Lecture 5
Case study: lexical analysis

- Lexical analysis converts
 - sequences of characters
 - into
 - sequences of tokens
 - tokens are also called words or lexemes

- For us, a token will be one of:
 - a number
 (sequence of digits)
 - an identifier
 (sequence of letters or digits starting with a letter)
 - a ‘special symbol’ such as +, *, <, => or ++
 - special symbols are specified by a table – see later
Numbers and letters

- A number is a sequence of digits
- \leq is overloaded and can be applied to strings
 - suppose x and y are single-character strings
 - then $x \leq y$ just tests whether the ASCII code of x is less then or equal to the ASCII code of y

```ocaml
def IsDigit x = "0" <= x andalso x <= "9";
> val IsDigit = fn : string -> bool
```

- ASCII codes of lower case letters are adjacent
- ASCII codes of upper case letters are adjacent

```ocaml
def IsLetter x =
    ("a" <= x andalso x <= "z") orelse
    ("A" <= x andalso x <= "Z");
> val IsLetter = fn : string -> bool
```
Separators

- Separators are spaces, newlines and tabs

```ml
fun IsSeparator x = 
  (x = " " orelse x = "\n" orelse x = "\t");
> val IsSeparator = fn : string -> bool
```

- Characters that are not digits, letters or separators are assumed to be special symbols
 - multi-character special symbols are considered later

- Input a list of single-character strings
 - lexical analysis converts input to a token list
Special case: only numbers

- Suppose input just consists of numbers separated by separators

- Lexical analysis for just this case needs to:
 - repeatedly remove digits until a non-number is reached
 - then implode the removed characters into a token
 - and add that to the list of tokens

- `GetNumber` takes a list, \(l \) say, of single-character strings and returns a pair consisting of
 - a string representing a number consisting of all the digits in \(l \) up to the first non-digit
 - the remainder of \(l \) after these digits have been removed

- `GetNum` uses an auxiliary function `GetNumAux`
 - `GetNumAux` has an extra argument `buf` for accumulating a (reversed) list of characters making up the number
GetNumAux and GetNum

```
fun GetNumAux buf [] = (implode(rev buf), [])
  | GetNumAux buf (1 as (x::l')) =
    if IsDigit x then GetNumAux (x::buf) l'
    else (implode(rev buf), l);
> val GetNumAux =
> fn
> : string list -> string list -> string * string list

GetNumAux ["a","b","c"] ["1","2","3"," ","4","5"];
> val it =
> ("cba123",[" ","4","5"]): string * string list
```

- Then GetNum is simply defined by:

```
val GetNum = GetNumAux [];
> val GetNum = fn : string list -> string * string list

GetNum ["1","2","3"," ","4","5"];
> val it = ("123",[" ","4","5"]): string * string list

GetNum ["a","0","1"];
> val it = ("",["a","0","1"]) : string * string list
```

- Anomalous return of "" fixed later

- Could localise definition of GetNumAux using local ... in ... end
Special case: only identifiers

- Analysis of identifiers similar to numbers

```ocaml
fun GetIdentAux buf [] = (implode(rev buf), [])
  | GetIdentAux buf (l as (x::l')) =
    if IsLetter x orelse IsDigit x
    then GetIdentAux (x::buf) l'
    else (implode(rev buf), l);
> val GetIdentAux =
> fn
> : string list -> string list -> string * string list

GetIdentAux ["a","b","c"]
  ["e","f","g","4","5"," ","6","7"];
> val it =
> ("cbaefg45"," ","6","7"]): string * string list
```

- An identifier must start with a letter

```ocaml
exception GetIdentErr;
> exception GetIdentErr

fun GetIdent (x::l) =
  if IsLetter x then GetIdentAux [x] l
  else raise GetIdentErr;
> val GetIdent =
> fn : string list -> string * string list
```
Unified treatment

- Can unify Analysis of numbers and identifiers
 - single general function GetTail
 - takes a predicate as argument
 - then uses this to test whether to keep accumulating characters or to terminate
 - GetNumAux corresponds to
 \[\text{GetTail IsDigit} \]
 - GetIdentAux corresponds to
 \[\text{GetTail (fn x => IsLetter x orelse IsDigit x)} \]

```plaintext
fun GetTail p buf [] = (implode(rev buf),[])
  | GetTail p buf (l as x::l’) = 
    if p x then GetTail p (x::buf) l’
    else (implode(rev buf),l);
> val GetTail = fn
>   : (string->bool)
> -> string list
> -> string list -> string * string list
```
GetNextToken and Tokenise

```ml
fun GetNextToken [x] = (x, [])
  | GetNextToken (x::l) =
      if IsLetter x
          then GetTail
              (fn x => IsLetter x orelse IsDigit x)
              [x]
              l
      else if IsDigit x
          then GetTail IsDigit [x] l
          else (x,l);
>
val GetNextToken =
> fn : string list -> string * string list

- To lexically analyse a list of characters:
  - repeat GetNextToken & discard separators

fun Tokenise [] = []
  | Tokenise (l as x::l') =
      if IsSeparator x
          then Tokenise l'
          else let val (t,l'') = GetNextToken l
              in t::(Tokenise l'') end;
>
val Tokenise = fn : string list -> string list

Tokenise (explode "123abcde1][ ]56a");
>
val it =
>
["123","abcde1","]","[","]","56","a"] : string list
```
Multi-character special symbols

- Tokenise doesn’t handle multi-character special symbols
 - these will be specified by a table
 - represented as a list of pairs
 - that shows which characters can follow each initial segment of each special symbol
 - such a table represents a FSM transition function

- For example, suppose the special symbols are
 \(<=, <<=, =>, =, ==>, ->\)
 then the table would be:

```
[("<",  ["=","<"] ),
 ("=" ,  [">","=" ] ),
 ("-" ,  [">"] ),
 ("==" ,  [">"] )]
```

- Not fully general
 - if == is a special symbol
 - then == must be also
Utility functions

- Test for membership

```ml
fun Mem x [] = false
  | Mem x (x'::l) = (x=x') orelse Mem x l;
> val Mem = fn : 'a -> 'a list -> bool
```

- Get looks up the list of possible successors of a given string in a special-symbol table

```ml
fun Get x [] = []
  | Get x ((x',l)::rest) = 
      if x=x' then l else Get x rest;
> val Get = fn : 'a -> ('a * 'b list) list -> 'b list

Get "=" [""","=","""],
     ["=","=","="],
     ["=","=","="],
     ["=","=","="]];
> val it = ["=","="] : string list

Get "?" [""","=","""],
     ["=","=","="],
     ["=","=","="],
     ["=","=","="]];
> val it = [] : string list
```
GetSymbol

- **GetSymbol takes**
 - a special-symbol table
 - and a token

- **It extends the token by**
 - removing characters from the input
 - until table says no further extension is possible

```ocaml
fun GetSymbol spectab tok [] = (tok,[])
  | GetSymbol spectab tok (l as x::l') =
    if Mem x (Get tok spectab)
      then GetSymbol spectab (tok^x) l'
    else (tok,l);
> val GetSymbol = fn
>  : (string * string list) list
>      -> string -> string list -> string * string list
```
GetNextToken

- GetNextToken can be enhanced to handle special symbols
- Special-symbol table supplied as an argument

```
fun GetNextToken spectab [x] = (x,[])
  | GetNextToken spectab (x::(l as x':::l')) =
    if IsLetter x
      then GetTail
      (fn x => IsLetter x orelse IsDigit x)
      [x]
      l
    else if IsDigit x
      then GetTail IsDigit [x] l
    else if Mem x' (Get x spectab)
      then GetSymbol
        spectab
        (implode[x,x'])
        l'
      else (x,l);
> val GetNextToken = fn
>   : (string * string list) list
> -> string list -> string * string list
```
• Tokenise can be enhanced to use the new
GetNextToken

fun Tokenise spectab [] = []
| Tokenise spectab (l as x::l’) =
 if IsSeparator x
 then Tokenise spectab l’
 else let val (t,l’’) = GetNextToken spectab l
 in t::(Tokenise spectab l’’) end;
> val GetNextToken = fn
> : (string * string list) list
> -> string list -> string * string list
Example

```haskell
val SpecTab = [("=" , ["","",""],"="),
               ("<" , ["","",""],
               (">" , ["","",""],
               ("==" , ["")])];

val SpecTab =
[("=" , ["","",""],"="),
 ("<" , ["","",""],
 (">" , ["","",""],
 ("==" , [""])]]
>: (string * string list) list

Tokenise SpecTab (explode "a==>b c5 d5==ff+gg7");

val it =
["a","==>","b","c5","d5","==","ff","+","gg7"]
>: string list

• Lex is a lexical analyser

val Lex = Tokenise SpecTab o explode;

val Lex = fn : string -> string list

Lex "a==>b c5 d5==ff+gg7";

val it =
["a","==>","b","c5","d5","==","ff","+","gg7"]
>: string list
```
The λ-calculus

- The λ-calculus is a theory of functions
 - originally developed by Alonzo Church
 - as a foundation for mathematics
 - in the 1930s, several years before digital computers were invented

- In the 1920s Moses Schönfinkel developed combinators

- In the 1930s, Haskell Curry rediscovered and extended Schönfinkel’s theory
 - and showed it equivalent to the λ-calculus.

- About this time Kleene showed that the λ-calculus was a universal computing system
 - it was one of the first such systems to be rigorously analysed
• In the 1950s John McCarthy was inspired by the \(\lambda \)-calculus to invent the programming language LISP

• In the early 1960s Peter Landin showed how the meaning of imperative programming languages could be specified by translating them into the \(\lambda \)-calculus

 • he also invented an influential prototype programming language called ISWIM

 • ISWIM introduced the main notations of functional programming

 • and influenced the design of both functional and imperative languages

 • ML was inspired by ISWIM
Building on this work, Christopher Strachey laid the foundations for the important area of denotational semantics.

Technical questions concerning Strachey’s work inspired the mathematical logician Dana Scott to invent the *theory of domains*, an important part of theoretical computer science.

During the 1970s Peter Henderson and Jim Morris took up Landin’s work and wrote a number of influential papers arguing that functional programming had important advantages for software engineering.

At about the same time David Turner proposed that Schönfinkel and Curry’s combinators could be used as the machine code of computers for executing functional programming languages.
Theory can be useful!

- λ-calculus is an obscure branch of mathematical logic that underlies important developments in programming language theory, such as the:
 - study of fundamental questions of computation
 - design of programming languages
 - semantics of programming languages
 - architecture of computers
Syntax and semantics of the λ-calculus

- λ-calculus is a notation for defining functions
 - each λ-expression denotes a function
 - functions can represent data and data-structures
 - details later
 - examples include numbers, pairs, lists

- Just three kinds of λ-expressions
 - Variables
 - *Function applications* or *Combinations*
 - Abstractions
Variables

• Functions denoted by variables are determined by what the variables are bound to
 • binding is done by abstractions

• V, V_1, V_2 etc. range over arbitrary variables
Function applications (combinations)

- If E_1 and E_2 are λ-expressions
 - then so is $(E_1 E_2)$
 - it denotes the result of applying the function denoted by E_1 to the function denoted by E_2
 - E_1 is called the rator (from ‘operator’)
 - E_2 is called the rand (from ‘operand’)

Abstractions

• If V is a variable and E is a λ-expression
 • then $\lambda V. E$ is an abstraction
 • with bound variable V
 • and body E

• Such an abstraction denotes the function that takes an argument a and returns as result the function denoted by E when V denotes a

• More specifically, the abstraction $\lambda V. E$ denotes a function which
 • takes an argument E'
 • and transforms it into $E[E'/V]$
 • the result of substituting E' for V in E
 • substitution defined later

• Compare $\lambda V. E$ with $\text{fn } V \Rightarrow E$
Summary of λ-expressions

\[
< \text{\textbackslash{}lambda-expression}> ::= <\text{variable}>
\]

\[
| (< \text{\textbackslash{}lambda-expression}> < \text{\textbackslash{}lambda-expression}>)
\]

\[
| (\lambda <\text{variable}> . < \text{\textbackslash{}lambda-expression}>)
\]

- If V ranges over $<\text{variable}>$

- And E, E_1, E_2, ... etc. range over $<\text{\textbackslash{}lambda-expression}>$

- Then:

\[
E ::= V \mid (E_1 \ E_2) \mid \lambda V. \ E
\]

variables

applications (combinations)

abstractions