
Interfacing ITP to the Real World

Daniel Kroening Philipp Rümmer Georg Weissenbacher

Oxford University Computing Laboratory

ITP Workshop
MSR Cambridge
25 August 2009

1 / 19

Motivation

We would like to use ITP to reason about
I Software
I Hardware
I Control systems

2 / 19

The Weakest Link

There is a potential semantic gap. These are typically given as
I Software: C, C++, Java, maybe UML State Machine

Diagrams
I Hardware: Verilog, VHDL
I Control systems: Simulink, . . .

8ITPs don’t accept these as inputs. Semantics?

3 / 19

Possible Answers

A. Don’t

I Instead: model in ITP’s language, and then refine to target
system
(e.g., B, PVS→ Verilog, . . .)

4 Translation may be buggy, but this is usually a small tool

4 Semantics question can be limited to a small subset of the
target langauge

4 / 19

Models from Source Code: Overview

Parser

Type Checker

CFG-Generator
Frontend

. . .

Reasoning

5 / 19

Models from Source Code: Overview

Parser

Type Checker

CFG-Generator
Frontend

. . .

Reasoning

5 / 19

Models from Source Code: Overview

Parser

Type Checker

CFG-Generator

Frontend

. . .

Reasoning

5 / 19

Models from Source Code: Overview

Parser

Type Checker

CFG-Generator
Frontend

. . .

Reasoning

5 / 19

Models from Source Code: Overview

Parser

Type Checker

CFG-Generator
Frontend

. . .

Reasoning

5 / 19

Scanner and Parser

Some overlap with compiler course here.

I A program is a sequence of tokens, which follows a
grammar.

I A token is a sequence of characters drawn from an
alphabet.

6 / 19

Tokenization

A scanner (lexical analyzer) turns a sequence of characters into
a sequence of tokens.
Example: flex.

digit [0-9]
octdigit [0-7]
hexdigit [0-9a-fA-F]
letter ([A-Z]|[a-z])
identifier (({letter}|"_")({letter}|{digit}|"_")*)
integer {digit}+
decinteger [1-9]{digit}*
octinteger "0"{octdigit}*
hexinteger "0"[xX]{hexdigit}+
decinteger_u {decinteger}[uU]
octinteger_u {octinteger}[uU]
hexinteger_u {hexinteger}[uU]

7 / 19

Grammars

I Grammars are typically given in Backus Normal Form
(BNF)

I Distinguishes terminals (from scanner) and non-terminals

8 / 19

Example from ISO/IEC 9899:1999 (ANSI–C)
ISO/IEC 9899:1999 (E) ©ISO/IEC

A.2 Phrase structure grammar

A.2.1 Expressions

(6.5.1) primary-expression:

identifier

constant

string-literal

(expression)

(6.5.2) postfix-expression:

primary-expression

postfix-expression [expression]

postfix-expression (argument-expression-listopt)

postfix-expression . identifier

postfix-expression -> identifier

postfix-expression ++

postfix-expression --

(type-name) { initializer-list }

(type-name) { initializer-list , }

(6.5.2) argument-expression-list:

assignment-expression

argument-expression-list , assignment-expression

(6.5.3) unary-expression:

postfix-expression

++ unary-expression

-- unary-expression

unary-operator cast-expression

sizeof unary-expression

sizeof (type-name)

(6.5.3) unary-operator: one of

& * + - ~ !

(6.5.4) cast-expression:

unary-expression

(type-name) cast-expression

(6.5.5) multiplicative-expression:

cast-expression

multiplicative-expression * cast-expression

multiplicative-expression / cast-expression

multiplicative-expression % cast-expression

408 Language syntax summary §A.2.1

9 / 19

Example: bison Grammar

primary_expression:
identifier

| constant
| ’(’ comma_expression ’)’
;

postfix_expression:
primary_expression

| postfix_expression ’[’ comma_expression ’]’
| postfix_expression ’(’ ’)’
| postfix_expression ’(’ argument_expression_list ’)’
| postfix_expression ’.’ member_name
| postfix_expression TOK_ARROW member_name
...

10 / 19

Parse Trees

Each rule is typically associated with some code fragment that
constructs a parse tree.

I The internal nodes are non-terminals of the grammar
I The leaf nodes are terminals of the grammar

11 / 19

Parse Trees

postfix expression

primary expression

. . .

[comma expression

assignment expression

cast expression

unary expression

postfix expression

primary expression

identifier

x

= assignment expression

conditional expression

. . .

postfix expression

primary expression

constant

1

]

12 / 19

Type Checker

I Parse tree to symbol table: maps identifiers to types

I Expressions are annotated with types
→ promotion rules in the case of C

+
@
@
@

�
�
�

+f
@
@
@

�
�

�
c1 c2

float

char char

int

double

13 / 19

Type Checker

I Parse tree to symbol table: maps identifiers to types

I Expressions are annotated with types
→ promotion rules in the case of C

+
@
@
@

�
�
�

+f
@
@
@

�
�

�
c1 c2

float

char char

int

double

13 / 19

Type Checker

I Parse tree to symbol table: maps identifiers to types

I Expressions are annotated with types
→ promotion rules in the case of C

+
@
@
@

�
�
�

+f
@
@
@

�
�

�
c1 c2

float

char char

int

double

13 / 19

Type Checker

I Parse tree to symbol table: maps identifiers to types

I Expressions are annotated with types
→ promotion rules in the case of C

+
@
@
@

�
�
�

+f
@
@
@

�
�

�
c1 c2

float

char char

int

double

13 / 19

Control Flow Graph

I The code of each procedure is converted to
a Control Flow Graph (CFG)

I Think of this as a program with GOTOs

14 / 19

Control Flow Graph

i n t main (vo id) {
char x ;
x = getch () ;
wh i le (x ! = ’ \ n ’) {

swi tch (x) {
case ’ a ’ :
case ’ b ’ :

p r i n t f (" a or b ") ;
break ;

case ’ c ’ :
p r i n t f (" c and ") ;
/∗ f a l l −through ∗ /

d e f a u l t :
p r i n t f (" d ") ;
break ;

}
}
r e t u r n 0 ;

}

main

L0: signed char x;

L1: getch$1 = getch();

L2: x = (signed char)getch$1;

L3: !(x != ’\n’)?

L10: return 0;

true

L4: x == ’a’ || x == ’b’?

false

L6: printf("a or b");

true

L5: x == ’c’?

false

L7: printf("c and ");

true

L9: printf("d");

false

15 / 19

Where and How?

I All of this can be done inside the ITP

I A tool like ACL2 might even be fast

I Or: do externally, and grab any of the intermediate stages
(possibly verify the external tool)

16 / 19

STL

I Standard Template Library

I Encapsulates complex data structures and algorithms

typedef s td : : hash_map<
std : : s t r i n g , symbolt , s t r ing_hash > symbolst ;

. . .

typedef s td : : vec to r<nodet > nodest ;

17 / 19

STL

I “Interesting” programs using STL
have >1000 data structures

I STL implementation highly complex and optimized
I Don’t want to verify STL together with program

I Let’s assume the STL is correct,
and let’s map these to theorem prover types!

18 / 19

Simulink

I We have models from Airbus, Ford, . . .

I This looks like a dataflow description,
but it isn’t

I This looks like there are modules,
but there aren’t

I This looks like there is concurrency,
but there isn’t

→ Use sequential semantics
4 We are building a converter to CFGs

19 / 19

	Building the Parse Tree
	Tokens and Grammars
	Parsing
	Type Annotation

	The Control Flow Graph
	Higher-level Datatypes

