Lecture 12



Turner’s algorithm

e Define:

LETS'=Xc fgx. c(fz) (g2

e S’ has the reduction rule:
s'C E E, Eg — C (El Eg) <E2 Eg)

(C, E,, Fy, E3 are arbitrary combinatory ex-
pressions)

e If C is a combinator (i.e. contains no variables),
then for any F; and FEs:

Nx. C El E2 = S/ C ()\*ZC E1> ()\*ZC Eg)

e this is shown using extensionality




MNzr.C B E5=58C (AN*z. Ep) (N*z. Ey)

e z not in \'z. C Fy Fyor §' C' (M. Ey) (M. Es)

® so is sufficient to show:

(Nz. C Ey BEy) = (8" C (Mx. Ey) (Mx. Ey)) x

e from definition of \*zr it easily follows that:

® hence
(AMz. C Ey Ey) x=(S (S (K C) (Mx. Fy)) (Nz. Es) x
=38 (KC) (Nz. Ey) z (Nz. Ey)) x)
=K C z (NMx. Ey) z) (Nzx. Es) x)
=C (Nz. Ey) z) (Nz. Es)) x)

® but
S'C (Mx. Ey) (Nx. Ey)x=C (Mx. Ey) z) (Nz. Es))x

e so: (\N'z. C' By Ey) o= (8" C (Mx. By) (M. Ey)) x



Description of Turner’s algorithm

e S’ can improve translation of \V,, --- V5 Vi. By E,

e Define:

E’ to mean M\'V,. E
E" to mean M\*V;. (A*Vy. F)
E"  to mean MV (A*Vo. (A'V4. F))

e Recall that:

AV -+ Vo Vi. By Ey)c =
ANV (o (MVa (AVL (EY E)g))) -0 )

e Size of \*'V,,. ... X*V5. A*Vi. (E) Ey) quadratic in n
(1) A*l’l. E1 E2 =9 Ei Eé
(11 )\*ZEQ ()\ 1. E1 EQ) =39S (B S E”

) ) E'Il
) )
)

S (B(BS) EY)) By

(iv) X*xy. (Nzs. (Nxe. N2y, By By

))
S(BS(B(BS)(B(B(BS)) E))



Quadratic to linear

e Size of \'V,. ... XV, X*Vy. (E1 E,) is propor-
tional to the square of n

e using S’, the size can be made to grow linearly

)\*1’2. (A*l’l E1 Eg) = A*SL’Q. S E{ Eé
= 5'S (Nag. E) (Noao. EY)
~S'S B/ EY

)\*1’3. ()\*$2 ()\*$1 E1 Eg)) = )\*5173 Sl S E” Eél
_ SI ( ) ()\* EII) ()\*1’3 Eél)
— S/ ( ) El/l EIII

ry. (Nx3. (Nzo. Ny By Es))) = Ny 8’ (S S) EY" EY
— g (S/ ( )) ()\*x Eiﬂ) ()\*le- Eé”)
— ' (' (3'S)) B E



B and

B and C simplify expressions S (K E;) E; and
S Fy (K Ej)

B’ and C' have analogous role for &'

Required properties:

s"C (K E,) Fy=8 C E| E,
S'C E, (K Ey)=C C E, E,

(C' any combinator, E;, F, arbitrary

Achieved by defining:
LETB' =Xc fgx.cf (g

LETC'=Xc fgx.c(fx)g




Properties of B’ and ¢’

LETB =Xcfgzx.cf (g

LETC'=Xcfgx.c(fx)g

e For arbitrary M-expressions C', Fy, £y and FEjs:

B C E, F, Eg — C Eq (E2 Eg)
¢ C E1 E2 E3 — C (El Eg) E2

e For arbitrary M\-expressions F;, Fy and FEj:
(i) 8" Fy (K Ey) E3 =8 FE; Fy Fj3
(ii) 8" Fy Es (K E3) =C' E| Ey FEj
(iii) S (B Fy Ey) F3=95" E| Esy Ej
(iv) B (Ey Fy) E3 =B E, FEy FEj
(v) C (B Ey Es) E35=C"E; Es Ej



Turner’s description of his algorithm

e Turner describes has algorithm as follows:

Use the algorithm of Curry but whenever
a term beginning in S, B or C is formed use
one of the following transformations if it
is possible to do so

S(BK A B — S K A B,
B(K A)B — B K A B,

CBK A B — C K AB.

Here A and B stand for arbitrary terms
as usual and K is any term composed en-
tirely of constants. The correctness of
the new algorithm can be inferred from
the correctness of the Curry algorithm by
demonstrating that in each of the above
transformations the left- and right-hand
sides are extensionally equal. In each case
this follows directly from the definitions
of the combinators involved.

e EXERCISE: justify this algorithm



Towards Y in ML: call-by-value Y

e Recall Y:
LETY=MAf. (Az. f(z z)) (M\z. f(z x))

® Y doesn’t work with call-by-value

e It goes into a loop:

e Define:

LET Y= \f. \z. fOw. z 2 y) Oz, fOw. z 2 y))
e Yis Y with “z 2” n-converted to “\y. z z y”

e Y doesn’t goes into a loop with call-by-value:

Y[ — fOy. Y [y

e call-by-value doesn’t evaluate \s



Y in ML

val Y =fn f => (fnx => (f (fny => x x y)))
(fnx => (f (fny => x x y)));

> Type clash in: (x x)

> Looking for a: ’a

> I have found a: ’a -> ’b

e To avoid type clash need to solve equation:

’9a = 23 => ’b

datatype ’a t =T of ’a t -> ’a;

H

>con T=Fn : (Cat) -> ’a) > (Cat)

e Now write “x (T x)” instead of “x x”

val Y =
fn f => (fn (T x) => (f (fn a => x (T x) a)))
(T (fn (T x) => (f (fn a => x (T x) a))))
>val Y =
> Fn : ((’a -> ’b) > (Pa -> b)) > (Pa -> ’b)

val Fact =
Y(fn f => fn n => if n=0 then 1 else n*x(f(n-1)));
> val Fact = Fn : int -> in

Fact 6;
> 720 : 1int




Object oriented programming in ML

Object oriented (OO) programming is very
trendy

There is a debate about whether functional lan-
guages like ML can provide benefits of OO

e lots of research on translating between OO calculi
and A\-calculi

e many of the issues involve types

e types for OO are hard to get right

See the paper
e Object-Oriented Programming and Standard ML
e by Lars Thorup and Mads Tofte

e available from the course web page
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Objects

e OO programming is based on objects

® Objects can be created

e from classes

e directly

e depends on flavour of OO

e Objects are self-contained units packaging to-
gether

e state — e.g. values of local variables
e operations (methods) for

® accessing state

e modifying state
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Classes and subtyping

e Objects are organised hierarchically

e one object may extend another object by adding new
methods

e a coloured point extends a point with extra colour state

e coloured point has all the methods of point plus more

e subtyping

e Objects can easily be represented in ML

e but harder to represent subtyping and classes
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A point object

e A point object has
e local state variables giving = and y coordinates

¢ methods:

e move to move the point — changes position
o getx — gets x coordinate

e gety — gets y coordinate

e Represent a point by a record of its methods

type Point = {move : int * int -> unit,
getx : unit -> int,
gety : unit -> int}

® Methods represented by
e local functions: move fn, getx fn, gety fn

e acting on shared local variables: x, y
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NewPoint in ML

fun NewPoint (newx,newy) : Point =

let val (x,y) = (ref newx, ref newy);
fun move_fn(newx,newy) = (x:= newx; y := newy);
fun getx_fn () = !x;

fun gety_fn () = !y;
in
{move = move_fn, getx = getx_fn, gety = gety_fn}
end;
> val NewPoint = fn : int * int -> Point

val p = NewPoint(2,3);
> val p = {getx=fn,gety=fn,move=fn} : Point

#tgetx p ();
> val it = 2 : int

#gety p O;
> val it = 3 : int

#move p (5,9);
> val it = () : unit

(#getx p (), #gety p O);
> val it = (5,9) : int * int
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Conclusions

I’ll conclude with a summary of the course

The examinable material is what was covered
in the lectures

e stuff in notes that’s not in lectures is not examinable

e e.g. SECD machine

Don’t forget to return your evaluation form to
Eileen Murray!
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Overview of ML

Expressions
Declarations
Comments
Functions

Type abbreviations
Operators

Lists

Strings

Records
Polymorphism
fn-expressions
Conditionals
Recursion
Equality types
Pattern matching

The case construct
Exceptions

Datatype declarations
Abstract types

Type constructors
References and assignment
Iteration
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Introduction to the )\-calculus

e Syntax and semantics of the A-calculus
e Notational conventions

e Free and bound variables

e Conversion rules

® q-conversion
e (3-conversion
® 7-conversion

e Generalized conversions
e Equality of \-expressions
e The — relation
e Extensionality

e Substitution
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Representing Things in the A-calculus

e Truth-values and the conditional
e Pairs and tuples
e Numbers

e Definition by recursion
e Functions with several arguments

e Mutual recursion
e Representing the recursive functions

e The primitive recursive functions

® Substitution

® Primitive recursion

® The recursive functions

® Minimization

® Higher-order primitive recursion
e The partial recursive functions

e Extending the A\-calculus

e Theorems about the )\-calculus
e Call-by-value and Y
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Combinators

e Combinator reduction

e Functional completeness

¢ Reduction machines

e Improved translation to combinators

¢ More combinators

e Curry’s algorithm

e Turner’s algorithm
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