
Lecture 5

0

Case study: lexical analysis
x Lexical analysis convertsu sequences of charactersu intou sequences of tokensu tokens are also called words or lexemesx For us, a token will be one of:u a number(sequence of digits)u an identi�er(sequence of letters or digits starting with a letter)u a `special symbol' such as +, *, <, ==> or ++u special symbols are speci�ed by a table { see later

1

Numbers and letters
x A number is a sequence of digitsx <= is overloaded and can be applied to stringsu suppose x and y are single-character stringsu then x<=y just tests whether the ASCII code of x isless then or equal to the ASCII code of yfun IsDigit x = "0" <= x andalso x <= "9";> val IsDigit = fn : string -> boolx ASCII codes of lower case letters are adjacentx ASCII codes of upper case letters are adjacentfun IsLetter x =("a" <= x andalso x <= "z") orelse("A" <= x andalso x <= "Z");> val IsLetter = fn : string -> bool

2

Separators
x Separators are spaces, newlines and tabsfun IsSeparator x =(x = " " orelse x = "\n" orelse x = "\t");> val IsSeparator = fn : string -> boolx Characters that are not digits, letters or sepa-rators are assumed to be special symbolsu multi-character special symbols are considered laterx Input a list of single-charater stringsu lexical analysis converts input to a token list

3

Special case: only numbers
x Suppose input just consists of numbers sepa-rated by separatorsx Lexical analysis for just this case needs to:u repeatedly remove digits until a non-number isreachedu then implode the removed characters into a tokenu and add that to the list of tokensx GetNumber takes a list, l say, of single-characterstrings and returns a pair consisting ofu a string representing a number consisting of all thedigits in l up to the �rst non-digitu the remainder of l after these digits have been re-movedx GetNum uses an auxiliary function GetNumAuxu GetNumAux has an extra argument buf for accumu-lating a (reversed) list of characters making up thenumber

4

GetNumAux and GetNum
fun GetNumAux buf [] = (implode(rev buf), [])| GetNumAux buf (l as (x::l')) =if IsDigit x then GetNumAux (x::buf) l'else (implode(rev buf),l);> val GetNumAux => fn> : string list -> string list -> string * string listGetNumAux ["a","b","c"] ["1","2","3"," ","4","5"];> val it => ("cba123",[" ","4","5"]) : string * string listx Then GetNum is simply de�ned by:val GetNum = GetNumAux [];> val GetNum = fn : string list -> string * string listGetNum ["1","2","3"," ","4","5"];> val it = ("123",[" ","4","5"]) : string * string listGetNum ["a","0","1"];> val it = ("",["a","0","1"]) : string * string listx Anomalous return of "" �xed laterx Could localise de�nition of GetNumAux usinglocal � � � in � � � end

5

Special case: only identi�ers
x Analysis of identi�ers similar to numbersfun GetIdentAux buf [] = (implode(rev buf), [])| GetIdentAux buf (l as (x::l')) =if IsLetter x orelse IsDigit xthen GetIdentAux (x::buf) l'else (implode(rev buf),l);> val GetIdentAux => fn> : string list -> string list -> string * string listGetIdentAux ["a","b","c"]["e","f","g","4","5"," ","6","7"];> val it => ("cbaefg45",[" ","6","7"]) : string * string listx An identi�er must start with a letterexception GetIdentErr;> exception GetIdentErrfun GetIdent (x::l) =if IsLetter x then GetIdentAux [x] lelse raise GetIdentErr;> val GetIdent => fn : string list -> string * string list

6

Uni�ed treatment
x Can unify Analysis of numbers and identi�ersu single general function GetTailu takes a predicate as argumentu then uses this to test whether to keep accumulatingcharacters or to terminateu GetNumAux corresponds toGetTail IsDigitu GetIdentAux corresponds toGetTail (fn x => IsLetter x orelse IsDigit x)
fun GetTail p buf [] = (implode(rev buf),[])| GetTail p buf (l as x::l') =if p x then GetTail p (x::buf) l'else (implode(rev buf),l);> val GetTail = fn> : (string->bool)> -> string list> -> string list -> string * string list

7

GetNextToken and Tokenisefun GetNextToken [x] = (x,[])| GetNextToken (x::l) =if IsLetter xthen GetTail(fn x => IsLetter x orelse IsDigit x)[x]lelse if IsDigit xthen GetTail IsDigit [x] lelse (x,l);> val GetNextToken => fn : string list -> string * string listx To lexically analyse a list of characters:u repeat GetNextToken & discard separatorsfun Tokenise [] = []| Tokenise (l as x::l') =if IsSeparator xthen Tokenise l'else let val (t,l'') = GetNextToken lin t::(Tokenise l'') end;> val Tokenise = fn : string list -> string listTokenise (explode "123abcde1][] 56a");> val it => ["123","abcde1","]","[","]","56","a"] : string list
8

Multi-character special symbols
x Tokenise doesn't handle multi-character specialsymbolsu these will be speci�ed by a tableu represented as a list of pairsu that shows which characters can follow each initialsegment of each special symbolu such a table represents a FSM transition functionx For example, suppose the special symbols are<=, <<, =>, =, ==>, ->then the table would be:[("<", ["=","<"]),("=", [">","="]),("-", [">"]),("==", [">"])]x Not fully generalu if ==> is a special symbolu then == must be also

9

Utility functions
x Test for membershipfun Mem x [] = false| Mem x (x'::l) = (x=x') orelse Mem x l;> val Mem = fn : ''a -> ''a list -> boolx Get looks up the list of possible successors of agiven string in a special-symbol tablefun Get x [] = []| Get x ((x',l)::rest) =if x=x' then l else Get x rest;> val Get = fn : ''a -> (''a * 'b list) list -> 'b listGet "=" [("<",["=","<"]),("=",[">","="]),("-",[">"]),("==",[">"])];> val it = [">","="] : string listGet "?" [("<", ["=","<"]),("=", [">","="]),("-", [">"]),("==",[">"])];> val it = [] : string list

10

GetSymbol
x GetSymbol takesu a special-symbol tableu and a tokenx It extends the token byu removing characters from the inputu until table says no further extension is possiblefun GetSymbol spectab tok [] = (tok,[])| GetSymbol spectab tok (l as x::l') =if Mem x (Get tok spectab)then GetSymbol spectab (tok^x) l'else (tok,l);> val GetSymbol = fn> : (string * string list) list> -> string -> string list -> string * string list

11

GetNextToken
x GetNextToken can be enhanced to handle specialsymbolsx Special-symbol table supplied as an argument
fun GetNextToken spectab [x] = (x,[])| GetNextToken spectab (x::(l as x'::l')) =if IsLetter xthen GetTail(fn x => IsLetter x orelse IsDigit x)[x]lelse if IsDigit xthen GetTail IsDigit [x] lelse if Mem x' (Get x spectab)then GetSymbolspectab(implode[x,x'])l'else (x,l);> val GetNextToken = fn> : (string * string list) list> -> string list -> string * string list

12

Tokenise
x Tokenise can be enhanced to use the newGetNextTokenfun Tokenise spectab [] = []| Tokenise spectab (l as x::l') =if IsSeparator xthen Tokenise spectab l'else let val (t,l'') = GetNextToken spectab lin t::(Tokenise spectab l'') end;> val GetNextToken = fn> : (string * string list) list> -> string list -> string * string list

13

Example
val SpecTab = [("=", ["<",">","="]),("<", ["<",">"]),(">", ["<",">"]),("==", [">"])];> val SpecTab => [("=",["<",">","="]),> ("<",["<",">"]),> (">",["<",">"]),> ("==",[">"])]> : (string * string list) listTokenise SpecTab (explode "a==>b c5 d5==ff+gg7");> val it => ["a","==>","b","c5","d5","==","ff","+","gg7"]> : string listx Lex is a lexical analyserval Lex = Tokenise SpecTab o explode;> val Lex = fn : string -> string listLex "a==>b c5 d5==ff+gg7";> val it => ["a","==>","b","c5","d5","==","ff","+","gg7"]> : string list

14

The �-calculus
x The �-calculus is a theory of functionsu originally developed by Alonzo Churchu as a foundation for mathematicsu in the 1930s, several years before digital computerswere inventedx In the 1920s Moses Sch�on�nkel developedcombinatorsx In the 1930s, Haskell Curry rediscovered andextended Sch�on�nkel's theoryu and showed it equivalent to the �-calculus.x About this time Kleene showed that the �-calculus was a universal computing systemu it was one of the �rst such systems to be rigorouslyanalysed

15

Enter Computer Science
x In the 1950s John McCarthy was inspired bythe �-calculus to invent the programming lan-guage LISPx In the early 1960s Peter Landin showed how themeaning of imperative programming languagescould be speci�ed by translating them into the�-calculusu he also invented an inuential prototype program-ming language called ISWIMu ISWIM introduced the main notations of functionalprogrammingu and inuenced the design of both functional and im-perative languagesu ML was inspired by ISWIM

16

Strachey & Turner
x Building on this work, Christopher Stracheylaid the foundations for the important area ofdenotational semanticsx Technical questions concerning Strachey's workinspired the mathematical logician Dana Scottto invent the theory of domainsu an important part of theoretical computer sciencex During the 1970s Peter Henderson and JimMorris took up Landin's work and wrote anumber of inuential papers arguing that func-tional programming had important advantagesfor software engineeringx At about the same time David Turner pro-posed that Sch�on�nkel and Curry's combina-tors could be used as the machine code of com-puters for executing functional programminglanguages

17

Theory can be useful!
x �-calculus is an obscure branch of mathematicallogic that underlies important developments inprogramming language theory, such as the:u study of fundamental questions of computationu design of programming languagesu semantics of programming languagesu architecture of computers

18

Syntax and semantics of the �-calculus
x �-calculus is a notation for de�ning functionsu each �-expression denotes a functionu functions can represent data and data-structuresu details lateru examples include numbers, pairs, listsx Just three kinds of �-expressionsu Variablesu Function applications or Combinationsu Abstractions

19

Variables
x Functions denoted by variables are determinedby what the variables are bound tou binding is done by abstractionsx V , V1, V2 etc. range over arbitrary variables

20

Function applications (combinations)
x If E1 and E2 are �-expressionsu then so is (E1 E2)u it denotes the result of applying the function denotedby E1 to the function denoted by E2u E1 is called the rator (from `operator')u E2 is called the rand (from `operand')

21

Abstractions
x If V is a variable and E is a �-expressionu then �V: E is an abstractionu with bound variable Vu and body Ex Such an abstraction denotes the function thattakes an argument a and returns as result thefunction denoted by E when V denotes ax More speci�cally, the abstraction �V: E denotesa function whichu takes an argument E0u and transforms it into E[E0=V]u the result of substituting E 0 for V in Eu substitution de�ned laterx Compare �V: E with fn V => E

22

Summary of �-expressions
< �-expression> ::= <variable>j (< �-expression> < �-expression>)j (� <variable> : < �-expression>)
x If V ranges over < variable >x And E, E1, E2, : : : etc. range over< �-expression >x Then: E ::= Vvariables6 j (E1 E2)| {z }applications(combinations)6 j �V: E| {z }abstractions6

23

