The Assignment Axiom (Hoare)

e Syntax: V:=F
® Semantics: value of V in final state i1s value of £ in initial state

e Example: X:=X+1 (adds one to the value of the variable X)

The Assignment Axiom

- {QLE/V]} V:=FE {Q}

Where V is any variable, F is any expression, () is any statement.

e Instances of the assignment axiom are
e F {E=x} V:=E {V=x}
e F{Y=2} Xx=2 {vy=X}
e F {X+1=n+1} X:=X+1 {X=n+1}
e W {EF=F} X:=F {X=FE} (if X does not occur in F)

42



Precondition Strengthening

e Recall that

- Sy, ..., F S,
=S

means ~ S can be deduced from - 5, ..., F 5,

e Using this notation, the rule of precondition strengthening is

Precondition strengthening

- P=P, + {P}C{Q}
- P} C Q)

e Note the two hypotheses are different kinds of judgements



Postcondition weakening

e Just as the previous rule allows the precondition of a partial cor-
rectness specification to be strengthened, the following one allows
us to weaken the postcondition

Postcondition weakening

- {P} C{Q}, - Q=Q
- {P} C{Q}

47



An Example Formal Proof

e Here is a little formal proof

F R=XA Q=0 = R=X+(Y X Q) By laws of arithmetic
- {R=X} Q:=0 {R=X+(Y x Q) } By postcondition weakening

1. + {R=XA0=0} Q:=0 {R=X AQ=0} By the assignment axiom

2. F R=X = R=XA0=0 By pure logic

3. F {R=X} Q:=0 {R=X A Q=0} By precondition strengthening
4.

D.

® The rules precondition strengthening and postcondition weakening
are sometimes called the rules of consequence

50




The sequencing rule

e Syntax: Ci; --- ;C,
e Semantics: the commands (', ---, (), are executed in that order

e Example: R:=X; X:=Y; Y:=R
e the values of X and Y are swapped using R as a temporary variable

e note side effect: value of R changed to the old value of X

The sequencing rule

- Py Gi{Q), (@) G {R}
|_ {P} 01;02 {R}




Example Proof

Example: By the assignment axiom:

(i) F {X=xAY=y} R:=X {R=xAY=y}
(ii) F {R=xAY=y} X:=Y {R=xAX=y}
(iii) F {R=xAX=y} Y:=R {Y=xAX=y}

Hence by (i), (ii) and the sequencing rule
(iv) F {X=xAY=y} R:=X; X:=Y {R=xAX=y}
Hence by (iv) and (iii) and the sequencing rule

(v) F {X=xAY=y} R:=X; X:=Y; Y:=R {Y=xAX=y}



Conditionals

e Syntax: IF S THEN () ELSE ()

® Semantics:

e if the statement S is true in the current state, then () is executed

e if S is false, then () is executed

e Example: IF X<Y THEN MAX:=Y ELSE MAX:=X

e the value of the variable MAX it set to the maximum of the values of X and Y



The Conditional Rule

The conditional rule

- {PAS} Cy {Q}, F {PA-S} Cy {Q}
= {P} IF S THEN C) ELSE C; {Q}

e From Assignment Axiom + Precondition Strengthening and
F X2Y = X = max(X,V)) A (=X>Y) = Y = max(X,Y))
it follows that
= {T A X>Y} MAX:=X {MAX=max(X,Y)}
and

- {T A ~(X>Y)} MAX:=Y {MAX=max(X,Y)}
e Then by the conditional rule it follows that

~ {T} IF X>Y THEN MAX:=X ELSE MAX:=Y {MAX=max(X,Y)}



WHILE-commands

e Syntax: WHILE S DO C

® Semantics:

e if the statement S is true in the current state, then C is executed and
the WHILE-command is repeated

e if S is false, then nothing is done
e thus (' is repeatedly executed until the value of S becomes false

e if S never becomes false, then the execution of the command never terminates

e Example: WHILE —(X=0) DO X:= X-2

e if the value of X is non-zero, then its value is decreased by 2
and then the process is repeated

e This WHILE-command will terminate (with X having value 0) if the
value of X is an even non-negative number

e in all other states it will not terminate

55



Invariants

e Suppose - {PAS} C {P}
e P is said to be an invariant of C' whenever S holds

e The WHILE-rule says that

e if P is an invariant of the body of a WHILE-command
whenever the test condition holds

e then P is an invariant of the whole WHILE-command

® In other words

e if executing C once preserves the truth of P

e then executing C any number of times also preserves the truth of P

e The WHILE-rule also expresses the fact that after a WHILE-command
has terminated, the test must be false

e otherwise, it wouldn’t have terminated

56



The WHILE-Rule

The WHILE-rule

- {PAS} C {P}
= {P} WHILE S DO C {P A =S}

e It is easy to show
F {X=R+(YXQ)AY<R} R:=R-Y; Q:=Q+1 {X=R+(¥YxQ)}
e Hence by the WHILE-rule with P = ‘X=R+(YxQ)’ and S = ‘Y<R’

- {X=R+(YxXQ)}
WHILE Y<R DO
(R:=R-Y; Q:=Q+1)
{X=R+(YxQ) A —(Y<R)}



Example

e From the previous slide

- {X=R+(YxQ)}
WHILE Y<R DO
(R:=R-Y; Q:=Q+1)
{X=R+(YXQ) A —(Y<R)}

e It is easy to deduce that

= {T} R:=X; Q:=0 {X=R+(YxQ)}

e Hence by the sequencing rule and postcondition weakening

- {T}
R:=X;
Q:=0;
WHILE Y<R DO
(R:=R-Y; Q:=Q+1)
{R<Y A\ X=R+(Y><Q)}



Summary

e We have given:
e a notation for specifying what a program does

e a way of proving that it meets its specification

e Now we look at ways of finding proofs and organising them:
e finding invariants

e derived rules

e backwards proofs

e annotating programs prior to proof

e Then we see how to automate program verification

e the automation mechanises some of these ideas

59



How does one find an invariant?

The WHILE-rule

- {PAS}C {P}
- {P} WHILE S DO C {PA~=S}

e Look at the facts:

e invariant P must hold initially
e with the negated test =S the invariant P must establish the result

e when the test S holds, the body must leave the invariant P unchanged

e Think about how the loop works — the invariant should say that:
e what has been done so far together with what remains to be done
e holds at each iteration of the loop

e and gives the desired result when the loop terminates

60



Example

e (Consider a factorial program

{X=n A Y=1}

WHILE X0 DO
(Y:=¥YxX; X:=X-1)

{X=0 A Y=n!}

e Look at the facts
e initially X=n and Y=1
e finally X=0 and Y=n!

e on each loop Y is increased and, X is decreased

e Think how the loop works
e Y holds the result so far

e X! is what remains to be computed

e n! is the desired result
® The invariant is X! XY = n!

o ‘stuff to be done’ x ‘result so far’ = ‘desired result’

e decrease in X combines with increase in Y to make invariant
61



Related example

{X=0 A Y=1}
WHILE X<N DO (X:=X+1; Y:=YxX)

{y=N1}
e Look at the Facts
e initially X=0 and Y=1
e finally X=N and Y=N!

e on each iteration both X an Y increase: X by 1 and Y by X

@ An invariant is Y = X!

e At end need Y = N!, but WHILE-rule only gives —(X<N)

e Ah Ha! Invariant needed: Y = X! A X<N

o At end X <N A—(X<N) = X=N

e Often need to strenthen invariants to get them to work

e typical to add stuff to ‘carry along’ like X<N

62



Conjunction and Disjunction

Specification conjunction

- {P} C{Qu}, - {2} O {Qs}
= {PLA P} C{Q1 A Qaf
Specification disjunction

= {1} C{Q1}, = {2} C{Qq}
= {Pl V PQ} C {Ql V QQ}

® These rules are useful for splitting a proof into independent bits

e they enable F {P} C {Q; A Q;} to be proved by proving separately that both
— {P} C {Q:} and also that + {P} C {Q.}

e Any proof with these rules could be done without using them
e i.e. they are theoretically redundant (proof omitted)

e however, useful in practice

63



Derived rules for finding proofs

e Suppose the goal is to prove {Precondition} Command {Postcondition }

e If there were a rule of the form

- Hy, ---, - H,
= {P} C{Q}

then we could instantiate
P — Precondition, C' — Command, () — Postcondition

to get instances of Hy, ---, H, as subgoals
e Some of the rules are already in this form e.g. the sequencing rule

e We will derive rules of this form for all commands

e Then we use these derived rules for mechanising Hoare Logic proofs



Derived Rules

® We will establish derived rules for all commands

F {P} V:=E {Q}

= {P} Ci;C {Q}

-~ {P} IF S THEN C) ELSE () {Q}

~ {P} WHILE S DO C' {Q}

e These support ‘backwards proof’ starting from a goal {P} C {Q}

66



The Derived Assignment Rule

e An example proof

1. = {R=XA0=0} Q:=0 {R=X A Q=0} By the assignment axiom.
2. F R=X = R=XA0=0 By pure logic.
3. F {R=X} Q:=0 {R=X A Q=0} By precondition strengthening.

e (Can generalise this proof to a proof schema:

1. F {QIE/V]} V:=E{Q} By the assignment axiom.
2. F P = QLE/V] By assumption.
3. F {P}V:=FE{Q} By precondition strengthening.

e This proof schema justifies:

Derived Assignment Rule

- P=QLE/V]
- {P} V:=F {Q}

e Note: Q[E/V] is the weakest liberal precondition wip(V :=F, Q)

e Example proof above can now be done in one less step

1. F R=X = R=XA0=0 By pure logic.
2. F {R=X} Q:=0 {R=X A Q=0} By derived assignment.

67



Derived Sequenced Assignment Rule

e The following rule will be useful later

Derived Sequenced Assignment Rule

= {P} C{QIE/V]}
- {P} C;V:=E{Q}

e Intuitively work backwards:
e push @ ‘through’ V:=F, changing it to Q[F/V]
e Example: By the assignment axiom:

- {X=xAY=y} R:=X {R=xAY=y}

e Hence by the sequenced assignment rule

- {X=xAY=y} R:=X; X:=Y {R=xAX=y}

68



The Derived Sequencing Rule

e The rule below follows from the sequencing and consequence rules

The Derived Sequencing Rule

F P= P
- {P}Ci{Qi} F Q=B
= {P} Co {Q2} F Q= Ps

FAPYC () F On=Q
= {P} Cy; ... ; C {Q}

e Exercise: why no derived conditional rule?

71



The Derived While Rule

Derived While Rule

- P=R F{RASC{R} F RA =S =Q
= {P} WHILESDOC{Q}

e This follows from the While Rule and the rules of consequence

e Example: it is easy to show

= R=X A Q=0 = X=R+(YxQ)
- {X=R+(YXQ)AY<R} R:=R-Y; Q:=Q+1 {X=R+(YxQ)}

F X=R+(YXQ A—(Y<R) = X=R+(YxQ)A-(Y<R)
e Then, by the derived While rule

- {R=X A Q=0}
WHILE Y<R DO
(R:=R-Y; Q:=Q+1)
{X=R+(YxQ) A - (Y<R)}

70



Forwards and backwards proof

e Previously it was shown how to prove {P}C{Q} by
e proving properties of the components of ('

e and then putting these together, with the appropriate proof rule,
to get the desired property of C

e For example, to prove + {P}C;Co{Q}
e First prove - {P}Ci{R} and F {R}(C2{Q}
e then deduce - {P}(C;C5{Q} by sequencing rule

e This method is called forward proof

¢ move forward from axioms via rules to conclusion

e The problem with forwards proof is that it is not always easy to see
what you need to prove to get where you want to be

e It is more natural to work backwards

e starting from the goal of showing {P}C{Q}

e generate subgoals until problem solved

73



