
165

Semantics of commands ✓

① Assignments

Csem (V :=E) s1 s2 = (s2 = s1[(Esem E s1)/V])

① Sequences

Csem (C1;C2) s1 s2 = ∃s. Csem C1 s1 s ∧ Csem C2 s s2

① Conditional
Csem (IFS THENC1 ELSEC2) s1 s2
= (Ssem S s1 ∧ Csem C1 s1 s2) ∨ (¬Ssem S s1 ∧ Csem C2 s1 s2)
= if Ssem S s1 then Csem C1 s1 s2 else Csem C2 s1 s2

① While-commands

Csem (WHILES DOC) s1 s2 = ∃n. Iter n (Ssem S) (Csem C) s1 s2

where the function Iter is defined by recursion on n as follows:

Iter 0 p c s1 s2 = ¬(p s1) ∧ (s1=s2)
Iter (n+1) p c s1 s2 = p s1 ∧ ∃s. c s1 s ∧ Iter n p c s s2

✉ argument n of Iter is the number of iterations
✉ argument p is a predicate on states (e.g. Ssem S)

✉ argument c is a semantic function (e.g. Csem C)

✉ arguments s1 and s2 are the initial and final states, respectively

10

175

Soundness of Hoare Logic: summary
✓

① Assignment axiom:
∀s1 s2. Ssem (Q[E/V]) s1 ∧ Csem (V :=E) s1 s2 ⇒ Ssem Q s2
|= {Q[E/V]}V :=E{Q}

① Precondition strengthening:
(∀s. Ssem P s ⇒ Ssem P ′ s) ∧ Hsem P ′ C Q ⇒ Hsem P C Q

(|= P ⇒ P ′) ∧ |= {P ′}C{Q} ⇒ |= {P}C{Q}
① Postcondition weakening:
Hsem P C Q′ ∧ (∀s. Ssem Q′ s ⇒ Ssem Q s) ⇒ Hsem P C Q

|= {P}C{Q′} ∧ (|= Q′ ⇒ Q) ⇒ |= {P}C{Q}
① Sequencing rule:
Hsem P C1 Q ∧ Hsem Q C2 R ⇒ Hsem P (C1;C2) R

|= {P}C1{Q} ∧ |= {Q}C2{R} ⇒ |= {P}C1;C2{R}
① Conditional rule:
Hsem (P∧S) C1 Q∧Hsem (P∧¬Q) C2 Q ⇒ Hsem P (IF S THEN C1 ELSE C2) Q

|= {P∧S}C1{Q} ∧ |= {P∧¬S}C2{Q} ⇒ |= {P}IF S THEN C1 ELSE C2 {Q}
① WHILE rule:
Hsem (P ∧ S) C P ⇒ Hsem P (WHILE S DO C) (P ∧ ¬S))
|= {P ∧ S}C{P} ⇒ |= {P}WHILE S DO C

20

176

Completeness and decidability of Hoare Logic
✓

① Soundness: ⊢ {P}C{Q} ⇒ |= {P}C{Q}

① Decidability: {T}C{F} ⇔ C doesn’t halt

✉ the Halting Problem is undecidable

① Completeness: really want |=IPA {P}C{Q} ⇒ PA ⊢ {P}C{Q}
✉ to show this not possible, first observe that for any P

✉ |=IPA {T}X:=X{P} if and only if |=IPA P

✉ PA ⊢ {T}X:=X{P} if and only if PA ⊢ P

① If Hoare logic were complete, then taking P above to be GT :

|=IPA GT ⇒ |=IPA {T}X:=X{GT} ⇒ PA ⊢ {T}X:=X{GT} ⇒ PA ⊢ GT

contradicting Gödel’s theorem

① Must separate completeness of programming and specification logics

21

177

Relative completeness (Cook 1978) – basic idea
✓

① |=IPA {P}C{Q} entails ΓPA ⊢ {P}C{Q}, where ΓPA = {S | |=IPA S}

① Proof outline:

✉ define wlp(C,Q) in LPA

✉ straight line code easy - see earlier slides

✉ wlp((WHILES DOC), Q) needs tricky encoding using Gödel’s β function

(see Winskel’s book The formal semantics of programming languages: an introduction)

✉ |=IPA {P}C{Q} implies |=IPA P ⇒ wlp(C,Q) by induction on C and semantics

✉ ΓPA ⊢ {wlp(C,Q)}C{Q} by induction on C and Hoare logic

✉ hence |=IPA {P}C{Q} implies ΓPA ⊢ {P}C{Q} by precondition strengthening

① Cook’s theorem is for any expressive assertion language

✉ i.e. any language in which wlp(C,Q) is definable

22

179

Summary: soundness, decidability, completeness
✓

① Hoare logic is sound

① Hoare logic is undecidable

✉ deciding {T}C{F} is halting problem

① Hoare logic for our simple language is complete relative to an oracle

✉ oracle must be able to prove P ⇒ wlp(C,Q)

✉ relative completeness

✉ requires expressibility: wlp(C,Q) expressible in assertion language

The incompleteness of the proof system for simple Hoare logic stems
from the weakness of the proof system of the assertion language logic,
not any weakness of the Hoare logic proof system.

① Clarke showed relative completeness fails for complex languages

24

180

Additional topics
✓

Note: only a fragment of these additional topics will be covered!

① Blocks and local variables

① FOR-commands

① Arrays

① Correct-by-Construction (program refinement)

① Separation Logic

0

191

Blocks and local variables ✓

① Syntax: BEGIN VAR V1; · · · VAR Vn; C END

① Semantics: command C is executed, then the values of V1, · · · , Vn are
restored to the values they had before the block was entered

✉ the initial values of V1, · · · , Vn inside the block are unspecified

① Example: BEGIN VAR R; R:=X; X:=Y; Y:=R END

✉ the values of X and Y are swapped using R as a temporary variable

✉ this command does not have a side effect on the variable R

11

192

The Block Rule ✓

① The block rule takes care of local variables

The block rule

⊢ {P} C {Q}
⊢ {P} BEGIN VAR V1; . . . ; VAR Vn; C END {Q}

where none of the variables V1, . . . , Vn occur in P or Q.

① Note that the block rule is regarded as including the case when there
are no local variables (the ‘n = 0’ case)

12

193

The Side Condition ✓

① The syntactic condition that none of the variables V1, . . . , Vn occur in
P or Q is an example of a side condition

① From

⊢ {X=x ∧ Y=y} R:=X; X:=Y; Y:=R {Y=x ∧ X=y}
it follows by the block rule that

⊢ {X=x ∧ Y=y} BEGIN VAR R; R:=X; X:=Y; Y:=R END {Y=x ∧ X=y}
since R does not occur in X=x ∧ Y=y or X=y ∧ Y=x

① However from

⊢ {X=x ∧ Y=y} R:=X; X:=Y {R=x ∧ X=y}
one cannot deduce

⊢ {X=x ∧ Y=y} BEGIN VAR R; R:=X; X:=Y END {R=x ∧ X=y}
since R occurs in R=x ∧ X=y

13

195

FOR-commands ✓

① Syntax: FOR V :=E1 UNTIL E2 DO C

✉ restriction: V must not occur in E1 or E2,

or be the left hand side of an assignment in C

(explained later)

① Semantics:

✉ if the values of terms E1 and E2 are positive numbers e1 and e2

✉ and if e1 ≤ e2

✉ then C is executed (e2−e1)+1 times with the variable V taking on the sequence

of values e1, e1+1, . . . , e2 in succession

✉ for any other values, the FOR-command has no effect

① Example: FOR N:=1 UNTIL M DO X:=X+N

✉ if the value of the variable M is m and m ≥ 1, then the command X:=X+N is

repeatedly executed with N taking the sequence of values 1, . . . , m

✉ if m < 1 then the FOR-command does nothing

15

196

Subtleties of FOR-commands ✓

① There are many subtly different versions of FOR-commands

① For example

✉ the expressions E1 and E2 could be evaluated at each iteration

✉ and the controlled variable V could be treated as global rather than local

① Early languages like Algol 60 failed to notice such subtleties

① Note that with the semantics presented here
FOR-commands cannot generate non termination

16

197

More on the semantics of FOR-commands ✓

① The semantics of

FOR V :=E1 UNTIL E2 DO C

is as follows

(i) E1 and E2 are evaluated once to get values e1 and e2, respectively.

(ii) If either e1 or e2 is not a number, or if e1 > e2, then nothing is done.

(iii) If e1 ≤ e2 the FOR-command is equivalent to:

BEGIN VAR V ; V :=e1; C; V :=e1+1; C ; . . . ; V :=e2; C END

i.e. C is executed (e2−e1)+1 times with V taking on the sequence of
values e1, e1+1, . . . , e2

① If C doesn’t modify V then FOR-command equivalent to:

BEGIN VAR V ; V :=e1; . . . C ; V :=V +1︸ ︷︷ ︸
repeated

; . . . V :=e2; C END

17

