
© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

ITP Uses and Challenges at Rockwell Collins

August 24 2009
Konrad Slind

Rockwell Collins Advanced Technology Center
Cedar Rapids, IA

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

2

Building trust every day

Rockwell Collins’ core business is based on delivery of High
Assurance Systems

• Commercial/Military Avionics Systems
• Flight Control Systems
• Heads Up Displays
• Navigation & Landing Systems
• Defense Communications

“Working together creating the most trusted source of
communication and aviation electronic solutions”

“Working together creating the most trusted source of
communication and aviation electronic solutions”

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

3

HOL and ACL2

• Interactive theorem provers with a long pedigree
• Separate user groups, culture, and focus
• ACL2 : recursive mathematics in seemingly unquantified FOL
• HOL : higher order logic with simple types
• Example: divisibility.

ACL2: divides a b = x <> 0 /\ integerp (y / x)
least-divisor k n =

if integerp(n) /\ integerp(k) /\ 1 < k <= n
then if divides k n then k else least-divisor (k+1) n
else nil

prime(p) = integerp(p) /\ (least-divisor 2 p = p)

HOL: divides a b = ?d. b = a * d
prime p = (p <> 1) /\ !n. divides n p  (n=1) \/ (n=p)

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

4

Impressions of ACL2

• Declarative proof is nice! Can start getting results right away.
• Learning curve has few handholds
• Implicit context is un-nerving (every previously proved fact is

by default in the implicit context)
• Impressive online documentation
• I keep forgetting to set rule classes on proved theorems, which

causes later proofs to fail
• Reading failed proof transcripts is depressing (“the method”)
• Nostalgic for types.
• However, defining functions to work over the whole ACL2

universe is engaging once you understand a few basics.
• Monotonicity fails

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

5

Monotonicity

• At the level of deduction:
– If Gamma |- A then Gamma, B |- A

• At the level of theory development
– If Context |- A then Context,B |- A

• Having more info in context can derail existing proofs
• When monotonicity fails, proof developments tend to become

“append only”
• Large-scale formalization steps, e.g. merging libraries, become

more fragile
• BUT
• Implicit context v. helpful in controlling complexity of

interaction

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

6

Computation

• Of the systems I’ve used, ACL2 treats the idea of computation
most extensively.

• Evidence : executable counterparts, guards, mbe, stobj
• Seamless passage of functions and results back and forth

between OL and ML.
• Only an implicit notion of computable function
• Logical functions do not have an operational semantics visible

inside the logic or (alternatively) a visible EVAL
• The logic is a theory of s-expressions and those are identified

(fully?) with the s-expressions of the ML.
• What would something like this look like for other systems?
• Possible starting point: an SML that had HOL types and terms

as primitive?

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

7

Cultures

• Each prover has a high barrier to entry
• Logic is the least of it!
• HOL concepts: rule (primitive and derived), tactic, conversion,

theory, library, plus vagaries of host ML.
• Isabelle concepts: rule (primitive and derived), h.o. unification,

type class, locale, ISAR language
• ACL2 concepts: book, hints, rule classes, guards, mbe, stobj
• Behaviour of reasoners with hidden state (rewriters especially)
• BUT
• Ancient systems always provide a way to emulate behaviour

(decision procedures as derived rules, rule-classes nil)
• Turing tarpit: computation in the ML can bridge gaps
• High degree of viscosity: people get invested (compare with

SAT or SMT)

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

8

Theory structuring mechanisms

• HOL: theory segments, DAG of
• ACL2: books
• Meeting ground between software engineering and logic
• Issue: library development concurrent with development of

theories using library.
• Issue: dependency maintenance. With separately compiled

theories comes Makefiles. Tends to be a horror show (“do I
have GNU make on this machine, or what?” etc). We wrote our
own. Does everybody write their own?

• Issue: quarreling theories. Theories A and B overlap, but each
offers significant functionality that the other doesn’t (e.g. proof
automation or difficult theorems). But it is difficult to use both
at the same time. Usually can be worked-around, though
painful.

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

9

My ITP wish list

• If I know a proof in detail, I want to be able to get the proof
system to do that proof. Without having to tinker extensively
or drop down to an overly low level of interaction.

• If my conditional rewriter can’t prove a condition and I really do
want that rewrite to complete, then I should be able to force
the rewrite and get the condition appearing as an extra proof
obligation. (Peter Homeier’s `dependent rewriting’).

• In the middle of a proof I want to be able to add new facts, by
asserting them on the spot and having the system prove them
or by referring to previously proved facts.

• System should tell me at least something that is missing from
failed proof attempt.

• What we are doing almost all the time is dealing with failure
and trying to garner information that will show the cause of
failure.

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

10

HOL—ACL2 interaction

• See the work by Matt Kaufmann and Mike Gordon
• The artifact exists. How can it be exploited?
• Two discernible starting points:

– There’s a difference in expressive power, so use HOL to formalize
abstract notions. Use ACL2 in its sweet spot.

– There’s a less intrinsic difference, e.g. one system has a large
formal model that the other lacks; or provides proof support that
the other lacks; or a user is simply unwilling to learn a new system.

• Typically want to either make a case that the task can’t be
accomplished any other way, or that it is interesting that the
task be broken across two proof systems.

• Compare with old QED proposal
• Compare with current mechanisms for sharing theories

between proof systems.

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

11

Possible Application: bytecode proofs

• ACL2 has (thanks to J) a detailed JVM model
• HOL-4 has (thanks to Magnus) a decompiler

– Decompile : assembly -> recursive fn + triple
– Triple asserts that running asm on input equals fn on input

• Observation: direct verification of bytecode is too time-
consuming and detailed

• Idea: use decompiler on bytecodes to see if reasoning about
rec. fns can be more productive

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

12

Bytecode proof flow

Java ACL2 HOL

M5 M5

bprogram
javac

b

decompile

fn + triplefn

|- P(fn) |- P fn

|- P(exec b)|- P (exec b)

Apply triple

© Copyright 2008 Rockwell Collins, Inc.
All rights reserved.

13

The End

Thank you!

