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Motivation

We would like to use ITP to reason about
» Software
» Hardware
» Control systems
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The Weakest Link

There is a potential semantic gap. These are typically given as

» Software: C, C++, Java, maybe UML State Machine
Diagrams

» Hardware: Verilog, VHDL
» Control systems: Simulink, . ..

X|TPs don'’t accept these as inputs. Semantics?
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Possible Answers

A. Don’t

» Instead: model in ITP’s language, and then refine to target
system
(e.g., B, PVS — Verilog, ...)

v/ Translation may be buggy, but this is usually a small tool

v Semantics question can be limited to a small subset of the
target langauge
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Scanner and Parser

Some overlap with compiler course here.

» A program is a sequence of tokens, which follows a
grammar.

» A token is a sequence of characters drawn from an
alphabet.
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Tokenization

A scanner (lexical analyzer) turns a sequence of characters into
a sequence of tokens.

Example: flex.

digit
octdigit
hexdigit
letter
identifier
integer
decinteger
octinteger
hexinteger
decinteger

_u

(({letter}|"_") ({letter} | {digit}|"_") *)
{digit}+

[1-9]{digit}~*

"O"{octdigit}~*

"O" [xX] {hexdigit}+

{decinteger} [uU]

octinteger_u {octinteger} [uU]
hexinteger_u {hexinteger} [uU]
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Grammars

» Grammars are typically given in Backus Normal Form
(BNF)

» Distinguishes terminals (from scanner) and non-terminals
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Example from ISO/IEC 9899:1999 (ANSI-C)

(6.5.1) primary-expression:
identifier
constant
string-literal
( expression )

(6.5.2) postfix-expression:
primary-expression
postfix-expression [ expression ]
postfix-expression ( argument-expression-lisioy; )
postfix-expression . identifier
postfix-expression => identifier
postfix-expression ++
postfix-expression —-
( type-name ) { initializer-list }
( type-name ) { initializer-list , }

(6.5.2) argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression
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Example: bison Grammar

primary_expression:
identifier
| constant
| 7 (! comma_expression ’)’

’

postfix_expression:
primary_expression
| postfix_expression ' [’ comma_expression ']’
| postfix_expression " (' ')’
| postfix_expression ’ (’ argument_expression_list 7))’
| postfix_expression ’.’ member_name
| postfix_expression TOK_ARROW member_name
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Parse Trees

Each rule is typically associated with some code fragment that
constructs a parse free.

» The internal nodes are non-terminals of the grammar
» The leaf nodes are terminals of the grammar
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Parse Trees

postfix_expression

-

primary_expression | comma_expression ]

assignment_expression

cast_expression = assignment_expression

unary_expression conditional_expression

postfix_expression

primary_expression postfix_expression
|
identifier primary,e‘xpression
|
X constant
|
1
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Type Checker

» Parse tree to symbol table: maps identifiers to types

» Expressions are annotated with types
— promotion rules in the case of C

AN
I\
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Type Checker

» Parse tree to symbol table: maps identifiers to types

» Expressions are annotated with types
— promotion rules in the case of C

+ double

/N

float f + int

/N

char ¢l c2 char
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Control Flow Graph

» The code of each procedure is converted to
a Control Flow Graph (CFG)

» Think of this as a program with GOTOs
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Control Flow Graph

int main( void ) {

}

char x;
x = getch();
while (x!="\n") {
switch (x) {
case ’'a’:
case ’'b’:
printf("a or b");
break;
case ’'c’:
printf("c and ");
/« fall —through =/
default:
printf ("d");
break;
}
!

return O0;

LO: signed char x;

L1: getch$1 = getch();

[L2: X = (signed char)getch$l;]

[LIO: return 0;] [L4: x=="a'llx == ’b’?j

‘Ae \me

[LS: X == ’c’?j [L6: printf("a or b”);]

L7: printf("c and ");
L9: printf("d");

false
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Where and How?

» All of this can be done inside the ITP

» A tool like ACL2 might even be fast

» Or: do externally, and grab any of the intermediate stages
(possibly verify the external tool)
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STL

» Standard Template Library

» Encapsulates complex data structures and algorithms

typedef std::hash_map<
std :: string, symbolt, string_hash> symbolst;

typedef std::vector<nodet> nodest;
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STL

» “Interesting” programs using STL
have >1000 data structures

» STL implementation highly complex and optimized
» Don’t want to verify STL together with program

» Let’s assume the STL is correct,
and let’s map these to theorem prover types!
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Simulink

» We have models from Airbus, Ford, ...

» This looks like a dataflow description,
but it isn’t

» This looks like there are modules,
but there aren’t

» This looks like there is concurrency,
but there isn’t

— Use sequential semantics
v We are building a converter to CFGs
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