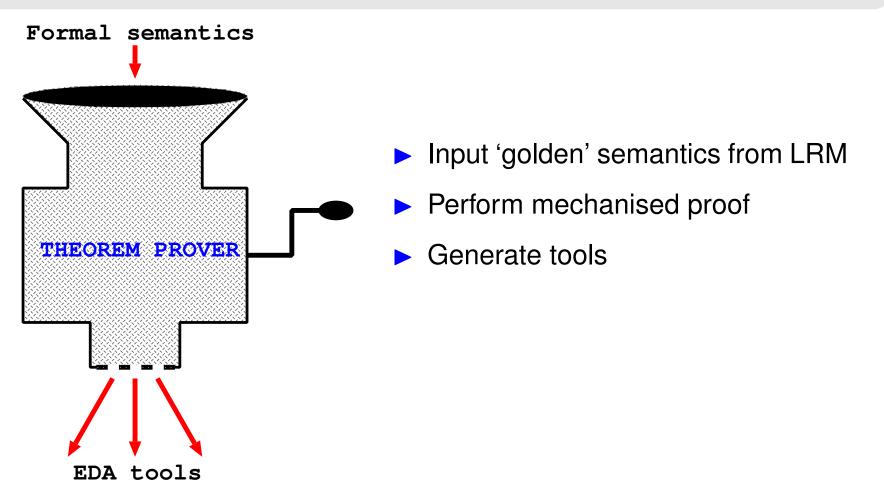
Executing the formal semantics of the Accellera Property Specification Language

- joint work with Joe Hurd & Konrad Slind -



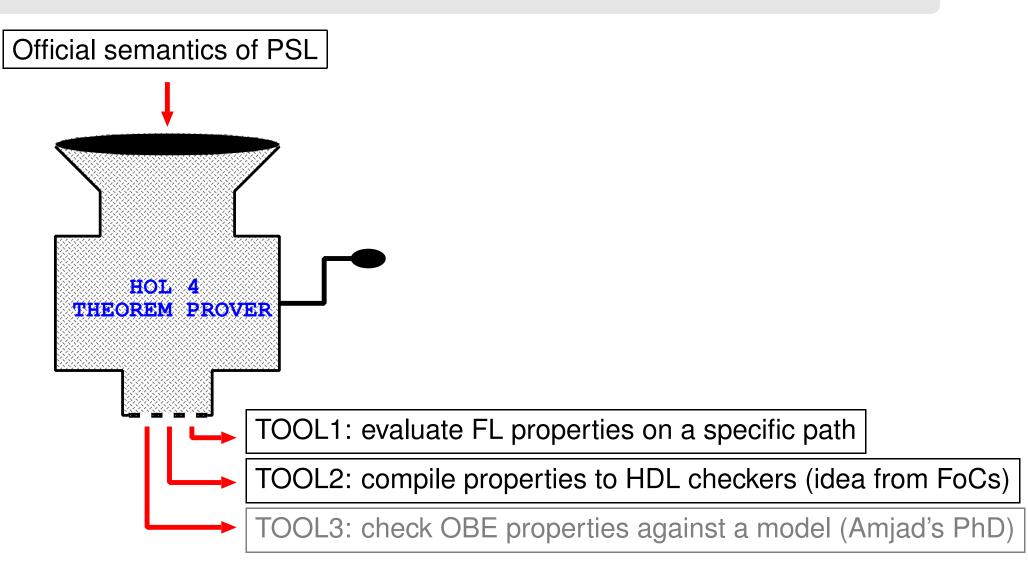
Goals and non-Goals

- Goal is to show formal semantics is not just documentation
 - can run the Language Reference Manual (LRM)
- Correctness primary, efficiency secondary
 - but need sufficient efficiency!
- Programming methodology, not new verification algorithms
 - EDA tools with theorem prover inside (*c.f.* PROSPER)

Accellera's PSL (formerly IBM's Sugar 2.0)

- PSL is a property specification language combining
 - boolean expressions (Verilog syntax)
 - patterns (Sequential Extended Regular Expressions SEREs)
 - LTL formulas (Foundation language FL)
 - CTL formulas (Optional Branching Extension OBE)
- Designed both for model checking and simulation testbenches
- Intended to be the industry standard

Generating PSL tools



Tools use standard algorithms

TOOL1: semantic calculator

- match regexps using automata; evaluate formulas recursively
- automata constructed and executed by proof inside HOL

TOOL2: checker compiler

- compile regexps to automata, then 'pretty print' to HDL (Verilog)
- treatment of formulas incomplete and ad hoc

TOOL3: symbolic model checker

- classical McMillan-style μ -calculus checker
- uses BDD representation judgements to link HOL terms to BDDs
- see Gordon (TPHOLs2001), Amjad (TPHOLs2003)

No new algorithms, but maybe a new kind of logic programming

Our theorem proving infrastructure (HOL)

- Standard ML infrastructure to interactively prove $\vdash t$
 - *t* is a term of higher order logic
 - proof is 'fully-expansive' a sequence of primitive inference steps
- Logic is typed
 - type system supports user-defined datatypes
 - example: define types of PSL expressions, SEREs and formulas
- Contains the usual proof tools
 - simplifier (rewriter)
 - decision procedures for subsets of natural numbers, integers, reals
 - first order reasoners (inspired by Isabelle)

Heroic proofs versus logic programming

- Theorem proving often associated with heroic proofs
 - e.g. Gödel's theorem (Shankar), relative consistency of AC (Paulson)
- ► We are not doing heroic proofs, but a kind of logic programming
 - computation by deduction
- ► HOL has a relatively fast call-by-value symbolic evaluator EVAL
 - by Bruno Barras using Coq technology (explicit substitutions)
 - doesn't compete with ACL2 or PVS ground evaluators (or C, C++)
 - runs ARM6 microarchitecture at a few seconds per instruction
 - key tool for our PSL evalutor

Parts of semantics are directly executable

- Semantics of boolean expressions (PSL in red, HOL in blue) $(s \models p = p \in s) \land (s \models \neg b = \neg (s \models b)) \land (s \models b_1 \land b_2 = s \models b_1 \land s \models b_2)$
- Fragment of semantics of formulas
 - $\begin{array}{lll} (w \models b & = & |w| > 0 \land w_0 \models b) \land \\ (w \models f_1 \land f_2 & = & w \models f_1 \land w \models f_2) \land \\ (w \models X! f & = & |w| > 1 \land w^1 \models f) \end{array}$
- Examples of rewriting and evaluation:
 - $\vdash w \models p \land X! f = (|w| > 0 \land w_0 \models p) \land |w| > 1 \land w^1 \models f$
 - $\vdash \ [s_0]w \models p \land X! \ f \ = \ s_0 \models p \land |w| + 1 > 1 \land w \models f$
 - $\vdash s_0 s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 s_9 \models p \land X! f = s_0 \models p \land s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 s_9 \models f$
 - $\vdash \ \{a\}\{a,b\}\{b\} \models a \land X! \ b \ = \ \mathsf{T}$

Parts of semantics require reformulation for execution

- ► LRM semantics of the until-operator not directly executable $w \models [f_1 \ U \ f_2] = \exists k \in [0 ... |w|). \ w^k \models f_2 \land \forall j \in [0 ... k). \ w^j \models f_1$
- Standard reformulation makes it directly executable $\vdash w \models [f_1 \ U \ f_2] = |w| > 0 \land (w \models f_2 \lor w \models f_1 \land w^1 \models [f_1 \ U \ f_2])$
- ▶ If f_1 , f_2 are boolean expressions and the path is arbitrary of length 5:

$$\vdash s_0 s_1 s_2 s_3 s_4 \models [b_1 \ U \ b_2] =$$

$$s_0 \models b_2 \lor$$

$$s_0 \models b_1 \land (s_1 \models b_2 \lor s_1 \models b_1 \land$$

$$(s_2 \models b_2 \lor s_2 \models b_1 \land (s_3 \models b_2 \lor s_3 \models b_1 \land s_4 \models b_2)))$$

Matching regular expressions

Semantics of PSL SEREs is self-explanatory

Make executable by proving

 $\vdash \forall w \ r. \ w \models r = \mathsf{amatch}(\mathsf{sere2regexp}(r))w$

where:

- sere2regexp converts a SERE to a HOL regular expression
- amatch is an executable matcher for regular expressions

Suffix implication $\{r\}(f)$

Semantics is:

 $w \models \{r\}(f) = \forall j \in [0 \dots |w|). \ w^{0,j} \models r \Rightarrow w^j \models f$

► Have defined an efficient executable function acheck so that, for example:

```
acheck r f [x_0; x_1; x_2; x_3] =

(amatch r [x_0] \Rightarrow f[x_0; x_1; x_2; x_3]) \land

(amatch r [x_0; x_1] \Rightarrow f[x_1; x_2; x_3]) \land

(amatch r [x_0; x_1; x_2] \Rightarrow f[x_2; x_3]) \land

(amatch r [x_0; x_1; x_2; x_3] \Rightarrow f[x_3])
```

► Then proved

 $\vdash \ \forall w \ r \ f. \ w \models \{r\}(f) \ = \ \mathsf{acheck}(\mathsf{sere2regexp}(r))(\lambda \ x. \ x \models f)w$

Rewrite with this, then execute

Strong suffix implication $\{r_1\} \mapsto \{r_2\}!$

Semantics is:

 $w \models \{r_1\} \mapsto \{r_2\}! = \forall j \in [0 \dots |w|) . w^{0,j} \models r_1 \Rightarrow \exists k \in [j \dots |w|) . w^{j,k} \models r_2$

Reduced to suffix implication by proving

 $\vdash \forall w r_1 r_2. w \models \{r_1\} \mapsto \{r_2\}! = w \models \{r_1\}(\neg \{r_2\}(\mathsf{F}))$

Rewrite with this, then execute

Weak suffix implication $\{r_1\} \mapsto \{r_2\}$

Semantics is:

$$\begin{split} w &\models \{r_1\} \mapsto \{r_2\} = \\ \forall j \in [0 \dots |w|). \\ w^{0,j} &\models r_1 \Rightarrow (\exists k \in [j \dots |w|). w^{j,k} \models r) \lor (\forall k \in [j \dots |w|). \exists w'. w^{j,k} w' \models r_2) \end{split}$$

► Have added a special regular expression $\operatorname{Prefix}(r)$ to HOL (not to PSL) $\vdash \forall r \ w. \ w \models \operatorname{Prefix}(r) = \exists w'. \ w \ w' \models r$

• Execution of $w \models \operatorname{Prefix}(r)$ uses Dijkstra's algorithm

► Have proved:

```
 \begin{array}{l} \vdash & \forall w \ r_1 \ r_2. \\ & w \models \{r_1\} \mapsto \{r_2\} = \\ & \text{acheck}(\text{sere2regexp} \ r_1) \\ & (\lambda \ x. \ x \models \neg \{r_2\}(\mathsf{F}) \lor \text{amatch (Prefix (sere2regexp} \ r_2)) \ x) \ w \end{array}
```

Rewrite with this, then execute

Remaining formulas: aborts and clocking

Semantics of abort formulas:

$$\begin{split} w &\models f \text{ abort } b = \\ w &\models f \lor w \models b \lor \exists j \in [1 ... |w|). \exists w'. w^j \models b \land w^{0,j-1}w' \models f \end{split}$$

- $\exists w'$ needs a reachability algorithm
- have implemented a partial method
- awaiting new abort semantics before attempting complete solution
- ► Clocked formulas f@c, f@c! can be translated to unclocked formulas
 - translation to unclocked formulas is by a recursive function
 - can be directly executed

Clocking

- ▶ LRM defines $w \stackrel{\mathcal{C}}{\models} r$ and $w \stackrel{\mathcal{C}}{\models} f$ for arbitrary clock c
 - clocks c are arbitrary boolean expressions
 - top level default clock is T
- Semantics of clocked SEREs

 $w \models r @c_1 = \exists i \in [0 \dots |w|). \ w^{0,i} \models \neg c_1[*]; \ c_1 \land w^i \models r$

Semantics of clocked formulas $w \models^{C} f @c_1! = \exists i \in [0 ... |w|). w^{0,i} \models^{T} \neg c_1[*]; c_1 \land w^i \models^{C_1} f$

Execute by rewriting with function \mathcal{T}^{T} and then the theorems:

$$\vdash \forall r \ w. \ w \models^{\mathsf{T}} r = w \models \mathcal{T}^{\mathsf{T}}(r)$$
$$\vdash \forall f \ w. \ w \models^{\mathsf{T}} f = w \models \mathcal{T}^{\mathsf{T}}(f)$$

Example

▶ PSL Reference Manual Example 2, page 45

time	0	_1	_2_	3	_4	_5	6	7	8	9
clk1 a b	0 0 0	1 0 0	-	1 1 0	0 1 0	1	0 0 0	1 0 1	0 0 1	1 0 0
c clk2	1 1	0 0	0 0	0 1	0 0	1 0	1 1	0 0	0 0	0 1

Define w to be this path, so w is :

 $\c,clk2\clk1\clk1,a,clk2\a\clk1,a,b,c\clk2\clk1,b\clk1,b\clk1,clk2\$

- Example uses weak clocking defined by: $f@c = \neg(\neg f@c!)$
- Evaluation yields

 $\vdash \mathbf{w}^{6} \models^{\mathsf{T}} (c \wedge X! [a \ U \ b] \mathbb{Q}(clk_{1} \lor clk_{2})) \mathbb{Q}(clk_{1} \lor clk_{2}) = \mathsf{T}$

 $\vdash \mathbf{w}^{i} \models^{\mathsf{T}} (c \land X! [a \ U \ b] \mathbb{Q}(clk_{1} \lor clk_{2})) \mathbb{Q}(clk_{1} \lor clk_{2}) = \mathsf{F} \text{ (if } i \neq 6)$

SML convenient for scripting combinations of evaluations

Example: use SML **map** function to generate

time	0	1	2	3	4	5	6	7	8	9
clk1 a b c clk2	0 0 1 1	1 0 0 0	0 0 0 0	1 1 0 0 1	0 1 0 0 0	1 1 1 0	0 0 1 1	1 0 1 0	0 0 1 0 0	1 0 0 1

$$\vdash \mathbf{w}^{0} \models^{\mathsf{T}} c \land X! [a \ U \ b] @clk_{1} = \mathsf{F}$$

$$\vdash \mathbf{w}^{1} \models^{\mathsf{T}} c \land X! [a \ U \ b] @clk_{1} = \mathsf{F}$$

$$\vdash \mathbf{w}^{2} \models^{\mathsf{T}} c \land X! [a \ U \ b] @clk_{1} = \mathsf{F}$$

$$\vdash \mathbf{w}^{3} \models^{\mathsf{T}} c \land X! [a \ U \ b] @clk_{1} = \mathsf{F}$$

$$\vdash \mathbf{w}^{4} \models^{\mathsf{T}} c \land X! [a \ U \ b] @clk_{1} = \mathsf{T}$$

$$\vdash \mathbf{w}^{5} \models^{\mathsf{T}} c \land X! [a \ U \ b] @clk_{1} = \mathsf{T}$$

$$\vdash \mathbf{w}^{6} \models^{\mathsf{T}} c \land X! [a \ U \ b] @clk_{1} = \mathsf{F}$$

$$\vdash \mathbf{w}^{7} \models^{\mathsf{T}} c \land X! [a \ U \ b] @clk_{1} = \mathsf{F}$$

$$\vdash \mathbf{w}^{8} \models^{\mathsf{T}} c \land X! [a \ U \ b] @clk_{1} = \mathsf{F}$$

$$\vdash \mathbf{w}^{8} \models^{\mathsf{T}} c \land X! [a \ U \ b] @clk_{1} = \mathsf{F}$$

$$\vdash \mathbf{w}^{9} \models^{\mathsf{T}} c \land X! [a \ U \ b] @clk_{1} = \mathsf{F}$$

Easy to evaluate SEREs and formulas on all subpaths of a path

Uses of TOOL1 (calculating $w \models f$ from semantics)

- Teaching and learning tool for exploring semantics
- Checking one has the right property before using it in verification
- Post simulation analysis (path is generated by simulator)
 - compare with "TransEDA VN-Property" property checker and analyzer
 - our tools much slower but not necessary too slow!
 - guaranteed PSL compliant by construction: golden reference

TOOL2: Compile the semantics to checkers

- Idea pinched from IBM FoCs project
- ► A defined operator: $\forall r. never(r) = \{T[*]; r\} \mapsto \{F\}$
- **Example property:** $never(\neg stob_{REQ} \land Btos_{ACK}; stob_{REQ})$

Use semantics to generate a Verilog checker

```
module Checker (StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK);
input StoB_REQ, BtoS_ACK, BtoR_REQ, RtoB_ACK;
reg [1:0] state;
initial state = 0;
always @ (StoB_REQ or BtoS_ACK or BtoR_REQ or RtoB_ACK)
begin
$display ("Checker: state = %Od", state);
case (state)
0: if (StoB_REQ) state = 1; else if (BtoS_ACK) state = 2; else state = 1;
1: if (StoB_REQ) state = 1; else if (BtoS_ACK) state = 2; else state = 1;
2: if (StoB_REQ) state = 3; else if (BtoS_ACK) state = 2; else state = 1;
3: begin $display ("Checker: property violated!"); $finish; end
default: begin $display ("Checker: unknown state"); $finish; end
endcase
end
```

 ${\tt endmodule}$

Example of how the checker works and is justified

► The following theorem is first proved

 $\vdash |w| = \infty \implies w \models never(r) = \forall n. \neg \text{amatch (sere2regexp T[*]; } r)(w^{0,n})$

- ▶ Thus there's an error if amatch (sere2regexp T[*]; $r)(w^{0,n})$ is ever true
- ► Generate a DFA from sere2regexp T[*]; r
- So far everything is by proof, so correct by construction
- Final step is to pretty print checker into HDL (Verilog)
 - this may introduce errors
 - no formal semantics of Verilog :-(
- Only have 'proof of concept' for checkers: more work to cover all formulas

Conclusions

- ► Two tools: semantic calculator and checker generator
- Correct by construction
- More work needed (especially for checkers)
- Illustrates new kind of logic programming using a theorem prover
 - prototyping standards compliant tools
 - theorem proving is slow but not necessarily too slow
 - maybe OK for some industrial strength performance-non-critical tools

..... THE END

Possible application: generate OVL checkers from PSL specifications

ADDITIONAL SLIDES ON HOL

The HOL system

Versions of the HOL system:

- 1. HOL88 from Cambridge
- 2. HOL90 from Calgary and Bell Labs
- 3. HOL98 from Cambridge, Glasgow and Utah.
- 4. HOL 4 open source project at SourceForge

Current teamhol.sf.net **Role**/Position Location Developer Anthony Fox Developer UK Peter Homeier Developer USA Hasan Amjad Developer UK Developer Joe Hurd UK Ken Friis Larsen Advisor/Mentor/Consultant Denmark Developer Keith Wansbrough UK Michael Norrish **Project Manager** Australia Developer Mike Gordon UK **Project Manager** Konrad Slind USA

No longer managed from Cambridge

New tools (some here, some coming soon)

- New theorem proving tactics
 - ordered resolution and paramodulation for equality reasoning
 - time-sliced combinations of resolution and model elimination
- New decision procedure for full Presburger arithmetic
 - Pugh's "Omega Test"
- Improved support for emulating predicate subtypes
 - PVS is still better :-(
- Fully-expansive model checking
 - CTL checking as proof in representation judgement calculus
- ► Tools for 'boolification' to encode for BDD and SAT
 - automatically generate encoders/decoders from datatype definition
 - automatically generate bitvector versions of function definitions

Memory models

ARM processor verification programmers view of ARM6 equivalent to pipelined microarchitecture

• Slind and students (Utah)

- Fox (Cambridge), Birtwistle and students (Leeds) and ARM
- future work is ESL verification using ARM model

synergy between symbolic execution and proof

- Verification of probabilistic algorithms
 - Miller-Rabin probabilistic primality test

general model applied to Java threads

• Slind/Gopalakrishnan and students (Utah)

- Hurd (Cambridge)
- Mechanised semantics of realistic networking (UDP)
 - validate operational semantics of network programming protocols

Verification of AES (Rijndael) and others (Serpent, MARS, Twofish, RC6)

• Sewell/Wansbrough & Norrish (Cambridge & Australia)

Some recent or current projects

