Lecture 5

Case study: lexical analysis

e Lexical analysis converts
e sequences of characters
e into
e sequences of tokens

e tokens are also called words or lexemes

e For us, a token will be one of:

e a number
(sequence of digits)

e an identifier
(sequence of letters or digits starting with a letter)

e a ‘special symbol’ such as +, *, <, ==> or ++

e special symbols are specified by a table — see later

Numbers and letters

® A number is a sequence of digits

e <= is overloaded and can be applied to strings

e suppose x and y are single-character strings

e then r<=y just tests whether the ASCII code of z is
less then or equal to the ASCII code of y

fun IsDigit x = "O0" <= x andalso x <= "9";
> val IsDigit = fn : string -> bool

® ASCII codes of lower case letters are adjacent

e ASCII codes of upper case letters are adjacent

fun IslLetter x =
("a" <= x andalso x <= "z") orelse
("A" <= x andalso x <= "Z");

> val IsLetter = fn : string -> bool

Separators

® Separators are spaces, newlines and tabs

fun IsSeparator x =

(x =" " orelse x = "\n" orelse x = "\t");
> val IsSeparator = fn : string -> bool

e Characters that are not digits, letters or sepa-
rators are assumed to be special symbols

e multi-character special symbols are considered later

e Input a list of single-charater strings

e lexical analysis converts input to a token list

Special case: only numbers

® Suppose input just consists of numbers sepa-
rated by separators

e Lexical analysis for just this case needs to:

e repeatedly remove digits until a non-number is
reached

e then implode the removed characters into a token

e and add that to the list of tokens

e GetNumber takes a list, [say, of single-character
strings and returns a pair consisting of

e a string representing a number consisting of all the
digits in [up to the first non-digit

e the remainder of [after these digits have been re-
moved

® GetNum uses an auxiliary function GetNumAux

e GetNumAux has an extra argument buf for accumu-
lating a (reversed) list of characters making up the
number

GetNumAux and GetNum

fun GetNumAux buf [] = (implode(rev buf), []1)
| GetNumAux buf (1 as (x::1°)) =
if IsDigit x then GetNumAux (x::buf) 1’
else (implode(rev buf),l);
> val GetNumAux =

> fn

> : string list -> string list -> string * string list
GetNuIIIAUX [IIaII,IIbII,IICH] [lllll,ll2ll,ll3|l,ll Il,ll4ll,l|5l|] ;

> val it =

> ("cbal23",[" ","4","5"]) : string * string list

® Then GetNum is simply defined by:

val GetNum = GetNumAux [];
> val GetNum = fn : string list -> string * string list

GetN].lm [II1II,II2II,II3II,II Il,|l4ll,ll5ll] ;
> val it = ("123",[" ","4","5"]) : string * string list

GetN].lm [IIaII,IIOII,HlII] ;
> val it = ("",["a","0","1"]) : string * string list

e Anomalous return of "" fixed later

e Could localise definition of GetNumAux using
local --- in --- end

Special case: only identifiers

e Analysis of identifiers similar to numbers

fun GetIdentAux buf [] = (implode(rev buf), [])
| GetIdentAux buf (1 as (x::17)) =
if IsLetter x orelse IsDigit x
then GetIdentAux (x::buf) 1’
else (implode(rev buf),l);
> val GetlIdentAux =
> fn
> : string list -> string list -> string * string list

GetIdentAux ["a","b","c"]
I:llell , llfll , llgll , |l4|l , |l5|l , "n n , |l6|l , |l7|l:| ;
> val it =
> ("cbaefgdb",[" ","6","7"]) : string * string list

® An identifier must start with a letter

exception GetIdentErr;
> exception GetldentErr

fun GetIdent (x::1) =
if IsLetter x then GetIdentAux [x] 1
else raise GetlIdentErr;
> val Getldent =
> fn : string list -> string * string list

Unified treatment

e Can unify Analysis of numbers and identifiers

e single general function GetTail

takes a predicate as argument

e then uses this to test whether to keep accumulating
characters or to terminate

GetNumAux corresponds to

GetTail IsDigit

GetIdentAux corresponds to

GetTail (fn x => IsLetter x orelse IsDigit x)

fun GetTail p buf [] = (implode(rev buf), [])
| GetTail p buf (1 as x::1’) =
if p x then GetTail p (x::buf) 1’
else (implode(rev buf),1l);

> val GetTail = fn
> ¢ (string->bool)
> -> string list
> -> string list -> string * string list

GetNextToken and Tokenise

fun GetNextToken [x] = (x,[])
| GetNextToken (x::1) =
if IsLetter x
then GetTail
(fn x => IsLetter x orelse IsDigit x)
[x]
1
else if IsDigit x
then GetTail IsDigit [x] 1
else (x,1);
> val GetNextToken =
> fn : string list -> string * string list

e To lexically analyse a list of characters:

e repeat GetNextToken & discard separators

fun Tokenise [] = []
| Tokenise (1 as x::1’) =
if IsSeparator x
then Tokenise 1’
else let val (t,1’’) = GetNextToken 1
in t::(Tokenise 1’’) end;
> val Tokenise = fn : string list -> string list

Tokenise (explode "123abcdel][] 56a");
> val it =

> [ll123ll,llabcde1ll,ll]ll,ll[ll,ll]ll,ll56ll,llall] : Strlng 1lst

Multi-character special symbols

® Tokenise doesn’t handle multi-character special
symbols

e these will be specified by a table

e represented as a list of pairs

e that shows which characters can follow each initial
segment of each special symbol

e such a table represents a FSM transition function

e For example, suppose the special symbols are

<=, <<, =>’ =, == , >

then the table would be:

[(n<n, [||=n’n<n])’

(u=u’ [||>||’n=n])’
(u_u’ [n>n])’
(u==u’ [n>n])]

e Not fully general
e if ==> is a special symbol

e then == must be also

Utility functions

e Test for membership

fun Mem x [] = false
| Mem x (x’::1) = (x=x’) orelse Mem x 1;

> val Mem = fn : ’’a -> ’’a list -> bool

® Get looks up the list of possible successors of a
given string in a special-symbol table

fun Get x [1 = []
| Get x ((x’,1)::rest) =
if x=x’ then 1 else Get x rest;
> val Get = fn : ’’a -> (’’a *x ’b list) list -> ’b list

Cet "=" [(n<n, [||=n,n<n]),
(||=n, [||>n,n=n]),
(n_n, [||>n]),
(n==n, [||>||])];

> val it = [">","="] : string list

Cet "?" [(||<||, [||=||,||<n]),
(||=||, [n>n,n=n]),
(ll_ll, I:ll>ll:|),
(||==||, [||>||])];

> val it = [] : string list

10

GetSymbol

® GetSymbol takes

e a special-symbol table

¢ and a token

e It extends the token by

e removing characters from the input

e until table says no further extension is possible

fun GetSymbol spectab tok [] = (tok,[])
| GetSymbol spectab tok (1 as x::1’) =
if Mem x (Get tok spectab)
then GetSymbol spectab (tok”x) 1’
else (tok,1l);
> val GetSymbol = fn
> : (string * string list) list
> -> string -> string list -> string * string list

11

GetNextToken

® GetNextToken can be enhanced to handle special
symbols

® Special-symbol table supplied as an argument

fun GetNextToken spectab [x] = (x,[])
| GetNextToken spectab (x::(1 as x’::17)) =

if IsLetter x

then GetTail
(fn x => IsLetter x orelse IsDigit x)
[x]
1

else if IsDigit x
then GetTail IsDigit [x] 1
else if Mem x’ (Get x spectab)

then GetSymbol

spectab
(implode[x,x’])
1’
else (x,1);
> val GetNextToken = fn
> @ (string * string list) list

> -> string list -> string * string list

12

Tokenise

® Tokenise can be enhanced to use the new
GetNextToken

fun Tokenise spectab [] = []
| Tokenise spectab (1 as x::1°) =
if IsSeparator x
then Tokenise spectab 1’
else let val (t,1’’) = GetNextToken spectab 1
in t::(Tokenise spectab 1’’) end;
> val GetNextToken = fn
> : (string * string list) list
> -> string list -> string * string list

13

Example

val SpecTab = [(n=n, [n<n,n>n,n=n]),
("<", ["<H,">"]),
(">", ["<",">"]),
(n==n , [n>n])] ;

> val SpecTab =

> [(n=n, [n<n,n>n,n=n]),

> ("<",["<",">"]),

> (">",["<",">"]),

> (n==n, [n>n])]

> (string * string list) list

Tokenise SpecTab (explode "a==>b cb5 db==ff+gg7");

> val it =

> ["a","==>","b","C5","d5","==","ff","+","gg7"]

> : string list

® Lex is a lexical analyser

val Lex = Tokenise SpecTab o explode;
> val Lex = fn : string -> string list

Lex "a==>b cb db==ff+ggr";

> val it =

> ["a","==>","b","C5","d5","==","ff","+","gg7"]
> : string list

14

The M-calculus

® The A-calculus is a theory of functions
e originally developed by Alonzo Church

e as a foundation for mathematics

e in the 1930s, several years before digital computers
were invented

e In the 1920s Moses Schonfinkel developed
combinators

e In the 1930s, Haskell Curry rediscovered and
extended Schonfinkel’s theory

e and showed it equivalent to the \-calculus.

e About this time Kleene showed that the M-
calculus was a universal computing system

e it was one of the first such systems to be rigorously
analysed

15

Enter Computer Science

e In the 1950s John McCarthy was inspired by
the A-calculus to invent the programming lan-
guage LISP

® In the early 1960s Peter Landin showed how the
meaning of imperative programming languages
could be specified by translating them into the
A-calculus

e he also invented an influential prototype program-
ming language called ISWIM

e ISWIM introduced the main notations of functional
programming

e and influenced the design of both functional and im-
perative languages

e ML was inspired by ISWIM

16

Strachey & Turner

e Building on this work, Christopher Strachey
laid the foundations for the important area of
denotational semantics

e Technical questions concerning Strachey’s work
inspired the mathematical logician Dana Scott
to invent the theory of domains

e an important part of theoretical computer science

® During the 1970s Peter Henderson and Jim
Morris took up Landin’s work and wrote a
number of influential papers arguing that func-
tional programming had important advantages
for software engineering

e At about the same time David Turner pro-
posed that Schonfinkel and Curry’s combina-
tors could be used as the machine code of com-
puters for executing functional programming
languages

17

Theory can be useful!

®)-calculus is an obscure branch of mathematical
logic that underlies important developments in
programming language theory, such as the:

e study of fundamental questions of computation
e design of programming languages
e semantics of programming languages

e architecture of computers

18

Syntax and semantics of the A-calculus

A-calculus is a notation for defining functions
e each M-expression denotes a function
e functions can represent data and data-structures

e details later

e examples include numbers, pairs, lists

Just three kinds of \-expressions

e Variables

e Function applications or Combinations

o Abstractions

19

Variables

e Functions denoted by variables are determined
by what the variables are bound to

e binding is done by abstractions

e I/, V), V5 etc. range over arbitrary variables

20

Function applications (combinations)

e If £, and E; are \-expressions
e then so is (F; Ej)

e it denotes the result of applying the function denoted
by F4 to the function denoted by Fj

e F) is called the rator (from ‘operator’)

e [is called the rand (from ‘operand’)

21

Abstractions

e If V is a variable and FE is a A-expression

e then \V. FE is an abstraction

e with bound variable V

e and body F

e Such an abstraction denotes the function that
takes an argument a and returns as result the
function denoted by I when V' denotes a

e More specifically, the abstraction A\V. £/ denotes
a function which

e takes an argument FE’
e and transforms it into E[F'/V]

e the result of substituting £’ for V in F

e substitution defined later

e Compare \V. E with fn V => FE

22

Summary of \-expressions

= <variable>
| (< A-expression> < A-expression>)
| (A <variable> . < A-expression>)

< \-expression> ::

e If V ranges over < variable >

e And FE, E|, E; ... etc. range over
< \-expression >

e Then:

EIZ:V ‘ (El E2> | ANV, E

variables abstractions

applications
(combinations)

23

