguments
- $\lambda V_{\cdot} (E \ V)$ denotes the function which:
 - when applied to an argument E'
 - returns $(E \ V) [E'/V]$
- If V does not occur free in E
 - then $(E \ V)[E'/V] = (E \ E')$
 - Thus λV . E V and E both yield the same result, namely E E', when applied to the same arguments
 - hence they denote the same function

- $\lambda x. f x \longrightarrow f$
- $\lambda y. f x y \longrightarrow f x$
- It is not the case that

$$\lambda x. \text{ f } x \ x \xrightarrow{\eta} \text{ f } x$$

because x is free in f x

Generalized conversions

- $\xrightarrow{\alpha}$, $\xrightarrow{\beta}$ and $\xrightarrow{\eta}$ can be generalized:
 - $E_1 \xrightarrow{\alpha} E_2$ if E_2 can be got from E_1 by α -converting any subterm
 - $E_1 \xrightarrow{\beta} E_2$ if E_2 can be got from E_1 by β -converting any subterm
 - $E_1 \xrightarrow{\eta} E_2$ if E_2 can be got from E_1 by η -converting any subterm
- Examples: $((\lambda x. \lambda y. f x y) \underline{3}) \underline{4} \xrightarrow{\beta} (\lambda y. f \underline{3} y) \underline{4}$
 - subexpression $(\lambda x. \ \lambda y. \ f \ x \ y)$ is β -reduced
- Notation for a sequence of conversions: $((\lambda x. \ \lambda y. \ f \ x \ y) \ \underline{3}) \ \underline{4} \xrightarrow{\beta} (\lambda y. \ f \ \underline{3} \ y) \ \underline{4} \xrightarrow{\beta} f \ \underline{3} \ \underline{4}$

More example reductions

(i)
$$(\lambda x. x) \perp \xrightarrow{\beta} \perp$$

(ii) $(\lambda y. y) ((\lambda x. x) \perp) \xrightarrow{\beta} (\lambda y. y) \perp \xrightarrow{\beta} \perp$
(iii) $(\lambda y. y) ((\lambda x. x) \perp) \xrightarrow{\beta} (\lambda x. x) \perp \xrightarrow{\beta} \perp$

- (ii) & (iii) start with the same λ -expression
 - but reduce redexes in different orders
- An important property of β -reductions:
 - no matter in which order one does reductions
 - one always ends up with equivalent results
- Some reduction sequences may never terminate

Equality of λ -expressions

- Conversion rules preserve the meaning of λ expressions
 - i.e. if E_1 can be converted to E_2
 - then E_1 and E_2 denote the same function
- This property of conversion should be intuitively clear
- Can give a mathematical definition of the function denoted by a λ -expression
 - then to prove that this is unchanged by $\alpha\text{-},\ \beta\text{-}$ or $\eta\text{-conversion}$
 - doing this is surprisingly difficult

Definition of equality

- We define two λ -expressions to be equal if they can be transformed into each other by a sequence of (forwards or backwards) λ conversions
- Must distinguish equality and identity
 - λ -expressions are identical if they consist of *exactly* the same sequences of characters
 - they are equal if one can be converted to the other
 - $\lambda x. x$ is equal to $\lambda y. y$
 - but not identical to it
- Notation:
 - $E_1 \equiv E_2$ means E_1 and E_2 are identical
 - $E_1 = E_2$ means E_1 and E_2 are equal

Formal definition of equality

- If E and E' are λ -expressions, then E = E' if
 - $E \equiv E'$
 - or there exist expressions E_1, E_2, \ldots, E_n such that:
 - **1.** $E \equiv E_1$
 - **2.** $E' \equiv E_n$
 - **3.** For each i either
 - (a) $E_i \xrightarrow{\alpha} E_{i+1}$ or $E_i \xrightarrow{\beta} E_{i+1}$ or $E_i \xrightarrow{\eta} E_{i+1}$ or (b) $E_{i+1} \xrightarrow{\alpha} E_i$ or $E_{i+1} \xrightarrow{\beta} E_i$ or $E_{i+1} \xrightarrow{\eta} E_i$.

• Examples:

- $(\lambda x. x) \underline{1} = \underline{1}$
- $(\lambda x. x) ((\lambda y. y) \underline{1}) = \underline{1}$
- $(\lambda x. \ \lambda y. \ \mathbf{f} \ x \ y) \ \underline{3} \ \underline{4} \ = \ \mathbf{f} \ \underline{3} \ \underline{4}$

Properties of equality

- E = E for any E
 - equality is *reflexive*
- If E = E', then E' = E
 - equality is *symmetric*
- If E = E' and E' = E'', then E = E''
 - equality is *transitive*
- If a relation is reflexive, symmetric and transitive then it is called an *equivalence* relation
 - thus = is an equivalence relation

- If $E_1 = E_2$
- And if E'_1 and E'_2 only differ in that:
 - where one contains E_1 the other contains E_2
- Then $E'_1 = E'_2$
- This property is called *Leibnitz's law*
 - It holds because the same sequence of reduction for getting from E_1 to E_2 can be used for getting from E'_1 to E'_2
 - For example, if $E_1 = E_2$, then by Leibnitz's law λV . $E_1 = \lambda V$. E_2

- Suppose:
 - $E_1 V = E_2 V$
 - V not free in E_1 or E_2
- By Leibnitz's law

$$\lambda V. E_1 V = \lambda V. E_2 V$$

and by η -reduction applied to both sides

$$E_1 = E_2$$

- Useful for proving λ -expressions equal:
 - to prove $E_1 = E_2$
 - prove $E_1 V = E_2 V$ for some V not occuring free in E_1 or E_2
- Such proofs are by extensionality
 - e.g. $(\lambda f \ g \ x. \ f \ x \ (g \ x)) \ (\lambda x \ y. \ x) \ (\lambda x \ y. \ x) = \lambda x. \ x$

Need for valid substitutiions

- Suppose $\lambda x. \ (\lambda y. \ x) \xrightarrow{\alpha} \lambda y. \ (\lambda y. \ y)$
 - y becomes bound after substitution for x in λy . x
- Then it would follow by the definition of = that: $\lambda x. \ \lambda y. \ x = \lambda y. \ \lambda y. \ y$
- But then for any E_1 and E_2 $(\lambda x. (\lambda y. x)) E_1 E_2 \xrightarrow{\beta} (\lambda y. E_1) E_2 \xrightarrow{\beta} E_1$

and

$$(\lambda y. \ (\lambda y. \ y)) \ E_1 \ E_2 \xrightarrow{\beta} (\lambda y. \ y) \ E_2 \xrightarrow{\beta} E_2$$

one would be forced to conclude that $E_1 = E_2$

• So all λ -expressions would be equal!

The \longrightarrow relation

- E = E' means:
 - E' can be obtained from E
 - by a sequence of forwards or backwards conversions
- $E \longrightarrow E'$ means:
 - E' can be got from E using only forwards conversions
 - if $E \equiv E'$ or there exist expressions E_1, E_2, \ldots, E_n such that:
 - **1.** $E \equiv E_1$
 - **2.** $E' \equiv E_n$
 - **3.** For each i either:
 - $E_i \xrightarrow{\alpha} E_{i+1}$ or
 - $E_i \xrightarrow{\beta} E_{i+1}$ or
 - $E_i \xrightarrow{\eta} E_{i+1}$