‘TRUST MATTERS.

ITP Uses and Challenges at Rockwell Collins

August 24 2009

Konrad Slind

Rockwell Collins Advanced Technology Center
Cedar Rapids, 1A

I?oclrweyl,
© Copyright 2008 Rockwell Collins, Inc. co l”s

All rights reserved.

Rockwell _ Building trust every day

Rockwell Collins’ core business is based on delivery of High
Assurance Systems

e Commercial/Military Avionics Systems
e Flight Control Systems

e Heads Up Displays

e Navigation & Landing Systems

e Defense Communications

“Working together creating the most trusted source of
communication and aviation electronic solutions”

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

Rockwel//
Collins

HOL and ACL2

e Interactive theorem provers with a long pedigree

e Separate user groups, culture, and focus

e ACLZ2 : recursive mathematics in seemingly unquantified FOL
e HOL : higher order logic with simple types

e Example: divisibility.

ACL2: dividesab = x <> 0 /\ integerp (y / X)
least-divisor k n =
if integerp(n) /\ integerp(k) A1 <k <=n
then if divides k n then k else least-divisor (k+1) n
else nil
prime(p) = integerp(p) /\ (least-divisor 2 p = p)

HOL: dividesab=?d.b=a*d
prime p = (p <> 1) /\ In. divides n p = (n=1) VV (h=p)

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

Rockwe

Collins

Impressions of ACL2

Declarative proof is nice! Can start getting results right away.
Learning curve has few handholds

Implicit context is un-nerving (every previously proved fact is
by default in the implicit context)

Impressive online documentation

| keep forgetting to set rule classes on proved theorems, which
causes later proofs to fail

Reading failed proof transcripts is depressing (“the method”)
Nostalgic for types.

However, defining functions to work over the whole ACL2
universe is engaging once you understand a few basics.

Monotonicity fails

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

Rockwel//
Collins

Monotonicity

At the level of deduction:
— If Gamma |- A then Gamma, B |- A

e At the level of theory development
— If Context |- A then Context,B |- A

e Having more info in context can derail existing proofs

e When monotonicity fails, proof developments tend to become
“append only”

e Large-scale formalization steps, e.g. merging libraries, become
more fragile
e BUT

e Implicit context v. helpful in controlling complexity of
interaction

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

Rockwel//
Collins

Computation

e Of the systems I've used, ACL2 treats the idea of computation
most extensively.

e Evidence : executable counterparts, guards, mbe, stobj

e Seamless passage of functions and results back and forth
between OL and ML.

e Only an implicit notion of computable function

e Logical functions do not have an operational semantics visible
inside the logic or (alternatively) a visible EVAL

e The logic is a theory of s-expressions and those are identified
(fully?) with the s-expressions of the ML.

e What would something like this look like for other systems?

e Possible starting point: an SML that had HOL types and terms
as primitive?

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

Rockwe

Collins

Cultures

Each prover has a high barrier to entry
Logic is the least of it!

HOL concepts: rule (primitive and derived), tactic, conversion,
theory, library, plus vagaries of host ML.

Isabelle concepts: rule (primitive and derived), h.o. unification,
type class, locale, ISAR language

ACL2 concepts: book, hints, rule classes, guards, mbe, stobj
Behaviour of reasoners with hidden state (rewriters especially)
BUT

Ancient systems always provide a way to emulate behaviour
(decision procedures as derived rules, rule-classes nil)

Turing tarpit: computation in the ML can bridge gaps

High degree of viscosity: people get invested (compare with
SAT or SMT)

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

Rockwe
Co

Ins

Theory structuring mechanisms

HOL: theory segments, DAG of
ACL2: books
Meeting ground between software engineering and logic

Issue: library development concurrent with development of
theories using library.

Issue: dependency maintenance. With separately compiled
theories comes Makefiles. Tends to be a horror show (“do |
have GNU make on this machine, or what?” etc). We wrote our
own. Does everybody write their own?

Issue: quarreling theories. Theories A and B overlap, but each
offers significant functionality that the other doesn’t (e.g. proof
automation or difficult theorems). But it is difficult to use both
at the same time. Usually can be worked-around, though
painful.

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

Rockwel//
Collins

My ITP wish list

e |If | know a proof in detail, |1 want to be able to get the proof
system to do that proof. Without having to tinker extensively
or drop down to an overly low level of interaction.

e |If my conditional rewriter can’t prove a condition and | really do
want that rewrite to complete, then | should be able to force
the rewrite and get the condition appearing as an extra proof
obligation. (Peter Homeier’s ~dependent rewriting’).

e |In the middle of a proof | want to be able to add new facts, by
asserting them on the spot and having the system prove them
or by referring to previously proved facts.

e System should tell me at least something that is missing from
failed proof attempt.

e What we are doing almost all the time is dealing with failure
and trying to garner information that will show the cause of
failure.

© Copyright 2008 Rockwell Collins, Inc. [¢]
All rights reserved.

Rockwe

Collins

HOL—ACL2Z2 Iinteraction

See the work by Matt Kaufmann and Mike Gordon
The artifact exists. How can it be exploited?

Two discernible starting points:

— There’s a difference in expressive power, so use HOL to formalize
abstract notions. Use ACL2 in its sweet spot.

— There’s a less intrinsic difference, e.g. one system has a large
formal model that the other lacks; or provides proof support that
the other lacks; or a user is simply unwilling to learn a new system.

Typically want to either make a case that the task can’t be
accomplished any other way, or that it is interesting that the
task be broken across two proof systems.

Compare with old QED proposal

Compare with current mechanisms for sharing theories
between proof systems.

© Copyright 2008 Rockwell Collins, Inc. 10
All rights reserved.

Rockwel//
Collins

Possible Application: bytecode proofs

e ACLZ2 has (thanks to J) a detailed JVM model
e HOL-4 has (thanks to Magnus) a decompiler
— Decompile : assembly -> recursive fn + triple
— Triple asserts that running asm on input equals fn on input

e Observation: direct verification of bytecode is too time-
consuming and detailed

e ldea: use decompiler on bytecodes to see if reasoning about
rec. fns can be more productive

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

11

Rockwel//
Collins

Bytecode proof flow

Java ACL2 HOL
MS > M5
javac
program > b > b
l decompile
fn <o - fn + triple
|- P(fn) - > |-Pfn
l Apply triple
|- P (exec b) - |- P(exec b)

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

Rockwel//
Collins

The End

Thank you!

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

13

