
Executing the PSL semantics 1/21

Executing the formal semantics
of the Accellera Property Specification Language

— joint work with Joe Hurd & Konrad Slind —

THEOREM PROVER

Formal semantics

EDA tools

I Input ‘golden’ semantics from LRM

I Perform mechanised proof

I Generate tools

Mike Gordon University of Cambridge

Executing the PSL semantics 2/21

Goals and non-Goals

I Goal is to show formal semantics is not just documentation

• can run the Language Reference Manual (LRM)

I Correctness primary, efficiency secondary

• but need sufficient efficiency!

I Programming methodology, not new verification algorithms

• EDA tools with theorem prover inside (c.f. PROSPER)

Mike Gordon University of Cambridge

Executing the PSL semantics 3/21

Accellera’s PSL (formerly IBM’s Sugar 2.0)

I PSL is a property specification language combining

• boolean expressions (Verilog syntax)

• patterns (Sequential Extended Regular Expressions SEREs)

• LTL formulas (Foundation language FL)

• CTL formulas (Optional Branching Extension OBE)

I Designed both for model checking and simulation testbenches

I Intended to be the industry standard

Mike Gordon University of Cambridge

Executing the PSL semantics 4/21

Generating PSL tools

Official semantics of PSL

 HOL 4
THEOREM PROVER

TOOL1: evaluate FL properties on a specific path

TOOL2: compile properties to HDL checkers (idea from FoCs)

TOOL3: check OBE properties against a model (Amjad’s PhD)

Mike Gordon University of Cambridge

Executing the PSL semantics 5/21

Tools use standard algorithms

I TOOL1: semantic calculator
• match regexps using automata; evaluate formulas recursively
• automata constructed and executed by proof inside HOL

I TOOL2: checker compiler
• compile regexps to automata, then ‘pretty print’ to HDL (Verilog)
• treatment of formulas incomplete and ad hoc

I TOOL3: symbolic model checker
• classical McMillan-style µ-calculus checker
• uses BDD representation judgements to link HOL terms to BDDs
• see Gordon (TPHOLs2001), Amjad (TPHOLs2003)

I No new algorithms, but maybe a new kind of logic programming

Mike Gordon University of Cambridge

Executing the PSL semantics 6/21

Our theorem proving infrastructure (HOL)

I Standard ML infrastructure to interactively prove ` t

• t is a term of higher order logic

• proof is ‘fully-expansive’ – a sequence of primitive inference steps

I Logic is typed

• type system supports user-defined datatypes

• example: define types of PSL expressions, SEREs and formulas

I Contains the usual proof tools

• simplifier (rewriter)

• decision procedures for subsets of natural numbers, integers, reals

• first order reasoners (inspired by Isabelle)

Mike Gordon University of Cambridge

Executing the PSL semantics 7/21

Heroic proofs versus logic programming

I Theorem proving often associated with heroic proofs

• e.g. Gödel’s theorem (Shankar), relative consistency of AC (Paulson)

I We are not doing heroic proofs, but a kind of logic programming

• computation by deduction

I HOL has a relatively fast call-by-value symbolic evaluator EVAL

• by Bruno Barras using Coq technology (explicit substitutions)

• doesn’t compete with ACL2 or PVS ground evaluators (or C, C++)

• runs ARM6 microarchitecture at a few seconds per instruction

• key tool for our PSL evalutor

Mike Gordon University of Cambridge

Executing the PSL semantics 8/21

Parts of semantics are directly executable

I Semantics of boolean expressions (PSL in red, HOL in blue)
(s |= p = p ∈ s)∧(s |= ¬b = ¬(s |= b))∧(s |= b1 ∧ b2 = s |= b1∧s |= b2)

I Fragment of semantics of formulas
(w |= b = |w| > 0 ∧ w0 |= b) ∧
(w |= f1 ∧ f2 = w |= f1 ∧ w |= f2) ∧
(w |= X ! f = |w| > 1 ∧ w1 |= f)

I Examples of rewriting and evaluation:

` w |= p ∧X ! f = (|w| > 0 ∧ w0 |= p) ∧ |w| > 1 ∧ w1 |= f

` [s0]w |= p ∧X ! f = s0 |= p ∧ |w|+ 1 > 1 ∧ w |= f

` s0s1s2s3s4s5s6s7s8s9 |= p ∧X ! f = s0 |= p ∧ s1s2s3s4s5s6s7s8s9 |= f

` {a}{a, b}{b} |= a ∧X ! b = T

Mike Gordon University of Cambridge

Executing the PSL semantics 9/21

Parts of semantics require reformulation for execution

I LRM semantics of the until-operator not directly executable

w |= [f1 U f2] = ∃ k ∈ [0 .. |w|). wk |= f2 ∧ ∀ j ∈ [0 .. k). wj |= f1

I Standard reformulation makes it directly executable

` w |= [f1 U f2] = |w| > 0 ∧ (w |= f2 ∨ w |= f1 ∧ w1 |= [f1 U f2])

I If f1, f2 are boolean expressions and the path is arbitrary of length 5:

` s0s1s2s3s4 |= [b1 U b2] =

s0 |= b2 ∨
s0 |= b1 ∧ (s1 |= b2 ∨ s1 |= b1 ∧
(s2 |= b2 ∨ s2 |= b1 ∧ (s3 |= b2 ∨ s3 |= b1 ∧ s4 |= b2)))

Mike Gordon University of Cambridge

Executing the PSL semantics 10/21

Matching regular expressions

I Semantics of PSL SEREs is self-explanatory

(w |= b = (|w| = 1) ∧ w0 |= b) ∧
(w |= r1; r2 = ∃w1w2. (w = w1w2) ∧ w1 |= r1 ∧ w2 |= r2) ∧
(w |= r1 : r2 = ∃w1w2l. (w = w1[l]w2) ∧ w1[l] |= r1 ∧ [l]w2 |= r2) ∧
(w |= {r1} | {r2} = w |= r1 ∨ w |= r2) ∧
(w |= {r1}&&{r2} = w |= r1 ∧ w |= r2) ∧
(w |= r[∗] = ∃wlist. (w = Concat wlist)∧Every(λw. w |= r)wlist)

I Make executable by proving

` ∀w r. w |= r = amatch(sere2regexp(r))w

where:
• sere2regexp converts a SERE to a HOL regular expression

• amatch is an executable matcher for regular expressions

Mike Gordon University of Cambridge

Executing the PSL semantics 11/21

Suffix implication {r}(f)

I Semantics is:

w |= {r}(f) = ∀ j ∈ [0 .. |w|). w0,j |= r ⇒ wj |= f

I Have defined an efficient executable function acheck so that, for example:

acheck r f [x0; x1; x2; x3] =

(amatch r [x0]⇒ f [x0; x1; x2; x3]) ∧
(amatch r [x0; x1]⇒ f [x1; x2; x3]) ∧
(amatch r [x0; x1; x2]⇒ f [x2; x3]) ∧
(amatch r [x0; x1; x2; x3]⇒ f [x3])

I Then proved

` ∀w r f. w |= {r}(f) = acheck(sere2regexp(r))(λx. x |= f)w

I Rewrite with this, then execute

Mike Gordon University of Cambridge

Executing the PSL semantics 12/21

Strong suffix implication {r1} 7→ {r2}!

I Semantics is:

w |= {r1} 7→ {r2}! = ∀ j ∈ [0 .. |w|).w0,j |= r1 ⇒ ∃ k ∈ [j .. |w|).wj,k |= r2

I Reduced to suffix implication by proving

` ∀w r1 r2. w |= {r1} 7→ {r2}! = w |= {r1}(¬{r2}(F))

I Rewrite with this, then execute

Mike Gordon University of Cambridge

Executing the PSL semantics 13/21

Weak suffix implication {r1} 7→ {r2}

I Semantics is:

w |= {r1} 7→ {r2} =

∀ j ∈ [0 .. |w|).
w0,j |= r1 ⇒ (∃ k ∈ [j .. |w|).wj,k |= r)∨ (∀ k ∈ [j .. |w|). ∃w′.wj,kw′ |= r2)

I Have added a special regular expression Prefix(r) to HOL (not to PSL)
` ∀ r w . w |= Prefix(r) = ∃w ′. w w ′ |= r

I Execution of w |= Prefix(r) uses Dijkstra’s algorithm

I Have proved:
` ∀w r1 r2.

w |= {r1} 7→ {r2} =
acheck(sere2regexp r1)

(λx. x |= ¬{r2}(F) ∨ amatch (Prefix (sere2regexp r2)) x) w

I Rewrite with this, then execute

Mike Gordon University of Cambridge

Executing the PSL semantics 14/21

Remaining formulas: aborts and clocking

I Semantics of abort formulas:

w |= f abort b =

w |= f ∨ w |= b ∨ ∃ j ∈ [1 .. |w|). ∃w′. wj |= b ∧ w0,j−1w′ |= f

• ∃w ′ needs a reachability algorithm
• have implemented a partial method
• awaiting new abort semantics before attempting complete solution

I Clocked formulas f@c, f@c! can be translated to unclocked formulas

• translation to unclocked formulas is by a recursive function

• can be directly executed

Mike Gordon University of Cambridge

Executing the PSL semantics 15/21

Clocking

I LRM defines w |=c r and w |=c f for arbitrary clock c

• clocks c are arbitrary boolean expressions
• top level default clock is T

I Semantics of clocked SEREs
w |=c r@c1 = ∃ i ∈ [0 .. |w|). w0,i |=T ¬c1[∗]; c1 ∧ wi |=c1 r

I Semantics of clocked formulas
w |=c f@c1! = ∃ i ∈ [0 .. |w|). w0,i |=T ¬c1[∗]; c1 ∧ wi |=c1 f

I Execute by rewriting with function T T and then the theorems:

` ∀ r w. w |=T
r = w |= T T(r)

` ∀ f w. w |=T
f = w |= T T(f)

Mike Gordon University of Cambridge

Executing the PSL semantics 16/21

Example

I PSL Reference Manual Example 2, page 45
time 0 1 2 3 4 5 6 7 8 9

clk1 0 1 0 1 0 1 0 1 0 1
a 0 0 0 1 1 1 0 0 0 0
b 0 0 0 0 0 1 0 1 1 0
c 1 0 0 0 0 1 1 0 0 0
clk2 1 0 0 1 0 0 1 0 0 1

I Define w to be this path, so w is :

{c,clk2}{clk1}{}{clk1,a,clk2}{a}{clk1,a,b,c}{c,clk2}{clk1,b}{b}{clk1,clk2}

I Example uses weak clocking defined by: f@c = ¬(¬f@c!)

I Evaluation yields

` w6 |=T
(c ∧X ! [a U b]@(clk1 ∨ clk2))@(clk1 ∨ clk2) = T

` wi |=T
(c ∧X ! [a U b]@(clk1 ∨ clk2))@(clk1 ∨ clk2) = F (if i 6= 6)

Mike Gordon University of Cambridge

Executing the PSL semantics 17/21

SML convenient for scripting combinations of evaluations

I Example: use SML map function to generate

time 0 1 2 3 4 5 6 7 8 9

clk1 0 1 0 1 0 1 0 1 0 1
a 0 0 0 1 1 1 0 0 0 0
b 0 0 0 0 0 1 0 1 1 0
c 1 0 0 0 0 1 1 0 0 0
clk2 1 0 0 1 0 0 1 0 0 1

` w0 |=T
c ∧X ! [a U b]@clk1 = F

` w1 |=T
c ∧X ! [a U b]@clk1 = F

` w2 |=T
c ∧X ! [a U b]@clk1 = F

` w3 |=T
c ∧X ! [a U b]@clk1 = F

` w4 |=T
c ∧X ! [a U b]@clk1 = T

` w5 |=T
c ∧X ! [a U b]@clk1 = T

` w6 |=T
c ∧X ! [a U b]@clk1 = F

` w7 |=T
c ∧X ! [a U b]@clk1 = F

` w8 |=T
c ∧X ! [a U b]@clk1 = F

` w9 |=T
c ∧X ! [a U b]@clk1 = F

I Easy to evaluate SEREs and formulas on all subpaths of a path

Mike Gordon University of Cambridge

Executing the PSL semantics 18/21

Uses of TOOL1 (calculating w |=T f from semantics)

I Teaching and learning tool for exploring semantics

I Checking one has the right property before using it in verification

I Post simulation analysis (path is generated by simulator)

• compare with “TransEDA VN-Property” property checker and analyzer

• our tools much slower – but not necessary too slow!

• guaranteed PSL compliant by construction: golden reference

Mike Gordon University of Cambridge

Executing the PSL semantics 19/21

TOOL2: Compile the semantics to checkers

I Idea pinched from IBM FoCs project

I A defined operator: ∀ r . never(r) = {T[∗]; r} 7→ {F}

I Example property: never(¬StoB REQ ∧ BtoS ACK; StoB REQ)

I Use semantics to generate a Verilog checker
module Checker (StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK);

input StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK;

reg [1:0] state;

initial state = 0;

always @ (StoB_REQ or BtoS_ACK or BtoR_REQ or RtoB_ACK)

begin

$display ("Checker: state = %0d", state);

case (state)

0: if (StoB_REQ) state = 1; else if (BtoS_ACK) state = 2; else state = 1;

1: if (StoB_REQ) state = 1; else if (BtoS_ACK) state = 2; else state = 1;

2: if (StoB_REQ) state = 3; else if (BtoS_ACK) state = 2; else state = 1;

3: begin $display ("Checker: property violated!"); $finish; end

default: begin $display ("Checker: unknown state"); $finish; end

endcase

end

endmodule

Mike Gordon University of Cambridge

Executing the PSL semantics 20/21

Example of how the checker works and is justified

I The following theorem is first proved

` |w| =∞ ⇒ w |= never(r) = ∀n. ¬amatch (sere2regexp T[∗]; r)(w0,n)

I Thus there’s an error if amatch (sere2regexp T[∗]; r)(w0,n) is ever true

I Generate a DFA from sere2regexp T[∗]; r

I So far everything is by proof, so correct by construction

I Final step is to pretty print checker into HDL (Verilog)
• this may introduce errors
• no formal semantics of Verilog :-(

I Only have ‘proof of concept’ for checkers: more work to cover all formulas

Mike Gordon University of Cambridge

Executing the PSL semantics 21/21

Conclusions HOL 4
THEOREM PROVER

I Two tools: semantic calculator and checker generator

I Correct by construction

I More work needed (especially for checkers)

I Illustrates new kind of logic programming using a theorem prover

• prototyping standards compliant tools

• theorem proving is slow but not necessarily too slow

• maybe OK for some industrial strength performance-non-critical tools

I Possible application: generate OVL checkers from PSL specifications

I . THE END

Mike Gordon University of Cambridge

Executing the PSL semantics 22/21

ADDITIONAL SLIDES ON HOL

Mike Gordon University of Cambridge

Executing the PSL semantics 23/21

The HOL system

I Versions of the HOL system:
1. HOL88 from Cambridge
2. HOL90 from Calgary and Bell Labs
3. HOL98 from Cambridge, Glasgow and Utah.
4. HOL 4 open source project at SourceForge

I Current team .hol.sf.net
Developer Role/Position Location

Anthony Fox Developer UK
Peter Homeier Developer USA
Hasan Amjad Developer UK
Joe Hurd Developer UK
Ken Friis Larsen Advisor/Mentor/Consultant Denmark
Keith Wansbrough Developer UK
Michael Norrish Project Manager Australia
Mike Gordon Developer UK
Konrad Slind Project Manager USA

I No longer managed from Cambridge

Mike Gordon University of Cambridge

Executing the PSL semantics 24/21

New tools (some here, some coming soon)

I New theorem proving tactics

• ordered resolution and paramodulation for equality reasoning
• time-sliced combinations of resolution and model elimination

I New decision procedure for full Presburger arithmetic

• Pugh’s “Omega Test”

I Improved support for emulating predicate subtypes

• PVS is still better :-(

I Fully-expansive model checking

• CTL checking as proof in representation judgement calculus

I Tools for ‘boolification’ to encode for BDD and SAT

• automatically generate encoders/decoders from datatype definition
• automatically generate bitvector versions of function definitions

Mike Gordon University of Cambridge

Executing the PSL semantics 25/21

Some recent or current projects

I Verification of AES (Rijndael) and others (Serpent, MARS, Twofish, RC6)
• synergy between symbolic execution and proof
• Slind and students (Utah)

I Memory models
• general model applied to Java threads
• Slind/Gopalakrishnan and students (Utah)

I ARM processor verification
• programmers view of ARM6 equivalent to pipelined microarchitecture
• Fox (Cambridge), Birtwistle and students (Leeds) and ARM
• future work is ESL verification using ARM model

I Verification of probabilistic algorithms
• Miller-Rabin probabilistic primality test
• Hurd (Cambridge)

I Mechanised semantics of realistic networking (UDP)
• validate operational semantics of network programming protocols
• Sewell/Wansbrough & Norrish (Cambridge & Australia)

Mike Gordon University of Cambridge

