
Lecture 6

0

Examples
x (�x: x) denotes the `identity function'u ((�x: x) E) = Eu \=" de�ned laterx (�x: (�f: (f x))) denotes the function:u which when applied to Eu yields (�f: (f x))[E=x] = (�f: (f E))x (�f: (f E)) is the functionu which when applied to E0u yields (f E)[E0=f] = (E0 E)x Thus ((�x: (�f: (f x))) E) = (�f: (f E))and ((�f: (f E)) E 0) = (E 0 E)

1

Notational conventions
x Function application associates to the leftu E1 E2 means (E1 E2)u E1 E2 E3 means ((E1 E2)E3)u E1 E2 E3 E4 means (((E1 E2)E3)E4)u E1 E2 � � � En means ((� � � (E1 E2) � � �) En)x �V: E1 E2 : : : En means (�V: (E1 E2 : : : En))u Scope of `�V ' extends as far right as possiblex �V1 � � � Vn: E means (�V1: (� � � : (�Vn: E) � � �))u �x y: E means (�x: (�y: E))u �x y z: E means (�x: (�y: (�z: E)))u �x y z w: E means (�x: (�y: (�z: (�w: E))))

2

Free and bound variables
x Occurrence of V is free ifu it is not within the scope of a `�V 'u otherwise it is boundx Example: (�x: y x)(�y: x y)

free6bound
6 free6bound

6

x E is closed if it contains no free variablesx Convention: will use bold names for particularclosed terms

3

Conversion rules
x �-expressions can represent data objects likenumbers, strings etcu (2 + 3)� 5 can be represented as a �-expressionu its `value' 25 can also be representedu details laterx Notation: underlining denotes representationas �-expressionu 3 is �-expression denoting 3x The process of `simplifying' (2 + 3)� 5 to 25 willbe represented by a process called conversion(or reduction)x Rules of �-conversion are very general:u when applied to �-expressions representing arith-metic expressions they do arithmetical evaluation

4

Kinds of �-conversion
x Three kinds of �-conversion;u �-conversion { renaming bound variablesu �-conversion { function application ruleu �-conversion { extensionalityx Notation: E[E 0=V] denotesu the result of substituting E0u for each free occurrence of V in Ex The substitution is valid if and only if:u no free variable in E0 becomes bound in E[E0=V]x Substitution is described in more detail later

5

Rules of �-conversion
x �-conversionu �V: E can be converted to �V 0: E[V 0=V]u provided the substitution of V 0 for V in E is validu E1 �!� E2 means E1 �-converts to E2x �-conversionu (�V: E1) E2 can be converted to E1[E2=V]u provided the substitution of E2 for V in E1 is validu E1 �!� E2 means E1 �-converts to E2x �-conversion .u �V: (E V) can be converted to Eu provided V has no free occurrence in Eu E1 �!� E2 means E1 �-converts to E2

6

Remarks on conversion rules
x �-conversion is most importantu it can simulate arbitrary evaluation mechanismsu (2 + 3)� 5 �!� 25u details laterx �-conversion concerns the technical manipula-tion of bound variablesx �-conversion forces functions that always givethe same results on the same arguments to beequalu this is called \extensionality"x N.B. \conversion" and \reduction"are used interchangeably

7

�-conversion
x A �-expression to which �-reduction can be ap-plied is called an �-redexu necessarily an abstractionx The term \redex" abbreviates \reducible ex-pression"x �-conversion says that bound variables can berenamedu provided no `name-clashes' occur

8

Examples of �-conversion
x �x: x �!� �y: yx �x: f x �!� �y: f yx It is not the case that�x: �y: f x y �!� �y: �y: f y yu the substitution (�y: f x y)[y=x] is not validu since the y that replaces x becomes bound

9

�-conversion
x A �-expression to which �-reduction can be ap-plied is called a �-redexu necessarily an applicationx �-conversion is like the evaluation of a functioncall in a programming languageu (�V: E1) E2 �!� E1[E2=V]u the body E1 of the function �V: E1 is evaluatedu with V is bound to E2

10

Examples of �-conversion
x (�x: f x) E �!� f Ex (�x: (�y: f x y)) 3 �!� �y: f 3 yx (�y: f 3 y) 4 �!� f 3 4x It is not the case that(�x: (�y: f x y)) (g y) �!� �y: f (g y) yu the substition (�y: f x y)[(g y)=x] is not validu y is free in (g y)u becomes bound after substitution for x in (�y: f x y)

11

Identifying �-redexes
x Consider the application:(�x: �y: f x y) 3 4
x bracketting according to conventions yields:(((�x: (�y: ((f x) y))) 3) 4)x which has the form:((�x: E) 3) 4where E = (�y: f x y)(�x: E) 3 is a �-redex and could be reduced toE[3=x]

12

�-conversion
x A �-expression to which �-reduction can be ap-plied is called an �-redexu necessarily an abstractionx �-conversion expresses extensionalityu two functions are equal if they give the same resultswhen applied to the same argumentsx �V: (E V) denotes the function which:u when applied to an argument E0u returns (E V)[E0=V]x If V does not occur free in Eu then (E V)[E0=V] = (E E0)u Thus �V: E V and E both yield the same result,namely E E0, when applied to the same argumentsu hence they denote the same function

13

Examples of �-conversion
x �x: f x �!� fx �y: f x y �!� f xx It is not the case that�x: f x x �!� f xbecause x is free in f x

14

Generalized conversions
x �!� , �!� and �!� can be generalized:u E1 �!� E2 if E2 can be got from E1 by�-converting any subtermu E1 �!� E2 if E2 can be got from E1 by�-converting any subtermu E1 �!� E2 if E2 can be got from E1 by�-converting any subtermx Examples: ((�x: �y: f x y) 3) 4 �!� (�y: f 3 y) 4u subexpression (�x: �y: f x y)3 is �-reducedx Notation for a sequence of conversions:((�x: �y: f x y) 3) 4 �!� (�y: f 3 y) 4 �!� f 3 4

15

More example reductions
(i) (�x: x) 1 �!� 1(ii) (�y: y) ((�x: x) 1) �!� (�y: y)1 �!� 1(iii) (�y: y) ((�x: x) 1) �!� (�x: x) 1 �!� 1x (ii) & (iii) start with the same �-expressionu but reduce redexes in di�erent ordersx An important property of �-reductions:u no matter in which order one does reductionsu one always ends up with equivalent resultsx Some reduction sequences may never terminate

16

Equality of �-expressions
x Conversion rules preserve the meaning of �-expressionsu i.e. if E1 can be converted to E2u then E1 and E2 denote the same functionx This property of conversion should be intu-itively clearx Can give a mathematical de�nition of the func-tion denoted by a �-expressionu then to prove that this is unchanged by �-, �- or�-conversionu doing this is surprisingly di�cult

17

De�nition of equality
x We de�ne two �-expressions to be equal ifthey can be transformed into each other bya sequence of (forwards or backwards) �-conversionsx Must distinguish equality and identityu �-expressions are identical if they consist of exactlythe same sequences of charactersu they are equal if one can be converted to the otheru �x: x is equal to �y: yu but not identical to itx Notation:u E1 � E2 means E1 and E2 are identicalu E1 = E2 means E1 and E2 are equal

18

Formal de�nition of equality
x If E and E 0 are �-expressions, then E = E 0 ifu E � E0u or there exist expressions E1, E2, . . . , En such that:1. E � E12. E0 � En3. For each i either(a) Ei �!� Ei+1 or Ei �!� Ei+1 or Ei �!� Ei+1 or(b) Ei+1 �!� Ei or Ei+1 �!� Ei or Ei+1 �!� Ei.
x Examples:u (�x: x) 1 = 1u (�x: x) ((�y: y) 1) = 1u (�x: �y: f x y) 3 4 = f 3 4

19

Properties of equality
x E = E for any Eu equality is re
exivex If E = E 0, then E 0 = Eu equality is symmetricx If E = E 0 and E 0 = E 00, then E = E 00u equality is transitivex If a relation is re
exive, symmetric and transi-tive then it is called an equivalence relationu thus = is an equivalence relation

20

Leibnitz' Law
x If E1 = E2x And if E 01 and E 02 only di�er in that:u where one contains E1 the other contains E2x Then E 01 = E 02x This property is called Leibnitz's lawu It holds because the same sequence of reduction forgetting from E1 to E2 can be used for getting fromE01 to E02u For example, if E1 = E2, then by Leibnitz's law�V: E1 = �V: E2

21

Extensionality
x Suppose:u E1 V = E2 Vu V not free in E1 or E2x By Leibnitz's law�V: E1 V = �V: E2 Vand by �-reduction applied to both sidesE1 = E2x Useful for proving �-expressions equal:u to prove E1 = E2u prove E1 V = E2 V for some V not occuring free inE1 or E2x Such proofs are by extensionalityu e.g. (�f g x: f x (g x)) (�x y: x) (�x y: x) = �x: x

22

Need for valid substitutiions
x Suppose �x: (�y: x) �!� �y: (�y: y)u y becomes bound after substitution for x in �y: x .x Then it would follow by the de�nition of = that:�x: �y: x = �y: �y: yx But then for any E1 and E2(�x: (�y: x)) E1 E2 �!� (�y: E1) E2 �!� E1and (�y: (�y: y)) E1 E2 �!� (�y: y) E2 �!� E2one would be forced to conclude that E1 = E2x So all �-expressions would be equal!

23

The �! relation
x E = E 0 means:u E0 can be obtained from Eu by a sequence of forwards or backwards conversionsx E �! E 0 means:u E0 can be got from E using only forwards conversionsu if E � E0 or there exist expressions E1, E2, . . . ,Ensuch that:1. E � E12. E0 � En3. For each i either:� Ei �!� Ei+1 or� Ei �!� Ei+1 or� Ei �!� Ei+1

24

