
42

The Assignment Axiom (Hoare)
✓

① Syntax: V := E

① Semantics: value of V in final state is value of E in initial state

① Example: X:=X+1 (adds one to the value of the variable X)

The Assignment Axiom

⊢ {Q[E/V ]} V :=E {Q}
Where V is any variable, E is any expression, Q is any statement.

① Instances of the assignment axiom are

✉ ⊢ {E = x} V := E {V = x}
✉ ⊢ {Y = 2} X := 2 {Y = X}
✉ ⊢ {X + 1 = n + 1} X := X + 1 {X = n + 1}
✉ ⊢ {E = E} X := E {X = E} (if X does not occur in E)

18



45

Precondition Strengthening
✓

① Recall that

⊢ S1, . . . , ⊢ Sn

⊢ S

means ⊢ S can be deduced from ⊢ S1, . . . , ⊢ Sn

① Using this notation, the rule of precondition strengthening is

Precondition strengthening

⊢ P ⇒ P ′, ⊢ {P ′} C {Q}
⊢ {P} C {Q}

① Note the two hypotheses are different kinds of judgements

21



47

Postcondition weakening
✓

① Just as the previous rule allows the precondition of a partial cor-
rectness specification to be strengthened, the following one allows
us to weaken the postcondition

Postcondition weakening

⊢ {P} C {Q′}, ⊢ Q′ ⇒ Q

⊢ {P} C {Q}

23



50

An Example Formal Proof
✓

① Here is a little formal proof

1. ⊢ {R=X ∧ 0=0} Q:=0 {R=X ∧ Q=0} By the assignment axiom

2. ⊢ R=X ⇒ R=X ∧ 0=0 By pure logic

3. ⊢ {R=X} Q:=0 {R=X ∧ Q=0} By precondition strengthening

4. ⊢ R=X ∧ Q=0 ⇒ R=X+(Y× Q) By laws of arithmetic

5. ⊢ {R=X} Q:=0 {R=X+(Y× Q)} By postcondition weakening

① The rules precondition strengthening and postcondition weakening
are sometimes called the rules of consequence

26



51

The sequencing rule
✓

① Syntax: C1; · · · ;Cn

① Semantics: the commands C1, · · · , Cn are executed in that order

① Example: R:=X; X:=Y; Y:=R

✉ the values of X and Y are swapped using R as a temporary variable

✉ note side effect : value of R changed to the old value of X

The sequencing rule

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

27



52

Example Proof
✓

Example: By the assignment axiom:

(i) ⊢ {X=x∧Y=y} R:=X {R=x∧Y=y}
(ii) ⊢ {R=x∧Y=y} X:=Y {R=x∧X=y}
(iii) ⊢ {R=x∧X=y} Y:=R {Y=x∧X=y}

Hence by (i), (ii) and the sequencing rule

(iv) ⊢ {X=x∧Y=y} R:=X; X:=Y {R=x∧X=y}

Hence by (iv) and (iii) and the sequencing rule

(v) ⊢ {X=x∧Y=y} R:=X; X:=Y; Y:=R {Y=x∧X=y}

28



53

Conditionals ✓

① Syntax: IF S THEN C1 ELSE C2

① Semantics:

✉ if the statement S is true in the current state, then C1 is executed

✉ if S is false, then C2 is executed

① Example: IF X<Y THEN MAX:=Y ELSE MAX:=X

✉ the value of the variable MAX it set to the maximum of the values of X and Y

0



54

The Conditional Rule ✓

The conditional rule

⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧ ¬S} C2 {Q}
⊢ {P} IF S THEN C1 ELSE C2 {Q}

① From Assignment Axiom + Precondition Strengthening and

⊢ (X≥Y ⇒ X = max(X,Y)) ∧ (¬(X≥Y) ⇒ Y = max(X,Y))

it follows that

⊢ {T ∧ X≥Y} MAX:=X {MAX=max(X,Y)}
and

⊢ {T ∧ ¬(X≥Y)} MAX:=Y {MAX=max(X,Y)}
① Then by the conditional rule it follows that

⊢ {T} IF X≥Y THEN MAX:=X ELSE MAX:=Y {MAX=max(X,Y)}

1



55

WHILE-commands ✓

① Syntax: WHILE S DO C

① Semantics:

✉ if the statement S is true in the current state, then C is executed and
the WHILE-command is repeated

✉ if S is false, then nothing is done

✉ thus C is repeatedly executed until the value of S becomes false

✉ if S never becomes false, then the execution of the command never terminates

① Example: WHILE ¬(X=0) DO X:= X-2

✉ if the value of X is non-zero, then its value is decreased by 2
and then the process is repeated

① This WHILE-command will terminate (with X having value 0) if the
value of X is an even non-negative number

✉ in all other states it will not terminate

2



56

Invariants ✓

① Suppose ⊢ {P ∧ S} C {P}

① P is said to be an invariant of C whenever S holds

① The WHILE-rule says that

✉ if P is an invariant of the body of a WHILE-command
whenever the test condition holds

✉ then P is an invariant of the whole WHILE-command

① In other words

✉ if executing C once preserves the truth of P

✉ then executing C any number of times also preserves the truth of P

① The WHILE-rule also expresses the fact that after a WHILE-command
has terminated, the test must be false

✉ otherwise, it wouldn’t have terminated

3



57

The WHILE-Rule ✓

The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

① It is easy to show

⊢ {X=R+(Y×Q)∧Y≤R} R:=R-Y; Q:=Q+1 {X=R+(Y×Q)}

① Hence by the WHILE-rule with P = ‘X=R+(Y×Q)’ and S = ‘Y≤R’

⊢ {X=R+(Y×Q)}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ ¬(Y≤R)}

4



58

Example
✓

① From the previous slide

⊢ {X=R+(Y×Q)}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ ¬(Y≤R)}

① It is easy to deduce that

⊢ {T} R:=X; Q:=0 {X=R+(Y×Q)}

① Hence by the sequencing rule and postcondition weakening

⊢ {T}
R:=X;

Q:=0;

WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{R<Y ∧ X=R+(Y×Q)}

5



59

Summary
✓

① We have given:

✉ a notation for specifying what a program does

✉ a way of proving that it meets its specification

① Now we look at ways of finding proofs and organising them:

✉ finding invariants

✉ derived rules

✉ backwards proofs

✉ annotating programs prior to proof

① Then we see how to automate program verification

✉ the automation mechanises some of these ideas

6



60

How does one find an invariant? ✓

The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

① Look at the facts:

✉ invariant P must hold initially

✉ with the negated test ¬S the invariant P must establish the result

✉ when the test S holds, the body must leave the invariant P unchanged

① Think about how the loop works – the invariant should say that:

✉ what has been done so far together with what remains to be done

✉ holds at each iteration of the loop

✉ and gives the desired result when the loop terminates

7



61

Example
✓

① Consider a factorial program

{X=n ∧ Y=1}
WHILE X 6=0 DO

(Y:=Y×X; X:=X-1)

{X=0 ∧ Y=n!}
① Look at the facts

✉ initially X=n and Y=1

✉ finally X=0 and Y=n!

✉ on each loop Y is increased and, X is decreased

① Think how the loop works

✉ Y holds the result so far

✉ X! is what remains to be computed

✉ n! is the desired result

① The invariant is X!×Y = n!

✉ ‘stuff to be done’ × ‘result so far’ = ‘desired result’

✉ decrease in X combines with increase in Y to make invariant

8



62

Related example
✓

{X=0 ∧ Y=1}
WHILE X<N DO (X:=X+1; Y:=Y×X)
{Y=N!}

① Look at the Facts

✉ initially X=0 and Y=1

✉ finally X=N and Y=N!

✉ on each iteration both X an Y increase: X by 1 and Y by X

① An invariant is Y = X!

① At end need Y = N!, but WHILE-rule only gives ¬(X<N)

① Ah Ha! Invariant needed: Y = X! ∧ X≤N

① At end X ≤ N ∧¬(X<N) ⇒ X=N

① Often need to strenthen invariants to get them to work

✉ typical to add stuff to ‘carry along’ like X≤N

9



63

Conjunction and Disjunction
✓

Specification conjunction

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∧ P2} C {Q1 ∧Q2}

Specification disjunction

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∨ P2} C {Q1 ∨Q2}

① These rules are useful for splitting a proof into independent bits

✉ they enable ⊢ {P} C {Q1 ∧ Q2} to be proved by proving separately that both

⊢ {P} C {Q1} and also that ⊢ {P} C {Q2}

① Any proof with these rules could be done without using them

✉ i.e. they are theoretically redundant (proof omitted)

✉ however, useful in practice

10



65

Derived rules for finding proofs
✓

① Suppose the goal is to prove {Precondition} Command {Postcondition}

① If there were a rule of the form

⊢ H1, · · · , ⊢ Hn

⊢ {P} C {Q}

then we could instantiate

P 7→ Precondition, C 7→ Command , Q 7→ Postcondition

to get instances of H1, · · · , Hn as subgoals

① Some of the rules are already in this form e.g. the sequencing rule

① We will derive rules of this form for all commands

① Then we use these derived rules for mechanising Hoare Logic proofs

12



66

Derived Rules ✓

① We will establish derived rules for all commands

· · ·
⊢ {P} V :=E {Q}

· · ·
⊢ {P} C1;C2 {Q}

· · ·
⊢ {P} IF S THEN C1 ELSE C2 {Q}

· · ·
⊢ {P} WHILE S DO C {Q}

① These support ‘backwards proof’ starting from a goal {P} C {Q}

13



67

The Derived Assignment Rule
✓

① An example proof

1. ⊢ {R=X ∧ 0=0} Q:=0 {R=X ∧ Q=0} By the assignment axiom.

2. ⊢ R=X ⇒ R=X ∧ 0=0 By pure logic.

3. ⊢ {R=X} Q:=0 {R=X ∧ Q=0} By precondition strengthening.

① Can generalise this proof to a proof schema:

1. ⊢ {Q[E/V ]} V :=E {Q} By the assignment axiom.

2. ⊢ P ⇒ Q[E/V ] By assumption.

3. ⊢ {P} V :=E {Q} By precondition strengthening.

① This proof schema justifies:

Derived Assignment Rule

⊢ P ⇒ Q[E/V ]

⊢ {P} V :=E {Q}

① Note: Q[E/V ] is the weakest liberal precondition wlp(V :=E,Q)

① Example proof above can now be done in one less step

1. ⊢ R=X ⇒ R=X ∧ 0=0 By pure logic.

2. ⊢ {R=X} Q:=0 {R=X ∧ Q=0} By derived assignment.

14



68

Derived Sequenced Assignment Rule
✓

① The following rule will be useful later

Derived Sequenced Assignment Rule

⊢ {P} C {Q[E/V ]}
⊢ {P} C;V :=E {Q}

① Intuitively work backwards:

✉ push Q ‘through’ V :=E, changing it to Q[E/V ]

① Example: By the assignment axiom:

⊢ {X=x∧Y=y} R:=X {R=x∧Y=y}
① Hence by the sequenced assignment rule

⊢ {X=x∧Y=y} R:=X; X:=Y {R=x∧X=y}

15



71

The Derived Sequencing Rule
✓

① The rule below follows from the sequencing and consequence rules

The Derived Sequencing Rule

⊢ P ⇒ P1

⊢ {P1} C1 {Q1} ⊢ Q1 ⇒ P2

⊢ {P2} C2 {Q2} ⊢ Q2 ⇒ P3

. .

. .

. .
⊢ {Pn} Cn {Qn} ⊢ Qn ⇒ Q

⊢ {P} C1; . . . ; Cn {Q}

① Exercise: why no derived conditional rule?

18



70

The Derived While Rule ✓

Derived While Rule

⊢ P ⇒ R ⊢ {R ∧ S} C {R} ⊢ R ∧ ¬S ⇒ Q

⊢ {P} WHILE S DO C {Q}

① This follows from the While Rule and the rules of consequence

① Example: it is easy to show

⊢ R=X ∧ Q=0 ⇒ X=R+(Y×Q)

⊢ {X=R+(Y×Q)∧Y≤R} R:=R-Y; Q:=Q+1 {X=R+(Y×Q)}

⊢ X=R+(Y×Q)∧¬(Y≤R) ⇒ X=R+(Y×Q)∧¬(Y≤R)

① Then, by the derived While rule

⊢ {R=X ∧ Q=0}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ ¬(Y≤R)}

17



73

Forwards and backwards proof
✓

① Previously it was shown how to prove {P}C{Q} by

✉ proving properties of the components of C

✉ and then putting these together, with the appropriate proof rule,

to get the desired property of C

① For example, to prove ⊢ {P}C1;C2{Q}

① First prove ⊢ {P}C1{R} and ⊢ {R}C2{Q}

① then deduce ⊢ {P}C1;C2{Q} by sequencing rule

① This method is called forward proof

✉ move forward from axioms via rules to conclusion

① The problem with forwards proof is that it is not always easy to see
what you need to prove to get where you want to be

① It is more natural to work backwards

✉ starting from the goal of showing {P}C{Q}
✉ generate subgoals until problem solved

20


