Lecture 10
Reduction with δ-rules

- Assume as primitive constants (atoms):
 - integers
 - unary operators
 - binary operators

- atom packages these into a single datatype

- unary operators and binary operators have:
 - a name
 - a semantics – ML function coding a δ rule

```
datatype atom = Num of int
  | Op1 of string * (int->int)
  | Op2 of string * (int*int->int);
```
• Application of atomic operation to a value defined by ConApply
 • computes δ-reduction

• Application of a binary operator b to m
 • results in a unary operator named $m b$
 • expecting the other argument

• So for each binary operator b and number m
 there will be a unary operator named $m b$
 • allows all δ-rules to be binary:
 \[
 b \ m \rightarrow^\delta b m
 \]
 • need to compute name of $b m$ by concatenating name of b with name of m
Converting numbers to strings

- Need to convert number m to a string
 - for concatenation with the name of operator

```haskell
fun StringOfNum 0 = "0"
| StringOfNum 1 = "1"
| StringOfNum 2 = "2"
| StringOfNum 3 = "3"
| StringOfNum 4 = "4"
| StringOfNum 5 = "5"
| StringOfNum 6 = "6"
| StringOfNum 7 = "7"
| StringOfNum 8 = "8"
| StringOfNum 9 = "9"
| StringOfNum n =
  (StringOfNum(n div 10)) ^ (StringOfNum(n mod 10));

StringOfNum 1574;
> val it = "1574" : string
```
Definition of conapply

fun ConApply(Op1(_,f1), Num m) = Num(f1 m)
 | ConApply(Op2(x,f2), Num m) =
 Op1((StringOfNum m^x), fn n => f2(m,n));
> val ConApply = fn : atom * atom -> atom

ConApply(Op2("+",op +), Num 2);
> val it = Op1 ("2+",fn) : atom

ConApply(it, Num 3);
> val it = Num 5 : atom
λ-calculus with constants (atoms)

- Redefine lam

```haskell
datatype lam = Var of string
  | Con of atom
  | App of (lam * lam)
  | Abs of (string * lam);
```

- Normal order evaluation with δ-rules

```haskell
fun EvalN (e as Var _) = e
  | EvalN (e as Con _) = e
  | EvalN (Abs(x,e)) = Abs(x, EvalN e)
  | EvalN (App(e1,e2)) =
      case EvalN e1
      of (Abs(x,e3)) => EvalN(Subst e3 e2 x)
        | (e1' as Con a1)
        => (case EvalN e2
            of (Con a2) => Con(ConApply(a1,a2))
              | e2' => App(e1',e2'))
        | e1'
        => App(e1', EvalN e2);
> val EvalN = fn : lam -> lam
```

- Consider \(\text{App(Num 1, Num2)} \) ...
Call-by-value with δ-rules

fun EvalV (e as Var _) = e
| EvalV (e as Con _) = e
| EvalV (e as Abs(_,_)) = e
| EvalV (App(e1,e2)) =
 let val e2' = EvalV e2
 in
 (case EvalV e1
 of (Abs(x,e3))
 => EvalV(Subst e3 e2' x)
 | (e1' as Con a)
 => (case e2'
 of (Con a2) => Con(ConApply(a1,a2))
 | _ =⇒ App(e1',e2'))
 | e1'
 => App(e1',e2'))
 end;
Representing the recursive functions

- **Recursive functions** are an important class of numerical functions

- Shortly after Church invented the λ-calculus, Kleene proved that every recursive function could be represented in it

- This provided evidence for *Church’s thesis*

 - the hypothesis that any intuitively computable function could be represented in the λ-calculus

 - has been shown that many other models of computation define the same class of functions that can be defined in the λ-calculus.

 - e.g. Turing machines
Representing a numerical function

- Number \(n \) is represented by the \(\lambda \)-expression \(n \)

- \(\lambda \)-expression \(f \) represents function \(f \) iff
 - for all numbers \(x_1, \ldots, x_n \):
 \[
 f(x_1, \ldots, x_n) = y \quad \text{if} \quad f(x_1, \ldots, x_n) = y
 \]

- A function is \textit{primitive recursive} if it can be constructed by a finite sequence of applications of the operations of substitution and primitive recursion starting from 0, \(S \) and the projection functions \(U^n_i \) (all defined below)
Base functions and Substitution

- **Successor function** S:
 - $S(x) = x + 1$

- **Projection functions** U^i_n (n and i are numbers):
 - $U^i_n(x_1, x_2, \ldots, x_n) = x_i$

- **Suppose**:
 - g is a function of r arguments
 - h_1, \ldots, h_r are r functions each of n arguments

- **We say** f is defined from g and h_1, \ldots, h_r by substitution if:
 $$f(x_1, \ldots, x_n) = g(h_1(x_1, \ldots, x_n), \ldots, h_r(x_1, \ldots, x_n))$$
Primitive recursion

- Suppose:
 - g is a function of $n-1$ arguments
 - h is a function of $n+1$ arguments

- Then f is defined from g and h by primitive recursion if:

 \[
 f(0, x_2, \ldots, x_n) = g(x_2, \ldots, x_n) \\
 f(S(x_1), x_2, \ldots, x_n) = h(f(x_1, x_2, \ldots, x_n), x_1, x_2, \ldots, x_n)
 \]

 - g is called the base function
 - h is called the step function

- Primitive Recursion Theorem:

 - Can proved that for any base and step function there always exists a unique function defined from them by primitive recursion

- Addition function sum is primitive recursive:

 \[
 \text{sum}(0, x_2) = x_2 \\
 \text{sum}(S(x_1), x_2) = S(\text{sum}(x_1, x_2))
 \]
PR functions in λ-calculus

- Obvious that:
 - 0 represents 0
 - suc represents S
 - $\lambda p. p \downarrow i$ represents U^n_i

- Suppose
 - function g of r variables is represented by g
 - functions h_i ($1 \leq i \leq r$) of n variables represented by h_i

- Then if a function f of n variables is defined by substitution by:

 $$f(x_1, \ldots, x_n) = g(h_1(x_1, \ldots, x_n), \ldots, h_r(x_1, \ldots, x_n))$$

 then f is represented by f where:

 $$f = \lambda(x_1, \ldots, x_n). g(h_1(x_1, \ldots, x_n), \ldots, h_r(x_1, \ldots, x_n))$$
Suppose f of n variables is defined inductively

- from a base function g of $n-1$ variables
 and an inductive step function h of $n+1$ variables

- then

$$f(0, x_2, \ldots, x_n) = g(x_2, \ldots, x_n)$$
$$f(S(x_1), x_2, \ldots, x_n) = h(f(x_1, x_2, \ldots, x_n), x_1, x_2, \ldots, x_n)$$

Thus if g represents g and h represents h then f will represent f if

$$f(x_1, x_2, \ldots, x_n) =$$
$$\begin{cases}
\text{iszero } x_1 \\
\rightarrow g(x_2, \ldots, x_n) \\
| h(f(\text{pre } x_1, x_2, \ldots, x_n), \text{pre } x_1, x_2, \ldots, x_n))
\end{cases}$$

A solution to this equation is:

$$Y(\lambda f. \lambda(x_1, x_2, \ldots, x_n).$$
$$\begin{cases}
\text{iszero } x_1 \\
\rightarrow g(x_2, \ldots, x_n) \\
| h(f(\text{pre } x_1, x_2, \ldots, x_n), \text{pre } x_1, x_2, \ldots, x_n))
\end{cases}$$

Primitive recursive functions are representable
The recursive functions

• A function is called *recursive*
 - if it can be constructed from 0, the successor function and the projection functions
 - by a sequence of substitutions, primitive recursions
 - and *minimizations*

• Suppose g is a function of n arguments
 - f is defined from g by minimization if:
 \[f(x_1, x_2, \ldots, x_n) = \text{‘the smallest } y \text{ such that } g(y, x_2, \ldots, x_n) = x_1 \text{’} \]

• MIN(f) denotes the minimization of f
Undefinedness

- Functions defined by minimization may be undefined for some arguments

- For example, if \(\text{one} \) is the function that always returns 1
 - i.e. \(\text{one}(x) = 1 \) for every \(x \)

- \(\text{MIN}(\text{one}) \) is only defined for arguments with value 1

- Obvious because if \(f(x) = \text{MIN}(\text{one})(x) \), then:
 \[
 f(x) = \text{‘the smallest } y \text{ such that } \text{one}(y)=x\text{’}
 \]
 and clearly this is only defined if \(x = 1 \)

- Thus
 \[
 \text{MIN}(\text{one})(x) = \begin{cases}
 0 & \text{if } x = 1 \\
 \text{undefined} & \text{otherwise}
 \end{cases}
 \]
Representing minimisation

- Suppose \(g \) represents a function \(g \) of \(n \) variables and \(f \) is defined by \(f = \text{MIN}(g) \).

- If a \(\lambda \)-expression \(\text{min} \) can be devised such that
 \[
 \text{min} \ x \ f \ (x_1, \ldots, x_n)
 \]
 represents least \(y \) greater than \(x \) such that
 \[
 f(y, x_2, \ldots, x_n) = x_1
 \]
 then \(g \) will represent \(g \) where:
 \[
 g = \lambda(x_1, x_2, \ldots, x_n). \text{min} \ 0 \ f \ (x_1, x_2, \ldots, x_n)
 \]

- \(\text{min} \) will have the desired property if:
 \[
 \text{min} \ x \ f \ (x_1, x_2, \ldots, x_n) =
 \begin{cases}
 (\text{eq} \ (f(x, x_2, \ldots, x_n)) \ x_1) & \rightarrow x \ | \ \text{min} \ (\text{suc} \ x) \ f \ (x_1, x_2, \ldots, x_n) \\
 \end{cases}
 \]
 \[
 (\text{eq} \ m \ n = \text{true} \ \text{if} \ m = n, \ \text{eq} \ m \ n = \text{false} \ \text{if} \ m \neq n)
 \]

- Thus \(\text{min} \) can simply be defined to be:
 \[
 Y(\lambda m. \ \\
 \lambda x \ f \ (x_1, x_2, \ldots, x_n). \ \\
 (\text{eq} \ (f(x, x_2, \ldots, x_n)) \ x_1 \ \\
 \rightarrow x \ | \ m \ (\text{suc} \ x) \ f \ (x_1, x_2, \ldots, x_n))))
 \]
Higher-order primitive recursion

- Ackermann’s function, ψ, is recursive but not primitive recursive

 \[
 \begin{align*}
 \psi(0, n) & = n+1 \\
 \psi(m+1, 0) & = \psi(m, 1) \\
 \psi(m+1, n+1) & = \psi(m, \psi(m+1, n))
 \end{align*}
 \]

- If one allows functions as arguments, then many more recursive functions can be defined by a primitive recursion

- Define rec by primitive recursion as follows:

 \[
 \begin{align*}
 \text{rec}(0, x_2, x_3) & = x_2 \\
 \text{rec}(S(x_1), x_2, x_3) & = x_3(\text{rec}(x_1, x_2, x_3))
 \end{align*}
 \]

- Then ψ can be defined by:

 \[
 \psi(m, n) = \text{rec} (m, S, f \mapsto (x \mapsto \text{rec}(x, f(1), f))) (n)
 \]

 - where $x \mapsto \theta(x)$ maps x to $\theta(x)$
 - the third argument of rec, x_3, is a function
 - in the definition of ψ, x_2 is a function, viz. S
Power of higher-order recursion

- A function which takes another function as an argument, or returns another function as a result, is called \textit{higher-order}.

- The example ψ shows that higher-order primitive recursion is more powerful than ordinary primitive recursion.

- Operators like \texttt{rec} make functional programming very powerful.
A partial function is one that is not defined for all arguments

- the function MIN\((one)\) described above is partial
- the division function is also partial, since division by 0 is not defined

Functions that are defined for all arguments are called total

A partial function is partial recursive if it can be constructed from 0, the successor function and the projection functions by a sequence of substitutions, primitive recursions and minimizations

- thus the recursive functions are just the partial recursive functions which happen to be total

Can be shown that every partial recursive function \(f\) can be represented by a \(\lambda\)-expression \(\bar{f}\) in the sense that

(i) \(\bar{f}(x_1, \ldots, x_n) = y\) if \(f(x_1, \ldots, x_n) = y\)

(ii) If \(f(x_1, \ldots, x_n)\) is undefined then \(\bar{f}(x_1, \ldots, x_n)\) has no normal form.