Lecture 6

Examples

e (A\z. x) denotes the ‘identity function’
e (Az.z) F)=F

o “=" defined later

e (\z. (A\f. (f z))) denotes the function:

e which when applied to E
o yields (A\f. (f z))[E/x] = (Af. (f E))

o (\f. (f F)) is the function

e which when applied to E’
o yields (f E)[E'/f] = (E' E)
e Thus
(Az. (Af. (f 2))) E) = (Af. (E))

and

(Af(f E) E) = (E" E)

Notational conventions

e Function application associates to the left
e £ Fy means (F; Es)
e [y Fy F3 means ((E, FEy)FEs)
e I, E, E5 E, means (((E; E)E;)E,)

e 4 Fy -+ E, means ((--- (E1 Es) ---) E,)

e \V. E1 E; ... E, means (A\V. (E1 E, ... E,))

e Scope of ‘A\V’ extends as far right as possible

e A\ - V,. Emeans (A\Vi. (--- . (AV,. E) -+)
e \r y. £ means (\z. (\y. F))
e \r y z. E means (\z. (\y. (A\z. F)))

e \z y z w. Fmeans (Az. (A\y. (Az. (Aw. F£))))

Free and bound variables

® Occurrence of V is free if
e it is not within the scope of a ‘A’

e otherwise it is bound

e Example:

(M. y x)(A\y. = y)

free free

bound bound

® [is closed if it contains no free variables

e Convention: will use bold names for particular
closed terms

Conversion rules

®)-expressions can represent data objects like
numbers, strings etc

e (2+3) x 5 can be represented as a A-expression
e its ‘value’ 25 can also be represented

e details later

e Notation: underlining denotes representation
as \-expression

e 3 is A-expression denoting 3
e The process of ‘simplifying’ (2+3) x 5 to 25 will
be represented by a process called conversion
(or reduction)
® Rules of A\-conversion are very general:

e when applied to M-expressions representing arith-
metic expressions they do arithmetical evaluation

Kinds of \-conversion

e Three kinds of A-conversion;
e a-conversion — renaming bound variables
e (J-conversion — function application rule

e 7-conversion — extensionality

e Notation: EF[E'/V] denotes

e the result of substituting £’

e for each free occurrence of V in F

e The substitution is valid if and only if:

e no free variable in £’ becomes bound in E[F'/V]

® Substitution is described in more detail later

Rules of \-conversion

® (-conversion

e \V. E can be converted to A\V'. E[V'/V]

e provided the substitution of V' for V in F is valid

o [— Fs means E; a-converts to Es

® [-conversion

e (A\V. Fy) E5 can be converted to F;[FE>/V]

e provided the substitution of E; for V in FE; is valid

o I 7) > means E; (-converts to Fj

® 7)-conversion

e \V. (£ V) can be converted to E

e provided V has no free occurrence in F

o [T) FE5 means F; n-converts to F»

Remarks on conversion rules

® [-conversion is most important

e it can simulate arbitrary evaluation mechanisms

e details later

e (o-conversion concerns the technical manipula-
tion of bound variables

e n-conversion forces functions that always give
the same results on the same arguments to be
equal

e this is called “extensionality”

e N.B.|H “conversion” and “reduction”
are used interchangeably

a-conversion

e A)-expression to which a-reduction can be ap-
plied is called an «a-reder

e necessarily an abstraction

¢ The term “redex” abbreviates “reducible ex-
pression”

® o-conversion says that bound variables can be
renamed

e provided no ‘name-clashes’ occur

Examples of a-conversion

® \r.z— \y. y
o M. frx—Ay. fy

e It is not the case that

A Ay fxy— Ay Ay. fyy

e the substitution (\y. f = y)[y/z] is not valid

e since the y that replaces r becomes bound

(J-conversion

e A)-expression to which -reduction can be ap-
plied is called a 3-redex

e necessarily an application

® [(-conversion is like the evaluation of a function
call in a programming language

° ()\V El) By 7 Eq [EQ/V]

e the body F; of the function \V. F; is evaluated

e with V' is bound to £,

10

Examples of S-conversion

o (\r. (Ay.fxy))&?)\y.fay
o (Ay.fﬁy)é7f34

e It is not the case that

(Az. (A\y. £z y)) (8 Y) 7 Ay £ (g8 y)y

e the substition (\y. £ = y)[(g y)/z] is not valid
e y is free in (g y)

e becomes bound after substitution for = in (\y. £ = y)

11

Identifying (-redexes

e (Consider the application:

(Ax. A\y. £ zy) 34

e bracketting according to conventions yields:

(Az. Ay (£) y))) 3) 4)

e which has the form:

(\z. E) 3) 4

where
EF= (\y. £ zy)

(Ax. E) 3 is a f-redex and could be reduced to
E[3/x]

12

n-conversion

® A)-expression to which n-reduction can be ap-
plied is called an n-redex

e necessarily an abstraction

® 7-conversion expresses extensionalily

e two functions are equal if they give the same results
when applied to the same arguments

e \V. (E V) denotes the function which:
e when applied to an argument FE’

e returns (F V)[F'/V]

e If V does not occur free in F
e then (E V)[E'/V] = (E E')

e Thus \V. £ V and E both yield the same result,
namely I/ E’, when applied to the same arguments

e hence they denote the same function

13

Examples of n-conversion

®)\:U.fx?f
))\y.faznya?

e It is not the case that

)\x.fx:cﬁf:c

because x 1s free in f z

14

(Generalized conversions

* —, ﬁ> and —7 can be generalized:

o — Es5 if Ey can be got from E; by
a-converting any subterm

o I 7 Es if E5 can be got from E; by

(B-converting any subterm

o [- Es if E5 can be got from E; by
n-converting any subterm

e Examples: (A\z. \y. £ =z y) 3) 4 - (Ay. £ 3y) 4

e subexpression (Azx. \y. £ z y)3 is f-reduced
e Notation for a sequence of conversions:

(Az. Ay. £ xy)&)é?()\y.f ﬁy)QTf 34

15

More example reductions

() Mo 2) L —> 1

(ii) (Ay.) (Az. z) 1)

- (Ay. y)1 - 1
(iii) (A\y. y) (A\z. z) 1) - (Az. z) 1 - 1

e (ii) & (iii) start with the same \-expression

e but reduce redexes in different orders

e An important property of #-reductions:

¢ no matter in which order one does reductions

e one always ends up with equivalent results

e Some reduction sequences may never terminate

16

Equality of A-expressions

e Conversion rules preserve the meaning of -
expressions

e i.e. if F{ can be converted to FE»

e then F; and FE> denote the same function

e This property of conversion should be intu-
itively clear

e (Can give a mathematical definition of the func-
tion denoted by a A-expression

e then to prove that this is unchanged by a-, 3- or
n-conversion

e doing this is surprisingly difficult

17

Definition of equality

e We define two M-expressions to be equal if
they can be transformed into each other by
a sequence of (forwards or backwards) M-
conversions

e Must distinguish equality and identity

e \-expressions are identical if they consist of ezactly
the same sequences of characters

e they are equal if one can be converted to the other
e \z. z is equal to \y. y

e but not identical to it

e Notation:
e [/, = E>; means I and E5 are identical

e £, = F; means E; and FE, are equal

18

Formal definition of equality

e If F and E' are \-expressions, then I = F' if
o F=F

e or there exist expressions F;, Es, ..., E, such that:
1. £ =F;
2. '=F,
3. For each : either
(a) E; — Eiy or E; 7) E;.1 or E; — E;.q or

(b) Eiy1 — Ejor By 5 Lior Fipy — B

e Examples:
° (/\:L’. SL’) 1 =1

e M\z.z) (A\y.y) 1) =1

e M. M\y.fry) 34 =1£34

19

Properties of equality

e [=F for any F

e equality is reflexive

o If F=F' then ' =F

e equality is symmetric

o If P =F and E'=FE", then £ = FE"

e equality is transitive

e If a relation is reflexive, symmetric and transi-
tive then it is called an equivalence relation

e thus = is an equivalence relation

20

Leibnitz’ Law

® IfE1:E2

e And if F] and F) only differ in that:

e where one contains F; the other contains F>
e Then £ = F)

e This property is called Leibnitz’s law

e It holds because the same sequence of reduction for
getting from F; to F5 can be used for getting from
E{ to E}

e For example, if £, = FE;, then by Leibnitz’s law
AV. By = A\V. E)

21

Extensionality

® Suppose:
L4 E1 V= E2 vV

e IV not free in £ or £,

e By Leibnitz’s law
ANV ELV =AV. B, V
and by n-reduction applied to both sides
Ei=F,

e Useful for proving A-expressions equal:
e to prove E; = F,

e prove F; V = E5 V for some V not occuring free in
E1 or E2

® Such proofs are by extensionality

ceg ANgex. fx(gz) My z) (Ary x) = Az, x

22

Need for valid substitutiions

® Suppose A\r. (\y.) — Ay. (A\y. y)

e y becomes bound after substitution for x in \y. =

e Then it would follow by the definition of = that:

AT AY. T = AyY. A\y. ¥y

e But then for any F; and Ej

and

(Ay- Ay y)) Br By —» (Ay. y) Bz — E

one would be forced to conclude that £; = F,

e So all M-expressions would be equal!

23

The — relation

e [=F' means:
e [/ can be obtained from FE

e by a sequence of forwards or backwards conversions

e I — I means:

e F' can be got from F using only forwards conversions

o if £ = F' or there exist expressions £, s, ...,E,
such that:
1. £ = E1
2. ' =F,

3. For each 7 either:
o F; 7 FEiy1 or
o F; 7 FEiy1 or

o F, T) Fiq

24

