Interfacing ITP to the Real World

Daniel Kroening Philipp Rummer Georg Weissenbacher
Oxford University Computing Laboratory

ITP Workshop
MSR Cambridge
25 August 2009

19

Motivation

We would like to use ITP to reason about
» Software
» Hardware
» Control systems

19

The Weakest Link

There is a potential semantic gap. These are typically given as

» Software: C, C++, Java, maybe UML State Machine
Diagrams

» Hardware: Verilog, VHDL
» Control systems: Simulink, . ..

X|TPs don'’t accept these as inputs. Semantics?

19

Possible Answers

A. Don’t

» Instead: model in ITP’s language, and then refine to target
system
(e.g., B, PVS — Verilog, ...)

v/ Translation may be buggy, but this is usually a small tool

v Semantics question can be limited to a small subset of the
target langauge

Models from Source Code: Overview

Parser

Models from Source Code: Overview

Parser

) |

Type Checker

Models from Source Code: Overview

Parser

>

Type Checker

?CFG-Generator

Models from Source Code: Overview

Parser

) |

Type Checker

?CFG-Generator
Frontend

Models from Source Code: Overview

Parser

)

ﬁCFG-Generator

_ _Frontend ______________________. ’ .

Type Checker :

5/19

Scanner and Parser

Some overlap with compiler course here.

» A program is a sequence of tokens, which follows a
grammar.

» A token is a sequence of characters drawn from an
alphabet.

19

Tokenization

A scanner (lexical analyzer) turns a sequence of characters into
a sequence of tokens.

Example: flex.

digit
octdigit
hexdigit
letter
identifier
integer
decinteger
octinteger
hexinteger
decinteger

_u

(({letter}|"_") ({letter} | {digit}|"_") *)
{digit}+

[1-9]{digit}~*

"O"{octdigit}~*

"O" [xX] {hexdigit}+

{decinteger} [uU]

octinteger_u {octinteger} [uU]
hexinteger_u {hexinteger} [uU]

/19

Grammars

» Grammars are typically given in Backus Normal Form
(BNF)

» Distinguishes terminals (from scanner) and non-terminals

/19

Example from ISO/IEC 9899:1999 (ANSI-C)

(6.5.1) primary-expression:
identifier
constant
string-literal
(expression)

(6.5.2) postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-lisioy;)
postfix-expression . identifier
postfix-expression => identifier
postfix-expression ++
postfix-expression —-
(type-name) { initializer-list }
(type-name) { initializer-list , }

(6.5.2) argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

9/19

Example: bison Grammar

primary_expression:
identifier
| constant
| 7 (! comma_expression ’)’

’

postfix_expression:
primary_expression
| postfix_expression ' [’ comma_expression ']’
| postfix_expression " (' ')’
| postfix_expression ’ (’ argument_expression_list 7))’
| postfix_expression ’.’ member_name
| postfix_expression TOK_ARROW member_name

10/19

Parse Trees

Each rule is typically associated with some code fragment that
constructs a parse free.

» The internal nodes are non-terminals of the grammar
» The leaf nodes are terminals of the grammar

11/19

Parse Trees

postfix_expression

-

primary_expression | comma_expression]

assignment_expression

cast_expression = assignment_expression

unary_expression conditional_expression

postfix_expression

primary_expression postfix_expression
|
identifier primary,e‘xpression
|
X constant
|
1

12/19

Type Checker

» Parse tree to symbol table: maps identifiers to types

» Expressions are annotated with types
— promotion rules in the case of C

AN
I\

13/19

Type Checker

» Parse tree to symbol table: maps identifiers to types

» Expressions are annotated with types
— promotion rules in the case of C

N
/N

char ¢l c2 char

float f

13/19

Type Checker

» Parse tree to symbol table: maps identifiers to types

» Expressions are annotated with types
— promotion rules in the case of C

+
float f + int

/N

char ¢l c2 char

13/19

Type Checker

» Parse tree to symbol table: maps identifiers to types

» Expressions are annotated with types
— promotion rules in the case of C

+ double

/N

float f + int

/N

char ¢l c2 char

13/19

Control Flow Graph

» The code of each procedure is converted to
a Control Flow Graph (CFG)

» Think of this as a program with GOTOs

14/19

Control Flow Graph

int main(void) {

}

char x;
x = getch();
while (x!="\n") {
switch (x) {
case ’'a’:
case ’'b’:
printf("a or b");
break;
case ’'c’:
printf("c and ");
/« fall —through =/
default:
printf ("d");
break;
}
!

return O0;

LO: signed char x;

L1: getch$1 = getch();

[L2: X = (signed char)getch$l;]

[LIO: return 0;] [L4: x=="a'llx == ’b’?j

‘Ae \me

[LS: X == ’c’?j [L6: printf("a or b”);]

L7: printf("c and ");
L9: printf("d");

false

15/19

Where and How?

» All of this can be done inside the ITP

» A tool like ACL2 might even be fast

» Or: do externally, and grab any of the intermediate stages
(possibly verify the external tool)

16/19

STL

» Standard Template Library

» Encapsulates complex data structures and algorithms

typedef std::hash_map<
std :: string, symbolt, string_hash> symbolst;

typedef std::vector<nodet> nodest;

17/19

STL

» “Interesting” programs using STL
have >1000 data structures

» STL implementation highly complex and optimized
» Don’t want to verify STL together with program

» Let’s assume the STL is correct,
and let’s map these to theorem prover types!

18/19

Simulink

» We have models from Airbus, Ford, ...

» This looks like a dataflow description,
but it isn’t

» This looks like there are modules,
but there aren’t

» This looks like there is concurrency,
but there isn’t

— Use sequential semantics
v We are building a converter to CFGs

19/19

	Building the Parse Tree
	Tokens and Grammars
	Parsing
	Type Annotation

	The Control Flow Graph
	Higher-level Datatypes

